回归预测分析---SVM神经网络

合集下载

机器学习:SVM和神经网络的比较

机器学习:SVM和神经网络的比较

机器学习:SVM和神经网络的比较机器学习是一种利用算法让计算机系统能够从数据中学习的技术。

在机器学习中,支持向量机(SVM)和神经网络是两种常用的算法。

本文将对这两种算法进行比较,包括其原理、应用、优缺点等方面的分析。

支持向量机(SVM)是一种用于分类和回归分析的监督学习模型。

其基本原理是通过一个最优超平面将不同类别的数据点分开,使得类别之间的间隔最大化。

SVM可用于线性和非线性分类,还可通过核函数将数据映射到更高维度的空间中,从而实现非线性分类。

SVM的优点之一是能够处理高维数据,且具有较好的泛化能力。

而且,由于其核函数的特性,SVM可以应用于非线性问题。

神经网络是一种通用的机器学习模型,受启发于人类神经系统的结构。

神经网络由多层神经元组成,每一层都与下一层相连,最终输出层生成预测结果。

训练神经网络需要大量的数据和计算资源,通常需要进行反向传播算法来更新权重和偏差,使得神经网络能够学习到正确的模式。

神经网络在图像和语音识别等领域有着广泛的应用,并且在深度学习中占据着重要的地位。

下面我们将从不同的角度对SVM和神经网络进行比较:1.原理SVM基于最大化间隔的原则进行分类,它找出最优的超平面将不同类别的数据点分隔开。

神经网络则是通过多层神经元的组合来学习数据的模式和特征。

SVM是一种几何学方法,而神经网络则是一种统计学方法。

2.应用SVM在文本分类、图像分类、生物信息学、金融分析等领域有着广泛的应用。

而神经网络在语音识别、图像识别、自然语言处理、机器翻译等方面也有着杰出的成绩。

3.优缺点SVM的优点是能够处理高维数据,且泛化能力较好。

但对于大规模数据和非线性问题,SVM的计算开销较大。

神经网络的优点是能够处理大规模数据和非线性问题,并且可以通过调节网络结构和参数来适应不同的数据。

但神经网络的缺点是需要大量的数据和计算资源,训练时间较长,且容易出现过拟合的问题。

4.性能SVM在小规模数据和线性问题上有着不错的性能,但对于大规模数据和非线性问题,其性能可能不如神经网络。

基于SVM和BP神经网络的预测模型

基于SVM和BP神经网络的预测模型

基于SVM和BP神经网络的预测模型随着社会的不断发展和技术的日益进步,各种预测模型的应用越来越广泛。

其中,基于支持向量机(SVM)和反向传播神经网络(BP神经网络)的预测模型备受关注。

它们不仅可以对数据进行分类和回归预测,还可以在信号、音频、图像等领域中得到广泛应用。

本文将介绍SVM和BP神经网络的基本原理及其在预测模型中的应用。

一、支持向量机(SVM)的基本原理支持向量机是一种基于统计学习理论的分类和回归分析方法。

它的基本原理是通过将原始样本空间映射到高维空间,将不可分的样本转化为可分的线性空间,从而实现分类或者回归分析。

SVM的关键是选择合适的核函数,可以将样本映射到任意高维空间,并通过最大化间隔来实现对样本的分类。

在SVM的分类中,最大间隔分类被称为硬间隔分类,是通过选择支持向量(即距离分类界线最近的样本)来实现的。

而在实际中,可能存在一些噪声和难以分类的样本,这时采用软间隔分类可以更好地适应于数据。

软间隔SVM将目标函数添加一个松弛变量,通过限制松弛变量和间隔来平衡分类精度和泛化能力。

二、反向传播神经网络(BP神经网络)的基本原理BP神经网络是一种典型的前馈型神经网络,具有非线性映射和逼近能力。

它可以用于分类、回归、时间序列预测、模式识别等问题,被广泛应用于各个领域。

BP神经网络由输入层、隐含层和输出层组成,其中隐含层是核心层,通过数学函数对其输入进行加工和处理,将处理的结果传递到输出层。

BP神经网络的训练过程就是通过调整网络的权值和阈值来减小训练误差的过程。

BP神经网络的训练过程可以分为前向传播和反向传播两部分。

前向传播是通过给定的输入,将输入信号经过网络传递到输出层,并计算输出误差。

反向传播是通过计算误差梯度,将误差传递回隐含层和输入层,并调整网络的权值和阈值。

三、SVM与BP神经网络在预测模型中的应用SVM和BP神经网络的预测模型在实际中广泛应用于各个领域,如无线通信、金融、物流、医疗等。

回归预测分析神经网络

回归预测分析神经网络

%%S V M神经网络的回归预测分析---上证指数开盘指数预测%% 清空环境变量function chapter14tic;close all;clear;clc;format compact;%% 数据的提取和预处理% 数据是一个4579*6的double型的矩阵,每一行表示每一天的上证指数% 6列分别表示当天上证指数的开盘指数,指数最高值,指数最低值,收盘指数,当日交易量,当日交易额. load ;% 提取数据[m,n] = size(sh);ts = sh(2:m,1);tsx = sh(1:m-1,:);% 画出原始上证指数的每日开盘数figure;plot(ts,'LineWidth',2);title(,'FontSize',12);xlabel(,'FontSize',12);ylabel('开盘数','FontSize',12);grid on;% 数据预处理,将原始数据进行归一化ts = ts';tsx = tsx';% mapminmax为matlab自带的映射函数% 对ts进行归一化[TS,TSps] = mapminmax(ts,1,2);% 画出原始上证指数的每日开盘数归一化后的图像figure;plot(TS,'LineWidth',2);title('原始上证指数的每日开盘数归一化后的图像','FontSize',12);xlabel(,'FontSize',12);ylabel('归一化后的开盘数','FontSize',12);grid on;% 对TS进行转置,以符合libsvm工具箱的数据格式要求TS = TS';% mapminmax为matlab自带的映射函数% 对tsx进行归一化[TSX,TSXps] = mapminmax(tsx,1,2);% 对TSX进行转置,以符合libsvm工具箱的数据格式要求TSX = TSX';%% 选择回归预测分析最佳的SVM参数c&g% 首先进行粗略选择:[bestmse,bestc,bestg] = SVMcgForRegress(TS,TSX,-8,8,-8,8);% 打印粗略选择结果disp('打印粗略选择结果');str = sprintf( 'Best Cross Validation MSE = %g Best c = %g Best g = %g',bestmse,bestc,bestg); disp(str);% 根据粗略选择的结果图再进行精细选择:[bestmse,bestc,bestg] = SVMcgForRegress(TS,TSX,-4,4,-4,4,3,,,;% 打印精细选择结果disp('打印精细选择结果');str = sprintf( 'Best Cross Validation MSE = %g Best c = %g Best g = %g',bestmse,bestc,bestg); disp(str);%% 利用回归预测分析最佳的参数进行SVM网络训练cmd = ['-c ', num2str(bestc), ' -g ', num2str(bestg) , ' -s 3 -p '];model = svmtrain(TS,TSX,cmd);%% SVM网络回归预测[predict,mse] = svmpredict(TS,TSX,model);predict = mapminmax('reverse',predict',TSps);predict = predict';% 打印回归结果str = sprintf( '均方误差 MSE = %g 相关系数 R = %g%%',mse(2),mse(3)*100);disp(str);%% 结果分析figure;hold on;plot(ts,'-o');plot(predict,'r-^');legend('原始数据','回归预测数据');hold off;title('原始数据和回归预测数据对比','FontSize',12);xlabel(,'FontSize',12);ylabel('开盘数','FontSize',12);grid on;figure;error = predict - ts';plot(error,'rd');title('误差图(predicted data - original data)','FontSize',12);xlabel(,'FontSize',12);ylabel('误差量','FontSize',12);grid on;figure;error = (predict - ts')./ts';plot(error,'rd');title('相对误差图(predicted data - original data)/original data','FontSize',12); xlabel(,'FontSize',12);ylabel('相对误差量','FontSize',12);grid on;snapnow;toc;%% 子函数function [mse,bestc,bestg] =SVMcgForRegress(train_label,train,cmin,cmax,gmin,gmax,v,cstep,gstep,msestep)%SVMcg cross validation by faruto%% about the parameters of SVMcgif nargin < 10msestep = ;endif nargin < 8cstep = ;gstep = ;endif nargin < 7v = 5;endif nargin < 5gmax = 8;gmin = -8;endif nargin < 3cmax = 8;cmin = -8;end% X:c Y:g cg:acc[X,Y] = meshgrid(cmin:cstep:cmax,gmin:gstep:gmax);[m,n] = size(X);cg = zeros(m,n);eps = 10^(-4);bestc = 0;bestg = 0;mse = Inf;basenum = 2;for i = 1:mfor j = 1:ncmd = ['-v ',num2str(v),' -c ',num2str( basenum^X(i,j) ),' -g',num2str( basenum^Y(i,j) ),' -s 3 -p '];cg(i,j) = svmtrain(train_label, train, cmd);if cg(i,j) < msemse = cg(i,j);bestc = basenum^X(i,j);bestg = basenum^Y(i,j);endif abs( cg(i,j)-mse )<=eps && bestc > basenum^X(i,j)mse = cg(i,j);bestc = basenum^X(i,j);bestg = basenum^Y(i,j);endendend% to draw the acc with different c & g[cg,ps] = mapminmax(cg,0,1);figure;[C,h] = contour(X,Y,cg,0:msestep:;clabel(C,h,'FontSize',10,'Color','r');xlabel('log2c','FontSize',12);ylabel('log2g','FontSize',12);firstline = 'SVR参数选择结果图(等高线图)[GridSearchMethod]'; secondline = ['Best c=',num2str(bestc),' g=',num2str(bestg), ...' CVmse=',num2str(mse)];title({firstline;secondline},'Fontsize',12);grid on;figure;meshc(X,Y,cg);% mesh(X,Y,cg);% surf(X,Y,cg);axis([cmin,cmax,gmin,gmax,0,1]);xlabel('log2c','FontSize',12);ylabel('log2g','FontSize',12);zlabel('MSE','FontSize',12);firstline = 'SVR参数选择结果图(3D视图)[GridSearchMethod]'; secondline = ['Best c=',num2str(bestc),' g=',num2str(bestg), ...' CVmse=',num2str(mse)];title({firstline;secondline},'Fontsize',12);。

SVM神经网络的数据分类预测-意大利葡萄酒种类识别

SVM神经网络的数据分类预测-意大利葡萄酒种类识别

案例背景:
SVM神经网络背景:
SVM的相关理论及工具箱的介绍
......
案例背景:
在葡萄酒制造业中,对于葡萄酒的分类具有很大意义,因为这涉及到不同种类的葡萄酒的存放以及出售价格,采用SVM做为分类器可以有效预测相关葡萄酒的种类,从UCI数据库中得到wine数据记录的是在意大利某一地区同一区域上三种不同品种的葡萄酒的化学成分分析,数据里含有178个样本分别属于三个类别(类别标签已给),每个样本含有13个特征分量(化学成分),将这178个样本50%做为训练样本,另50%做为测试样本,用训练样本对SVM分类器进行训练,用得到的模型对测试样本的进行分类标签预测,最终得到96.6292%的分类准确率. .....
测试数据的可视化图:
模型建立:
Matlab程序实现(预定此书,即可下载该案例完整程序):
该处有完整的Matlab程序代码,以及代码的详细说明•清空环境变量
•数据的提取和预处理
•SVM网络训练
•SVM网络分类预测
•结果分析
结果分析:
该处有详细的运行结果。

机器学习技术中的SVM回归算法介绍与比较

机器学习技术中的SVM回归算法介绍与比较

机器学习技术中的SVM回归算法介绍与比较SVM(支持向量机)回归是一种常用的机器学习算法,用于预测连续性的输出变量。

SVM回归通过在特征空间中找到一个最佳拟合的超平面,将输入数据映射到高维空间,使得数据点尽可能靠近这个超平面,同时最小化预测误差。

本文将介绍SVM回归算法的原理、优点、缺点,并与其他机器学习算法进行比较。

SVM回归的原理:SVM回归的核心思想是在特征空间中寻找一个最佳拟合的超平面,使得数据点到该超平面的距离最小化。

与分类问题不同的是,SVM回归允许一些数据点位于超平面的两侧,形成一个分布区间。

SVM回归的关键是选择合适的核函数,常用的核函数有线性核、多项式核和径向基函数(RBF)核。

SVM回归的优点:1. 适用于高维空间:SVM回归通过将数据映射到高维空间,可以处理高维数据集。

这对于处理具有大量特征的数据集是非常有用的。

2. 强大的泛化能力:SVM回归通过最大化间隔,可以在面对新样本时具有较强的泛化能力。

这意味着SVM回归模型可以有效地应对多样的数据集。

3. 鲁棒性:SVM回归对于数据中的噪声和离群点具有较强的鲁棒性。

通过设置松弛变量的值,可以容忍一些误差值,从而使得模型鲁棒性更强。

SVM回归的缺点:1. 参数选择困难:SVM回归中的参数选择对结果影响较大,例如:核函数类型、核函数参数、惩罚因子等。

不同的参数选择可能导致不同的模型性能,参数优化需要经验和调试。

2. 计算资源消耗较大:SVM回归对于大规模数据集的训练和预测需要消耗较多的计算资源。

在处理大规模数据集时,需要考虑计算时间和内存消耗的问题。

3. 对缺失数据敏感:SVM回归对于包含缺失值的数据集比较敏感,需要在数据预处理阶段进行缺失值的处理。

与其他机器学习算法的比较:1. 与线性回归比较:SVM回归相对于线性回归来说,对于非线性关系的数据具有更好的拟合能力。

SVM回归通过核函数的使用可以将数据映射到高维空间,从而更好地处理非线性数据集。

回归预测 matlab

回归预测 matlab

回归预测 matlab回归预测是指利用已知的数据建立一个数学模型,然后使用该模型对未知数据进行预测。

在Matlab中,可以使用各种统计和机器学习工具来进行回归预测分析。

下面我将从多个角度来介绍在Matlab中进行回归预测的方法。

首先,Matlab中可以使用经典的线性回归模型来进行预测。

线性回归是一种常见的统计方法,可以用来建立自变量和因变量之间的线性关系。

在Matlab中,可以使用`fitlm`函数来拟合线性回归模型,并使用该模型来进行预测。

该函数可以处理单变量和多变量的线性回归分析,同时还可以考虑到误差项的自相关性和异方差性。

其次,Matlab还提供了支持向量机(SVM)和人工神经网络(ANN)等机器学习方法来进行回归预测分析。

使用`fitrsvm`函数可以构建支持向量机回归模型,而使用`fitrnet`函数可以构建人工神经网络回归模型。

这些方法在处理非线性关系和高维数据时表现出色,可以更准确地进行预测。

此外,在Matlab中还可以使用交叉验证等技术来评估回归模型的性能。

通过交叉验证可以更准确地评估模型的泛化能力,避免过拟合和欠拟合问题。

Matlab提供了`crossval`函数和`kfoldLoss`函数等用于交叉验证的工具,可以帮助用户选择最佳的回归模型。

最后,Matlab还提供了丰富的可视化工具,可以帮助用户对回归预测结果进行直观的分析和展示。

用户可以使用`plot`函数和`scatter`函数等绘图函数来展示观测数据和预测结果,从而更直观地了解模型的拟合情况和预测效果。

综上所述,Matlab提供了多种方法和工具来进行回归预测分析,用户可以根据自己的数据和需求选择合适的方法进行建模和预测。

通过合理选择模型和参数,并结合交叉验证和可视化分析,可以更准确地进行回归预测,并得到可靠的结果。

svm回归算法

svm回归算法

支持向量机回归算法(Support Vector Machine Regression,简称SVM Regression)是一种监督学习算法,用于解决回归问题。

它通过构建超平面来分割数据集,并使用特定的误差函数来评估模型的预测性能。

在SVM回归算法中,采用了一种称为ε-不敏感误差函数的方法。

该误差函数定义为,如果预测值与真实值之间的差值小于一个阈值ε,则不对此样本点做惩罚。

如果差值超过阈值,则惩罚量为
|yn−tn|−ε,其中yn是预测值,tn是真实值。

这种误差函数实际上形成了一个管道,在管道中样本点不做惩罚被称为
ε-tube。

SVM回归算法的目标是找到一个超平面,使得管道内的样本点数量最大化。

为了获得稀疏解,即计算超平面参数不依靠所有样本数据,而是部分数据,采用了这种误差函数来定义最小化误差函数作为优化目标。

由于上述目标函数含有绝对值项不可微,因此在实际应用中可能会遇到一些问题。

在训练SVM回归模型时,需要提前指定管道的宽度(即ε
的大小),并且算法引入了超参数C来控制对误差的惩罚程度。

在具体训练过程中,通过优化目标函数来找到最优的超平面和参数。

SVM回归算法可以应用于各种回归问题,如房价预测、股票价格预测等。

它的优点包括能够处理非线性问题、对异常值和噪声具有鲁棒性等。

然而,SVM回归算法也有一些局限性,例如在高维空间中可能会遇到维数灾难等问
题。

因此,在使用SVM回归算法时需要根据具体问题来选择合适的算法参数和核函数,并进行充分的实验验证和模型评估。

支持向量机与神经网络算法的对比分析

支持向量机与神经网络算法的对比分析

支持向量机与神经网络算法的对比分析支持向量机(Support Vector Machine,SVM)和神经网络(Neural Network,NN)是两种常用的机器学习算法,它们在解决分类和回归问题上都具有较强的应用能力。

本文将从原理、优缺点、适用场景和实际应用等方面进行对比分析,以帮助读者更好地理解和选择适合自己需求的算法。

一、原理对比1、支持向量机(SVM)原理支持向量机是一种二类分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器。

简单来说,SVM的目标是找到一个最佳的超平面,将不同类别的样本分开,并且使得两个类别之间的间隔最大化。

当数据线性不可分时,可以通过核函数方法将数据映射到高维空间,实现非线性分类。

2、神经网络原理神经网络是一种模仿人脑神经元网络结构设计的一种算法。

它由输入层、隐层和输出层构成,每一层中包含多个神经元单元。

神经网络通过不断调整连接权值和偏置,学习输入数据的特征,并将学到的知识用于分类和预测。

二、优缺点对比优点:SVM可以有效处理高维数据,且对于小样本数量的数据依然表现稳定,泛化能力强。

通过核函数可以处理非线性分类问题,具有较好的灵活性和泛化能力。

缺点:在大规模数据集上训练的速度较慢,需要耗费大量的计算资源。

对参数的选择和核函数的调整较为敏感,需要谨慎选择。

优点:神经网络可以通过不断迭代学习特征,适用于复杂的非线性问题。

对于大规模数据集和高维数据具有较好的处理能力。

缺点:神经网络结构较为复杂,需要大量的训练数据和时间。

神经网络的训练需要大量的计算资源,对参数的选择和网络结构的设计要求较高。

三、适用场景对比SVM适用于小样本、高维度的数据集,特别擅长处理二分类问题。

在文本分类、图像识别、生物信息学等领域有着广泛的应用。

神经网络适用于大规模数据集和复杂的非线性问题。

在语音识别、自然语言处理、图像识别等领域有着广泛的应用。

四、实际应用对比在文本分类领域,SVM常被用于垃圾邮件过滤、情感分析等任务中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

%% SVM神经网络的回归预测分析---上证指数开盘指数预测%% 清空环境变量function chapter14tic;close all;clear;clc;format compact;%% 数据的提取和预处理% 载入测试数据上证指数(1990.12.19-2009.08.19)% 数据是一个4579*6的double型的矩阵,每一行表示每一天的上证指数% 6列分别表示当天上证指数的开盘指数,指数最高值,指数最低值,收盘指数,当日交易量,当日交易额.load chapter14_sh.mat;% 提取数据[m,n] = size(sh);ts = sh(2:m,1);tsx = sh(1:m-1,:);% 画出原始上证指数的每日开盘数figure;plot(ts,'LineWidth',2);title('上证指数的每日开盘数(1990.12.20-2009.08.19)','FontSize',12);xlabel('交易日天数(1990.12.19-2009.08.19)','FontSize',12);ylabel('开盘数','FontSize',12);grid on;% 数据预处理,将原始数据进行归一化ts = ts';tsx = tsx';% mapminmax为matlab自带的映射函数% 对ts进行归一化[TS,TSps] = mapminmax(ts,1,2);% 画出原始上证指数的每日开盘数归一化后的图像figure;plot(TS,'LineWidth',2);title('原始上证指数的每日开盘数归一化后的图像','FontSize',12);xlabel('交易日天数(1990.12.19-2009.08.19)','FontSize',12);ylabel('归一化后的开盘数','FontSize',12);grid on;% 对TS进行转置,以符合libsvm工具箱的数据格式要求TS = TS';% mapminmax为matlab自带的映射函数% 对tsx进行归一化[TSX,TSXps] = mapminmax(tsx,1,2);% 对TSX进行转置,以符合libsvm工具箱的数据格式要求TSX = TSX';%% 选择回归预测分析最佳的SVM参数c&g% 首先进行粗略选择:[bestmse,bestc,bestg] = SVMcgForRegress(TS,TSX,-8,8,-8,8);% 打印粗略选择结果disp('打印粗略选择结果');str = sprintf( 'Best Cross Validation MSE = %g Best c = %g Best g= %g',bestmse,bestc,bestg);disp(str);% 根据粗略选择的结果图再进行精细选择:[bestmse,bestc,bestg] = SVMcgForRegress(TS,TSX,-4,4,-4,4,3,0.5,0.5,0.05);% 打印精细选择结果disp('打印精细选择结果');str = sprintf( 'Best Cross Validation MSE = %g Best c = %g Best g= %g',bestmse,bestc,bestg);disp(str);%% 利用回归预测分析最佳的参数进行SVM网络训练cmd = ['-c ', num2str(bestc), ' -g ', num2str(bestg) , ' -s 3 -p 0.01']; model = svmtrain(TS,TSX,cmd);%% SVM网络回归预测[predict,mse] = svmpredict(TS,TSX,model);predict = mapminmax('reverse',predict',TSps);predict = predict';% 打印回归结果str = sprintf( '均方误差 MSE = %g 相关系数 R = %g%%',mse(2),mse(3)*100); disp(str);%% 结果分析figure;hold on;plot(ts,'-o');plot(predict,'r-^');legend('原始数据','回归预测数据');hold off;title('原始数据和回归预测数据对比','FontSize',12);xlabel('交易日天数(1990.12.19-2009.08.19)','FontSize',12);ylabel('开盘数','FontSize',12);grid on;figure;error = predict - ts';plot(error,'rd');title('误差图(predicted data - original data)','FontSize',12);xlabel('交易日天数(1990.12.19-2009.08.19)','FontSize',12);ylabel('误差量','FontSize',12);grid on;figure;error = (predict - ts')./ts';plot(error,'rd');title('相对误差图(predicted data - original data)/originaldata','FontSize',12);xlabel('交易日天数(1990.12.19-2009.08.19)','FontSize',12);ylabel('相对误差量','FontSize',12);grid on;snapnow;toc;%% 子函数 SVMcgForRegress.mfunction [mse,bestc,bestg] =SVMcgForRegress(train_label,train,cmin,cmax,gmin,gmax,v,cstep,gstep,mse step)%SVMcg cross validation by faruto%% about the parameters of SVMcgif nargin < 10msestep = 0.06;endif nargin < 8cstep = 0.8;gstep = 0.8;endif nargin < 7v = 5;endif nargin < 5gmax = 8;gmin = -8;endif nargin < 3cmax = 8;cmin = -8;end% X:c Y:g cg:acc[X,Y] = meshgrid(cmin:cstep:cmax,gmin:gstep:gmax);[m,n] = size(X);cg = zeros(m,n);eps = 10^(-4);bestc = 0;bestg = 0;mse = Inf;basenum = 2;for i = 1:mfor j = 1:ncmd = ['-v ',num2str(v),' -c ',num2str( basenum^X(i,j) ),' -g ',num2str( basenum^Y(i,j) ),' -s 3 -p 0.1'];cg(i,j) = svmtrain(train_label, train, cmd);if cg(i,j) < msemse = cg(i,j);bestc = basenum^X(i,j);bestg = basenum^Y(i,j);endif abs( cg(i,j)-mse )<=eps && bestc > basenum^X(i,j)mse = cg(i,j);bestc = basenum^X(i,j);bestg = basenum^Y(i,j);endendend% to draw the acc with different c & g[cg,ps] = mapminmax(cg,0,1);figure;[C,h] = contour(X,Y,cg,0:msestep:0.5);clabel(C,h,'FontSize',10,'Color','r');xlabel('log2c','FontSize',12);ylabel('log2g','FontSize',12);firstline = 'SVR参数选择结果图(等高线图)[GridSearchMethod]'; secondline = ['Best c=',num2str(bestc),' g=',num2str(bestg), ...' CVmse=',num2str(mse)];title({firstline;secondline},'Fontsize',12);grid on;figure;meshc(X,Y,cg);% mesh(X,Y,cg);% surf(X,Y,cg);axis([cmin,cmax,gmin,gmax,0,1]);xlabel('log2c','FontSize',12);ylabel('log2g','FontSize',12);zlabel('MSE','FontSize',12);firstline = 'SVR参数选择结果图(3D视图)[GridSearchMethod]'; secondline = ['Best c=',num2str(bestc),' g=',num2str(bestg), ...' CVmse=',num2str(mse)];title({firstline;secondline},'Fontsize',12);。

相关文档
最新文档