2020年高考数学总复习题库-常用逻辑用语BN

合集下载

2020新课标高考数学(文)总复习专题限时训练:常用逻辑用语含解析

2020新课标高考数学(文)总复习专题限时训练:常用逻辑用语含解析

10.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12<2x<8、B ={x |-1<x <m +1}、若x ∈B 成立的一个充分不必要的条件是x ∈A 、则实数m 的取值范围是( ) A .m ≥2 B.m ≤2 C .m >2D.m <2解析:A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12<2x<8={}x | -1<x<3、因为x ∈B 成立的一个充分不必要的条件是x ∈A 、所以A B 、故m +1>3、即m >2.答案:C11.(20xx·深圳模拟)下列说法正确的是( )A .命题“若x 2-3x -4=0、则x =4”的否命题是“若x 2-3x -4=0、则x ≠4”B .a >0是函数y =x a 在定义域上单调递增的充分不必要条件C .∃x 0∈(-∞、0)、2 018x 0<2 019x 0D .若命题p :∀n ∈N,3n >20xx 、则¬p :∃n 0∈N 、3n 0≤2 018解析:命题“若x 2-3x -4=0、则x =4”的否命题是“若x 2-3x -4≠0、则x ≠4”、故A 错;当a =2时、y =x 2在定义域上不单调、充分性不成立、故B 错. ∀x ∈(-∞、0)时、2 018x >2 019x 、故C 错;命题p :∀n ∈N,3n >2 018、则¬p :∃n 0∈N,3n 0≤2 018、故D 对. 答案:D12.下列说法错误的是( )A .命题:“若x 2-5x +6=0、则x =2”的逆否命题是“若x ≠2、则x 2-5x +6≠0”B .若命题p :存在x 0∈R 、x 20+x 0+1<0、则¬p :对任意x ∈R 、x 2+x +1≥0C .若x 、y ∈R 、则“x =y ”是“xy ≥⎝⎛⎭⎪⎫x +y 22”的充要条件 D .已知命题p 和q 、若“p 或q ”为假命题、则命题p 与q 中必一真一假。

2020年高考数学;集合与常用逻辑用语(原卷版)

2020年高考数学;集合与常用逻辑用语(原卷版)

集合与常用逻辑用语1-11(原卷版)1、集合小题★★★★★十年考情:针对该考点,都以交并补子运算为主,多与解不等式等交汇,新定义运算也有较小的可能,但是难度较低;基本上是每年的送分题,相信命题小组对集合题进行大幅变动的决心不大。

常见集合元素限定条件;对数不等式、指数不等式、分式不等式、一元二次不等式、绝对值不等式、对数函数的定义域、二次根式、点集(直线、圆、方程组的解);补集、交集和并集;不等式问题画数轴很重要;指数形式永远大于0不要忽记;特别注意代表元素的字母是x 还是y 。

2020高考预测:1.已知集合{2,1,0,1,2}A =--,(){|ln 1}B x y x ==+,则AB =( ) A .{1,0}- B .{0,1}C .{1,0,1}-D .{0,1,2}2.已知集合22{(,)|1}A x y x y =+=,{(,)|}B x y y x ==,则A B 中元素的个数为( ) A .3 B .2 C .1 D .03.已知集合1,2,3A ,220,B x x x x Z ,则A B ( )A .{}1B .{}21,C .{}3210,,,D .{}32101-,,,,4.已知集合1{1}A x x =>,则A R =( )A .{1}x x <B .{|}{|1}x x x x ≤0≥C .{|0}{|1}x x x x <>D .{1}x x ≤5.已知集合{2,1,0,1,2}A =--,{|}x B y y e y N ,==∈,则AB =( ) A .{1,0}- B .{0,1}C .{1,2}D .{0,1,2}6.已知集合M={-1,0,1,2,3,4},N={1,3,5},P M N =,则P 的真子集共有( ) A .2个 B .3个 C .4个 D .8个”的(A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.已知直线12:(2)10,:20l ax a y l x ay +++=++=,其中a R ∈,则“3a =-”是“12l l ⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件9.命题“x R ∀∈,210x x -+≥”的否定是( )A .x R ∀∈,210x x -+<B .x R ∀∈,210x x -+≤C .0x R ∃∈,20010x x -+<D .0x R ∃∈,20010x x -+≤10.下列命题正确的是( )A .“1x <”是“2320x x -+>”的必要不充分条件B .对于命题p :x R ∃∈,使得210x x +-<,则p ⌝:x R ∀∈均有210x x +-≥C .若p q ∨为真命题,则p ,q 只有一个为真命题D .命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+=,则2x ≠”11.下列说法错误的是( )A .命题“若x 2﹣4x +3=0,则x =3”的逆否命题是“若x ≠3,则x 2﹣4x +3≠0”B .“x >1”是“|x |>0”的充分不必要条件C .命题p :“∃x ∈R ,使得x 2+x +1<0”,则¬p :“∀x ∈R ,x 2+x +1≥0”D .若p ∧q 为假命题,则p 、q 均为假命题AB AC BC +>。

2020年高考数学总复习题库-常用逻辑用语NN

2020年高考数学总复习题库-常用逻辑用语NN

2020年高考总复习 理科数学题库常用逻辑用语学校:__________题号 一 二 三 总分 得分第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人 得分一、选择题1.“a>b>c ”是”ab<222a b +”的 AA .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件(2006试题)2.“21sin =A ”是“A=30º”的( )B A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也必要条件(2006浙江)3.设a r 、b r 都是非零向量,下列四个条件中,使||||a ba b =r rr r 成立的充分条件是( )A 、a b =-r rB 、//a b r rC 、2a b =r rD 、//a b r r 且||||a b =r r4.设a,b ,c,∈ R,,则“abc=1”是“a b c a b c++≤+=”的A.充分条件但不是必要条件,B 。

必要条件但不是充分条件 C.充分必要条件 D.既不充分也不必要的条件5.已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件。

现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不是充分条件;④s p ⌝⌝是的必要条件而不是充分条件;⑤r 是s 的充分条件而不是必要条件,则正确命题序号是( ) A .①④⑤ B .①②④ C .②③⑤ D . ②④⑤ (2007湖北)6.命题“对任意的01,23≤+-∈x x R x ”的否定是( ) A .不存在01,23≤+-∈x x R x B .存在01,23≥+-∈x x R xC .存在01,23>+-∈x x R x D . 对任意的01,23>+-∈x x R x (2007山东)7.命题p :若a 、b ∈R ,则||||b a +>1是||b a +>1的充分而不必 要条件;命题q :函数2|1|--=x y 的定义域是(-∞,][31Y -,+∞). 则( )D A .“p 或q ”为假 B .“p 且q ”为真 C .p 真q 假D .p 假q 真(2007福建)8.命题“若α=π4,则tan α=1”的逆否命题是 若tan α≠1,则α≠π49.设集合}30|{≤<=x x M ,}20|{≤<=x x N ,那么“M a ∈”是“N a ∈”的( )BA .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件(2006试题)10.下列命题中,假命题为A .存在四边相等的四边形不.是正方形 B .1212,,z z C z z ∈+为实数的充分必要条件是12,z z 为共轭复数 C .若,x y ∈R ,且2,x y +>则,x y 至少有一个大于1D .对于任意01,nn n n n N C C C ∈+++L 都是偶数11.对任意实数a ,b ,c ,给出下列命题: ①“a=b ”是“ac=bc ”的充要条件;②“a+5是无理数”是“a 是无理数”的充要条件; ③“a>b ”是“a 2>b 2”的充分条件; ④“a<5”是“a<3”的必要条件其中真命题的个数是A .1B .2C .3D .4(2005湖北理)12.若a ∈R ,则“a =2”是“(a -1)(a -2)”=0的( ) (A).充分而不必要条件 (B)必要而不充分条件(C).充要条件 (D).既不充分又不必要条件(2011福建理2) 13.对于函数y=f (x ),x ∈R ,“y=|f(x)|的图像关于y 轴对称”是“y=f (x )是奇函数”的(A )充分而不必要条件 (B )必要而不充分条件(C )充要条件 (D )既不充分也不必要条(2011山东理5)14.设11229(,),(4,),(,)5A x yBC x y 是右焦点为F 的椭圆221259x y +=上三个不同的点,则“,,AF BF CF 成等差数列”是“128x x +=”的 A A .充要条件 B .必要不充分条件C .充分不必要条件D .既非充分也非必要(2006试题)15.设集合{(,)|,},{(,)|20},U x y x R y R A x y x y m =∈∈=-+>{(,)|0}B x y x y n =+-≤,那么点P (2,3)()U A C B ∈I 的充要条件是( ) AA .5,1<->n mB .5,1<-<n mC .5,1>->n mD .5,1>-<n m (2004湖南)16.0a <是方程2210ax x ++=至少有一个负数根的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件D .既不充分也不必要条件17.已知p :,0)3(:,1|32|<-<-x x q x 则p 是q 的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件(2005福建)18.一元二次方程2210,(0)ax x a ++=≠有一个正根和一个负根的充分不必要条件是( )C A .0a < B .0a > C .1a <- D .1a >(2006重庆)19.若函数f (x )、g (x )的定义域和值域都为R ,则f (x )>g (x )(x ∈R )成立的充要条件是( )DA .有一个x ∈R ,使f (x )>g (x )B .有无穷多个x ∈R ,使得f (x )>g (x )C .对R 中任意的x ,都有f (x )>g (x )+1D .R 中不存在x ,使得f (x )≤g (x )(1996上海理6)20.设()()sin f x x ωϕ=+,其中0ω>,则()f x 是偶函数的充要条件是( D ) A .()01f = B .()00f =C .()'01f=D .()'00f=(四川卷10)21.“18a =”是“对任意的正数x ,21ax x+≥”的( )(陕西卷6) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件22.已知命题:p 所有有理数都是实数,命题:q 正数的对数都是负数,则下列命题中为真命题的是( D ) A .()p q ⌝∨ B .p q ∧ C .()()p q ⌝∧⌝ D .()()p q ⌝∨⌝23.设有两个命题 :p 关于x 的不等式(0x +的解集为{|2}x x -≥,命题:q 若函数21y kx kx =--的值恒小于0,则40k -<<,则有---------------( ) A .“p q 且”为真命题 B .“p q 或”为真命题 C .“p H ”为真命题 D .“q H ”为假命24.已知真命题:“a b c d ⇒>≥”和“a b e f <⇔≤”,则“c d ≤”是“e f ≤”的---------( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 25.设,R ∈ϕ则“0=ϕ”是“))(cos()(R x x x f ∈+=ϕ为偶函数”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分与不必要条件26.命题“若a b >,则a c b c +>+”的逆否命题为-----------------------------------------------( )(A)若a b <,则a c b c +<+ (B)若a b ≤,则a c b c ++≤ (C)若a c b c +<+,则a b < (D)若a c b c ++≤,则a b ≤ 27.函数f (x )=x|x+a|+b 是奇函数的充要条件是( ) A .ab=0 B .a+b=0 C .a=b D .a 2+b 2=0(2006试题)28.“1x <-”是“210x ->”的(A )充分而不必要条件 (B)必要而不充分条件(C) 充要条件 (D)既不充分也不必要条件(2011年高考重庆卷理科2)29.已知a ,b ,c ,d 为实数,且c >d .则“a >b ”是“a -c >b -d ”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件(2009四川文)30.在△ABC 中,sin A >sin B 是A >B 的 A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件31.若a ∈R ,则a=2是(a-1)(a-2)=0的 A .充分而不必要条件B .必要而不充分条件C .充要条件 C .既不充分又不必要条件32.若,a b 为实数,则“01ab <<”是11a b b a<>或的 (A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件(2011年高考浙江卷理科7)33.若函数⎩⎨⎧<+≥=11log )(2x c x x x x f ,则“1-=c ”是“)(x f y =在R 上单调增函数”的( )(A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分也非必要条件34.命题P :如果22210x x a ++-<,那么11a x a -+<<--,命题:1Q a <,那么,则Q 是P 的-( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件35.设a b ,是两条直线,αβ,是两个平面,则a b ⊥的一个充分条件是( ) A .a b αβαβ⊥⊥,∥, B .a b αβαβ⊥⊥,,∥C .a b αβαβ⊂⊥,,∥D .a b αβαβ⊂⊥,∥,(2008天津理)36.已知α、β是不同的两个平面,直线βα⊂⊂b a 直线,,命题b a p 与:无公共点;命题 βα//:q . 则q p 是的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件(2004辽宁)37.若非空集合A,B,C 满足A ∪B=C ,且B 不是A 的子集,则 A .“x ∈C ”是“x ∈A ”的充分条件但不是必要条件 B . “x ∈C ”是“x ∈A ”的必要条件但不是充分条件 C . “x ∈C ”是“x ∈A ”的充分条件D . “x ∈C ”是“x ∈A ”的充分条件也不是“x ∈A ”必要条件(2008湖北理)38.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥,则“αβ⊥”是“a b ⊥”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .即不充分不必要条件(2012安徽理)39.若空间中有两条直线,则“这两条直线为异面直线”是“这两条直线没有公共点”的 ( )(A )充分非必要条件 (B )必要非充分条件(C )充分必要条件 (D )既非充分又非必要条件(2006上海文)40.设a∈R ,则“a=1”是“直线l 1:ax+2y=0与直线l 2 :x+(a+1)y+4=0平行的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件(2012浙江文) 41.设1111()()1232f k k N k k k k*=++++∈+++L ,那么(1)()f k f k +-= .42.对于数列{a n },“a n +1>∣a n ∣(n=1,2…)”是“{a n }为递增数列”的【B 】 (A) 必要不充分条件 (B) 充分不必要条件[来源:学+科+网] (C) 必要条件 (D) 既不充分也不必要条件(2010陕西理)43.“18a =”是“对任意的正数x ,21ax x+≥”的( ) A .充分不必要条件B .必要不充分条件 C .充要条件D .既不充分也不必要条件(2008陕西理)44.甲:A 1、A 2是互斥事件;乙:A 1、A 2是对立事件,那么(B ) A. 甲是乙的充分但不必要条件 B. 甲是乙的必要但不充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件,也不是乙的必要条件(2006湖北文)45.设m,n 是整数,则“m,n 均为偶数”是“m+n 是偶数”的 (A)充分而不必要条件 (B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件(2008重庆理)46.设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是( )A .p 为真B .q ⌝为假C .p q ∧为假D .p q ∨为真(2012山东文)47.设x Z ∈,集合A 是奇数集,集合B 是偶数集.若命题:,2p x A x B ∀∈∈,则 ( )A .:,2p x A xB ⌝∀∃∈∉ B .:,2p x A x B ⌝∀∉∉C .:,2p x A x B ⌝∃∉∈D .:,2p x A x B ⌝∃∈∈(2013年高考四川卷(理))48.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的 ( )A .充分条件B .必要条件C .充分必要条件D .既非充分也非必要条件(2013年高考上海卷(理))49.已知 a b c R ∈、、,“240b ac -<”是“函数2()f x ax bx c =++的图像恒在x 轴上方”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件(2013年上海市春季高考数学试卷(含答案)) 50.“1<x<2”是“x<2”成立的______ ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件(2013年高考湖南(文))51.0a <是方程2210ax x ++=至少有一个负数根的( ) A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件(2008安徽理)52.已知,,,a b c d 为实数,且c d >。

2020年高考数学总复习题库-常用逻辑用语AAN

2020年高考数学总复习题库-常用逻辑用语AAN

2020年高考总复习 理科数学题库常用逻辑用语学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题1.已知α、β是不同的两个平面,直线βα⊂⊂b a 直线,,命题b a p 与:无公共点;命题 βα//:q . 则q p 是的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件(2004辽宁)2.“为真且q p ”是“为真或q p ”的______________条件。

(填充要,充分不必要,必要不充分,既不充分又不必要)3.下列说法错误..的是( ) A .命题“若1,0232==+-x x x 则”的逆否命题为:“若1x ≠则2320x x -+≠”B .命题2:,10p x R x x ∃∈++<“使得”,则2:,10p x R x x ⌝∀∈++≥“均有”C .若“q p 且” 为假命题,则,p q 至少有一个为假命题D .若0,a a b a c ≠⋅=⋅r r r r r r则“”是“c b =”的充要条件4.命题“存在实数x ,使x > 1”的否定是(A )对任意实数x , 都有x >1 (B )不存在实数x ,使x ≤1 (C )对任意实数x , 都有x ≤1 (D )存在实数x ,使x ≤15.命题“所有能被2整除的整数都是偶数”的否定..是 (A )所有不能被2整除的整数都是偶数 (B )所有能被2整除的整数都不是偶数 (C )存在一个不能被2整除的整数是偶数 (D )存在一个不能被2整除的整数不是偶(2011安徽理7)6.设γβα、、为平面,l n m 、、为直线,则β⊥m 的一个充分条件是( ) (A) l m l ⊥=⋂⊥,,βαβα (B) γβγαγα⊥⊥=⋂,,m (C) αγβγα⊥⊥⊥m ,,(D)αβα⊥⊥⊥m n n ,,(2005天津理)(2005天津理)7.设,,a b c 分别是ABC ∆的三个内角,,A B C 所对的边,则()2a b b c =+是2A B =的AA .充分条件B .充分而不必要条件C .必要而充分条件D .既不充分又不必要条件(2006试题)8.若y=f (x )是定义在R 上的函数,则y=f (x )为奇函数的一个充要条件为( ) A .f (x )=0B .对任意x ∈R ,f (x )=0都成立C .存在某x 0∈R ,使得f (x 0)+f (-x 0)=0D .对任意的x ∈R ,f (x )+f (-x )=0都成立(1996上海文6)9.若a ∈R ,则“a =2”是“(a -1)(a -2)”=0的( ) (A).充分而不必要条件 (B)必要而不充分条件(C).充要条件 (D).既不充分又不必要条件(2011福建理2)10.设O 为ABC ∆所在平面上一点.若实数x y z 、、满足0xOA yOB zOC ++=u u u r u u u r u u u r r222(0)x y z ++≠,则“0xyz =”是“点O 在ABC ∆的边所在直线上”的[答]( )(A)充分不必要条件. (B)必要不充分条件.(C)充分必要条件. (D)既不充分又不必要条件.11.已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条 件.那么p 是q 成立的:( )A A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件(2006重庆)12.“21sin =A ”是“A=30º”的( )B A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也必要条件(2006浙江)13.一元二次方程2210,(0)ax x a ++=≠有一个正根和一个负根的充分不必要条件是:( )A 0a <B 0a >C 1a <-D 1a >(2004重庆理) 14.四个条件:a b >>0,b a >>0,b a >>0,0>>b a 中,能使ba 11<成立的充分条件的个数是( ) A .1B .2C .3D .3(2006试题)15.若a 与b-c 都是非零向量,则“a ·b=a ·c ”是“a ⊥(b-c)”的( ) (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D) 既不充分也不必要条件(2006北京文)16.已知命题:p 所有有理数都是实数,命题:q 正数的对数都是负数,则下列命题中为真命题的是( D ) A .()p q ⌝∨ B .p q ∧C .()()p q ⌝∧⌝D .()()p q ⌝∨⌝17.集合A ={x |11+-x x <0=,B ={x || x -b|<a },若“a =1”是“A ∩B ≠φ”的充分条件, 则b 的取值范围是 ( ) A .-2≤b <0 B .0<b ≤2C .-3<b <-1D .-1≤b <2(2005湖南理)18.已知a ,b ,c ,d 为实数,且c >d .则“a >b ”是“a -c >b -d ”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件(2009四川文)19.命题p :a 2+b 2<0(a ,b ∈R);命题q :a 2+b 2≥0(a ,b ∈R),下列结论正确的是------------------------( ) A.“p 或q ”为真 B.“p 且q ”为真 C.“非p ”为假 D.“非q ”为真20.原命题:“设a 、b 、c R ∈,若22ac bc >则a b >”的逆命题、否命题、逆否命题真命题共有:( )A .0个B .1个C .2个D .3个21.已知命题P :[)+∞∈∀,0b ,c bx x x f ++=2)(在[)+∞,0上为增函数,命题Q :{},|0Z x x x ∈∈∃ 使 0log 02>x ,则下列结论成立的是()A .﹁P 或﹁QB .﹁P 且﹁Q C.P或﹁Q D.P且﹁Q22.如果一个命题的逆命题是真命题,那么这个命题的--------------------------------------------( )(A)否命题必是真命题 (B)否命题必是假命题 (C)原命题必是假命题 (D)逆否命题必是真命题23.等比数列{}n a 公比为q ,则“10a >,且1q >”是“对于*n N ∈,都有1n n a a +>”的-( )(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分又不必要条件 24.一元二次方程2210,(0)ax x a ++=≠有一个正根和一个负根的充分不必要条件是( )C A .0a < B .0a >C .1a <-D .1a >(2006重庆)25.设a r 、b r 都是非零向量,下列四个条件中,使||||a ba b =r rr r 成立的充分条件是( )A 、||||a b =r r且//a b r r B 、a b =-r r C 、//a b r r D 、2a b =r r26.设””是“则“x x x R x ==∈31,的.A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件(2009天津卷文)27.若函数⎩⎨⎧<+≥=11log )(2x c x x x x f ,则“1-=c ”是“)(x f y =在R 上单调增函数”的( )(A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分也非必要条件28.命题“存在0x ∈R ,02x ≤0”的否定是.(A )不存在0x ∈R, 02x>0 (B )存在0x ∈R, 02x ≥0(C )对任意的x ∈R, 2x ≤0 (D )对任意的x ∈R, 2x>0(2009天津卷理)【考点定位】本小考查四种命题的改写,基础题。

2020年高考数学总复习题库-常用逻辑用语ABN

2020年高考数学总复习题库-常用逻辑用语ABN

2020年高考总复习 理科数学题库常用逻辑用语学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题1.对任意实数a ,b ,c ,给出下列命题: ①“a=b ”是“ac=bc ”的充要条件;②“a+5是无理数”是“a 是无理数”的充要条件; ③“a>b ”是“a 2>b 2”的充分条件; ④“a<5”是“a<3”的必要条件其中真命题的个数是A .1B .2C .3D .4(2005湖北理)2.设a 、b 是平面α外任意两条线段,则“a 、b 的长相等”是a 、b 在平面α内的射影长相等的( ) A .非充分也非必要条件 B .充要条件 C .必要非充分条件 D .充分非必要条件(1994上海17)3.下列说法错误..的是( ) A .命题“若1,0232==+-x x x 则”的逆否命题为:“若1x ≠则2320x x -+≠”B .命题2:,10p x R x x ∃∈++<“使得”,则2:,10p x R x x ⌝∀∈++≥“均有”C .若“q p 且” 为假命题,则,p q 至少有一个为假命题D .若0,a a b a c ≠⋅=⋅r r r r r r则“”是“c b =”的充要条件4.已知函数()21f x x =+,对于任意正数a ,12x x a -<是()()12f x f x a -<成立的 A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既不充分也不必要条件5.命题“若α=π4,则tan α=1”的逆否命题是 若tan α≠1,则α≠π46.设x ∈R ,则“x>12”是“2x 2+x-1>0”的(A ) 充分而不必要条件 (B ) 必要而不充分条件 (C ) 充分必要条件 (D ) 既不充分也不必要条件7.若实数,a b 满足0,0a b ≥≥,且0ab =,则称a 与b 互补,记22(,),a b a b a b ϕ=+--那么(,)0a b ϕ=是a 与b 互补的A.必要而不充分条件B.充分而不必要条件C.充要条件D.既不充分也不必要条件8.命题“对任意的01,23≤+-∈x x R x ”的否定是( ) A .不存在01,23≤+-∈x x R x B .存在01,23≥+-∈x x R xC .存在01,23>+-∈x x R x D . 对任意的01,23>+-∈x x R x (2007山东)9.已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是(A )14,P P (B )13,P P (C )23,P P (D )24,P P10.已知a ,b ,c ∈R,命题“若a b c ++=3,则222a b c ++≥3”的否命题是( ) (A)若a +b +c ≠3,则222a b c ++<3 (B)若a +b +c =3,则222a b c ++<3(C)若a +b +c ≠3,则222a b c ++≥3 (D)若222a b c ++≥3,则a +b +c =3(2011山东文5) 111.“21sin =A ”是“A=30º”的( )B A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也必要条件(2006浙江)12.1a ,1b ,1c ,2a ,2b ,2c 均为非零实数,不等式01121>++c x b x a 和02222>++c x b x a 的解集分别为集合M 和N ,那么“212121c cb b a a ==”是“N M =”的D A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件(2006试题)13.如果命题“⌝(p 或q )”为假命题,则 C A .p ,q 均为真命题 B .p ,q 均为假命题 C .p ,q 中至少有一个为真命题 D .p ,q 中至多有一个为真命题(2006试题)14.甲:A 1、A 2是互斥事件;乙:A 1、A 2是对立事件,那么( ) A . 甲是乙的充分但不必要条件 B . 甲是乙的必要但不充分条件 C . 甲是乙的充要条件D . 甲既不是乙的充分条件,也不是乙的必要条件(2006试题)15.函数f (x )=x|x+a|+b 是奇函数的充要条件是( )A .ab=0B .a+b=0C .a=bD .a 2+b 2=0(2006试题)16.已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件。

2020新课标高考数学(文)二轮总复习课件:1-7-2 常用逻辑用语+Word版含解析

2020新课标高考数学(文)二轮总复习课件:1-7-2 常用逻辑用语+Word版含解析

上一页
返回导航
下一页
新课标高考第二轮总复习•文科数学
[解析] 通性通法:根据命题之间是否由一个命题推出另一个命题来判定.通常将 条件转化为具体范围,由“小范围”推“大范围”. ∵x2-5x<0,∴0<x<5,∵|x-1|<1,∴0<x<2, ∵0<x<5⇒/ 0<x<2,而 0<x<2⇒0<x<5, ∴0<x<5 是 0<x<2 的必要不充分条件, 即 x2-5x<0 是|x-1|<1 的必要不充分条件.
上一页
返回导航
下一页
新课标高考第二轮总复习•文科数学
解析:全称命题的否定是特称命题,否定结论并改写量词,由题意知命题“∀x∈ R,x3>x2”的否定是“∃x0∈R,x30≤x20”.
上一页
返回导航
下一页
新课标高考第二轮总复习•文科数学
考点二 充分、必要条件 [例 2] (2019·高考天津卷)设 x∈R,则“x2-5x<0”是“|x-1|<1”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 [答案] B
上一页
返回导航
下一页
新课标高考第二轮总复习•文科数学
对于④,sin α=12时,α=π6不一定成立,α=π6时,sin α=12成立,所以“sin α=12” 是“α=π6”的必要不充分条件,因此④错误. 综上,正确的命题序号是①③.
上一页
返回导航
下一页
新课标高考第二轮总复习•文科数学
5.如果“x2>1”是“x<a”的必要不充分条件,则 a 的最大值为________. 答案:-1 解析:由 x2>1,得 x<-1 或 x>1. 又“x2>1”是“x<a”的必要不充分条件,知由“x<a”可以推出“x2>1”,反之不成立,所 以 a≤-1,即 a 的最大值为-1.

专题1集合与常用逻辑用语(必刷1~60题)【一轮必刷600题】高三数学一轮复习专项训练(含答案)

专题一集合与常用逻辑用语(必刷1~60题)考点1:集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、V enn 图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN +(或N *)ZQR(5)集合的分类若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.特别注意空集是一个特殊而又重要的集合,如果一个集合不包含任何元素,这个集合就叫做空集,空集用符号“∅”表示,规定:空集是任何集合的子集,是任何非空集合的真子集.解题时切勿忽视空集的情形.考点2:集合间的基本关系关系自然语言符号语言V enn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B (或B ⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A (B (或B (A )集合相等集合A ,B 中元素完全相同或集合A ,B 互为子集A =B(1)、子集与真子集的区别与联系:一个集合的真子集一定是其子集,而其子集不一定是其真子集.(2)、若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.【必刷1】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M∈B .3M∈C .4M∉D .5M∉【必刷2】已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为()A .9B .8C .5D .4【必刷3】已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为()A .3B .2C .1D .0【必刷4】已知集合{}0,1,2A =,{}32B x x =-<<,则A B 子集的个数为()A .3B .4C .7D .8【必刷5】已知集合(){}2,A x y y x ==,(){,B x y y ==,则A B 的真子集个数为()A .1个B .2个C .3个D .4个【必刷6】已知集合{}15A x x =-<<,{}Z 18B x x =∈<<,则A B 的子集个数为()A .4B .6C .8D .9【必刷7】已知集合}{{}2|23,9,,A x Z x B x x M A B =∈-<≤=<=⋂则M 的子集的个数为()A .16B .7C .4D .3【必刷8】已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x +1},则集合A ∩B 中元素的个数为()A .0B .1C .2D .3【必刷9】设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为()A .2B .4C .8D .16【必刷10】设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是()A .3B .6C .7D .8【必刷11】已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =()A .2B .1C .0D .-1【必刷12】集合{}22log 2x Z x ∈≤的子集个数为()A .4B .8C .16D .32【必刷13】已知集合{2,0,2}A =-,π1sin ,4B y y x x A ⎧⎫==+∈⎨⎬⎩⎭,则集合A B 的真子集的个数是()A .7B .31C .16D .15【必刷14】已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是()A .3B .4C .8D .16【必刷15】已知集合{}21,S s s n n Z ==+∈,{}3T x x =<,则S T 的真子集的个数是()A .1B .2C .3D .4【必刷16】已知集合22{(,)|1}A x y x y =+=,集合{(,)|||1}B x y y x ==-,则集合A B 的真子集的个数为()A .3B .4C .7D .8【必刷17】若集合{}1,2,3,4,5U =,{}13,5A =,,{}3,4,5B =,则图中阴影部分表示的集合的子集个数为()A .3B .4C .7D .8考点3:集合的运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U 表示;集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }【必刷18】若集合{4},{31}M x x N x x =<=≥∣∣,则M N = ()A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭【必刷19】集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N = ()A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【必刷20】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}【必刷21】已知集合{}23log 1,02x P x x Q xx -⎧⎫=>=≤⎨⎬+⎩⎭,则()P Q =R I ð()A .[2,2]-B .(2,2]-C .[0,2]D .(0,2]【必刷22】已知集合204x A xx ⎧⎫+=<⎨⎬-⎩⎭,{}0,1,2,3,4,5B =,则()R A B ⋂=ð()A .{}5B .{}4,5C .{}2,3,4D .{}0,1,2,3【必刷23】设集合{}2120A x x x =--≤,12416x B x ⎧⎫=<<⎨⎬⎩⎭,则A B 等于()A .(]3,4-B .[)3,2-C .(]4,4-D .[]3,4-【必刷24】若集合{}4A y y x ==-,{}3log 2B x x =≤,则A B = ()A .(]0,9B .[)4,9C .[]4,6D .[]0,9【必刷25】已知集合(){}0.2log 20A x x =->,{}24B x x =≤,则A B ⋃=()A .[]22-,B .(]2,1-C .[)2,3-D .∅【必刷26】已知全集{1,2,3,4,5,6,7,8,9}U =,{1,3,5,8,9}A =,{2,3,4,6}B =,则()U A B = ð()A .{2,4}B .{2,4,6}C .{1,3,5,7}D .{3}【必刷27】已知集合{}12M x x =-≤≤,{}ln N x y x ==,则M N = ()A .[]1,2-B .(]1,2-C .(]0,2D .()[),12,-∞-⋃+∞【必刷28】已知集合{}{}Z 33,2e xA x xB y y =∈-<<==-,则A B = ()A .{2,1,0,1,2}--B .(,2)-∞C .{2,1,0,1}--D .(3,2)-【必刷29】若全集{}0,1,2,3,4,5U =,集合{}0,1,2A =,{}1,2,3B =,则()U A B = ð()A .{}0,1,2B .{}1,2,3C .{}0D .{}0,1,2,4,5【必刷30】设集合{}{}11,124x M x x N x =-≤≤=<<∣∣,则M N = ()A .{10}xx -≤<∣B .{01}xx <≤∣C .{12}xx ≤<∣D .{12}xx -≤<∣【必刷31】如图,全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,则阴影部分表示集合()A .{}1,0,5,7-B .{}1,0,2,3,5,6,7-C .{}2,3D .{}1,0,5,6,7-【必刷32】设集合{}2|log ,4A y y x x ==>,{}2|320B x x x =-+<,则()A B =R U ð()A .(1,2)B .(1,2]C .(,2]-∞D .(,2)-∞【必刷33】已知全集{}0,1,2,3,4,5,6U =,集合{}0,2,4,5A =,集合{}2,3,4,6B =,用如图所示的阴影部分表示的集合为()A .{2,4}B .{0,3,5,6}C .{0,2,3,4,5,6}D .{1,2,4}【必刷34】已知集合{}2A x x =<,(){}2ln 3B x y x x==-,则A B ⋃=()A .()0,2B .()0,3C .()2,3D .()2,3-【必刷35】若集合{}{}21,0,1,2A x Z x B =∈-<<=,则A B ⋃=()A .(2,1)-B .{1,0}-C .(2,1]{2}-⋃D .{1,0,1,2}-【必刷36】已知集合{}234|0A x x x =--=,{}2|B x a x a =<<,若A B =∅ ,则实数a 的取值范围是()A .(],1-∞-B .[)4,+∞C .()(),12,4-∞-⋃D .[][)1,24,-⋃+∞【必刷37】已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅ ,则实数a 的取值范围是()A .()2,+∞B .{}()12,∞⋃+C .{}[)12,+∞U D .[)2,+∞【必刷38】设{}28120A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值不可以是()A .0B .16C .12D .2【必刷39】已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是()A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【必刷40】已知集合{}21,Z A x x n n ==+∈,{}2B =<,则A B = ()A .{}1,3B .{}1,3,5,7C .{}3,5,7D .{}3,5,7,9考点4.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;考点5.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为:∀x ∈M ,p (x ).(3)含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为:∃x 0∈M ,p (x 0).【必刷41】下列四个命题中真命题的个数是()①“x =1”是“2320x x -+=”的充分不必要条件;②命题“R x ∀∈,sin 1x ≤”的否定是“R x ∃∈,sin 1x >”;③命题p :[)1,x ∀∈+∞,lg 0x ≥,命题q :R x ∃∈,210x x ++<,则p q ∧为真命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为真命题.A .0B .1C .2D .3【必刷42】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+=,则2x ≠”B .若给定命题:R p x ∃∈,210x x +-<,则:R p x ⌝∀∈,210x x +->C .已知:12p x -<<,()12:2log 210x q x +++<,则p 是q 的充分必要条件D .若p q ∨为假命题,则p ,q 都为假命题【必刷43】下列说法错误的是()A .命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”B .在△ABC 中,sin sin A B ≥是A B ≥的充要条件C .若a ,b ,R c ∈,则“20ax bx c ++≥”的充要条件是“0a >,且240b ac -≤”D .“若1sin 2α≠,则6πα≠”是真命题【必刷44】命题“若220x y +=,则0x y ==”的否命题为()A .若220x y +=,则0x ≠且0y ≠B .若220x y +=,则0x ≠或0y ≠C .若220x y +≠,则0x ≠且0y ≠D .若220x y +≠,则0x ≠或0y ≠【必刷45】下列说法正确的是()A .若2000:,2310p x R x x ∃∈++>,则2:,2310p x R x x ⌝∀∈++<B .“(0)0f =”是“函数()f x 是奇函数”的充要条件C .(0,)∀∈+∞x ,都有22x x >D .在ABC 中,若A B >,则sin sin A B >【必刷46】已知下列命题:①x ∀∈R ,210x x ++>;②“2a >”是“5a >”的充分不必要条件;③已知p 、q 为两个命题,若“p q ∨”为假命题,则“p q ⌝∧⌝”为真命题;④若x 、y ∈R 且2x y +>,则x 、y 至少有一个大于1.其中真命题的个数为()A .4B .3C .2D .1【必刷47】设命题0:p x R ∃∈,2010x +=,则命题p 的否定为()A .x R ∀∉,210x +=B .x R ∀∈,210x +≠C .0x R ∃∉,2010x +=D .0x R ∃∈,2010x +≠【必刷48】命题“x R ∀∈,sin x x >”的否定是()A .0x R ∃∈,00sin x x <B .0x R ∃∉,00sin x x ≤C .x R ∀∈,sin x x≤D .0x R ∃∈,00sin x x ≤【必刷49】命题“π,02x ⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是()A .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x≤B .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x<C .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x≤D .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x<【必刷50】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“2320x x -+=,则2x ≠”B .若给定命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +->C .若p q ∧为假命题,则p ,q 都为假命题D .“1x <”是“2320x x -+>”的充分不必要条件考点6:充分条件、必要条件与充要条件的概念若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q ⇏p p 是q 的必要不充分条件p ⇏q 且q ⇒p p 是q 的充要条件p ⇔q p 是q 的既不充分也不必要条件p ⇏q 且q ⇏p【必刷51】若x ,y 为实数,则“11x y<”是“22log log x y >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【必刷52】在ABC 中,“sin 2sin 2A B =”是“A B =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【必刷53】下列四个命题中正确的是()A .若函数()y f x =的定义域为[]1,1-,则()1y f x =+的定义域为[]0,2B .若正三角形ABC 的边长为2,则2AB BC ⋅=C .已知函数()()2log 11f x x =+-,则函数()y f x =的零点为()1,0D .“αβ=”是“tan tan αβ=”的既不充分也不必要条件【必刷54】不等式1133x⎛⎫> ⎪⎝⎭成立是不等式21x <成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷55】设x ∈R ,则“|1|4x -<”是“502x x -<-”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷56】已知条件:p 直线210x y +-=与直线()2110a x a y ++-=平行,条件:q 1a =,则p 是q 的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【必刷57】已知命题2:log 1p x >,命题2:20q x x ->,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷58】设a 、b都是非零向量,下列四个条件中,使a a b b = 成立的充分条件是()A .a b =r r 且a b∥B .a b=-r r C .a b∥D .2a b= 【必刷59】已知向量a 和b ,则“||||a b a b ⋅=⋅ ”是“a b =”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【必刷60】设实数0x >,则“2log 1x <”成立的一个必要不充分条件是()A .122x <<B .12x <<C .1x <D .2x <专题一集合与常用逻辑用语(必刷1~60题)考点1:集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、V enn 图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN +(或N *)ZQR(5)集合的分类若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.特别注意空集是一个特殊而又重要的集合,如果一个集合不包含任何元素,这个集合就叫做空集,空集用符号“∅”表示,规定:空集是任何集合的子集,是任何非空集合的真子集.解题时切勿忽视空集的情形.考点2:集合间的基本关系关系自然语言符号语言V enn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B (或B ⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A (B (或B (A )集合相等集合A ,B 中元素完全相同或集合A ,B 互为子集A =B(1)、子集与真子集的区别与联系:一个集合的真子集一定是其子集,而其子集不一定是其真子集.(2)、若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.【必刷1】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M ∈B .3M∈C .4M∉D .5M∉【答案】A【解析】先写出集合M ,然后逐项验证即可;【详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误,故选:A【必刷2】已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为()A .9B .8C .5D .4【答案】A【解析】根据枚举法,确定圆及其内部整点个数.【详解】223x y +≤ ,23,x ∴≤x Z ∈ ,1,0,1x ∴=-当1x =-时,1,0,1y =-;当0x =时,1,0,1y =-;当1x =时,1,0,1y =-;所以共有9个,故选:A.【必刷3】已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为()A .3B .2C .1D .0【答案】B【解析】集合中的元素为点集,由题意可知,集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点⎝⎭,⎛ ⎝⎭,则A B 中有2个元素.故选B.【必刷4】已知集合{}0,1,2A =,{}32B x x =-<<,则A B 子集的个数为()A .3B .4C .7D .8【答案】B【解析】先求得A B ,然后求得A B 子集的个数.【详解】{}0,1A B = ,所以A B 子集的个数为224=个.故选:B【必刷5】已知集合(){}2,A x y y x ==,(){,B x y y ==,则A B 的真子集个数为()A .1个B .2个C .3个D .4个【答案】C【解析】解方程组可求得A B ,根据A B 元素个数可求得真子集个数.【详解】由2y xy ⎧=⎪⎨=⎪⎩00x y =⎧⎨=⎩或11x y =⎧⎨=⎩,()(){}0,0,1,1A B ∴= ,即A B 有2个元素,A B ∴ 的真子集个数为2213-=个.故选:C.【必刷6】已知集合{}15A x x =-<<,{}Z 18B x x =∈<<,则A B 的子集个数为()A .4B .6C .8D .9【答案】C【解析】根据集合交集的定义,结合子集的个数公式进行求解即可.【详解】因为{}15A x x =-<<,{}Z 18B x x =∈<<,所以{}2,3,4A B = ,因此A B 中有三个元素,所以A B 的子集个数为328=,故选:C【必刷7】已知集合}{{}2|23,9,,A x Z x B x x M A B =∈-<≤=<=⋂则M 的子集的个数为()A .16B .7C .4D .3【答案】A【解析】化简,A B ,进而根据交集的定义,计算A B ,然后利用子集的概念即可求解.【详解】因为{}{}{}293310123B x |x x |x ,A ,,,,,=<=-<<=-所以{}1012M A B ,,,,==- 所以M 的子集共有42=16(个).故选:A【必刷8】已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x +1},则集合A ∩B 中元素的个数为()A .0B .1C .2D .3【解析】联立=+12+2=1可得=0=1或=−1=0,故集合A ∩B 中元素的个数为2,故选:C .【必刷9】设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为()A .2B .4C .8D .16【答案】B【解析】求出集合B ,可求得集合A B ,确定集合A B 的元素个数,利用集合子集个数公式可求得结果.【详解】因为{}{}223031B x x x x x =+-<=-<<,所以,{}1,0A B ⋂=-,则集合A B 的元素个数为2,因此,A B 的子集个数为224=.故选:B.【必刷10】设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是()A .3B .6C .7D .8【答案】D【解析】解不等式求得A ,然后求得A ⋂Z ,进而求得正确答案.【详解】222x x ≤⇒≤,所以A ⎡=⎣,所以{}1,0,1A ⋂=-Z ,所以A ⋂Z 子集的个数是328=.故选:D【必刷11】已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =()A .2B .1C .0D .-1【答案】B【解析】对于集合N ,元素x 对应的是一元二次方程的解,根据判别式得出必有两个不相等的实数根,又根据韦达定理以及N M ⊆,可确定出其中的元素,进而求解.【详解】对于集合N ,因为280a ∆=+>,所以N 中有两个元素,且乘积为-2,又因为N M ⊆,所以{}2,1N =-,所以211a -=-+=-.即a =1.故选:B.【必刷12】集合{}22log 2x Z x ∈≤的子集个数为()A .4B .8C .16D .32【答案】C【解析】求出集合A 后可得其子集的个数.【详解】{}{}2224|log 2|2,1,1,20x x Z x x Z x ⎧⎫⎧≤⎪⎪∈≤=∈=--⎨⎨⎬≠⎪⎪⎩⎩⎭,故该集合的子集的个数为:4216=.故选:C.【必刷13】已知集合{2,0,2}A =-,π1sin ,4B y y x x A ⎧⎫==+∈⎨⎬⎩⎭,则集合A B 的真子集的个数是()A .7B .31C .16D .15【答案】D【解析】先求得集合B ,然后求得A B ,从而求得A B 的真子集的个数.【详解】{0,1,2}B = ,{2,0,1,2}A B ∴⋃=-,A B 的真子集的个数为42115-=个.故选:D【必刷14】已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是()A .3B .4C .8D .16【答案】C【解析】先求出集合B ,再根据子集的定义即可求解.【详解】依题意{}2,3,4B =,所以集合B 的子集的个数为328=,故选:C.【必刷15】已知集合{}21,S s s n n Z ==+∈,{}3T x x =<,则S T 的真子集的个数是()A .1B .2C .3D .4【答案】C【解析】先求出集合T ,然后根据交集的定义求出S T ,最后根据真子集的定义求出真子集的个数.【详解】∵{}21,S s s n n Z ==+∈,{}33T x x =-<<,∴{}1,1S T =- ,∴S T 的真子集个数为2213-=,故选:C .【必刷16】已知集合22{(,)|1}A x y x y =+=,集合{(,)|||1}B x y y x ==-,则集合A B 的真子集的个数为()A .3B .4C .7D .8【答案】C【解析】利用数形结合法得到圆与直线的交点个数,得到集合A B 的元素个数求解.【详解】如图所示:,集合A B 有3个元素,所以集合A B 的真子集的个数为7,故选:C【必刷17】若集合{}1,2,3,4,5U =,{}13,5A =,,{}3,4,5B =,则图中阴影部分表示的集合的子集个数为()A .3B .4C .7D .8【答案】D【解析】根据题意求得阴影部分表示的集合,结合集合子集的概念及运算,即可求解.【详解】由题意,集合{}13,5A =,,{}3,4,5B =,可得{}3,5A B = ,可得{}()1,2,4U A B = ð,即阴影部分表示的集合为{}1,2,4,所以阴影部分表示的集合的子集个数为328=.故选:D.考点3:集合的运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U 表示;集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }【必刷18】若集合{4},{31}M x x N x x =<=≥∣∣,则M N = ()A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭【答案】D【解析】求出集合,M N 后可求M N ⋂.【详解】1{16},{}3M xx N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫=≤<⎨⎬⎩⎭,故选:D 【必刷19】集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N = ()A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【答案】A【解析】根据集合的交集运算即可解出.【详解】因为{}2,4,6,8,10M =,{}|16N x x =-<<,所以{}2,4M N = .故选:A.【必刷20】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}【答案】B【解析】根据交集、补集的定义可求()U A B ⋂ð.【详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð,故选:B.【必刷21】已知集合{}23log 1,02x P x x Q xx -⎧⎫=>=≤⎨⎬+⎩⎭,则()P Q =R I ð()A .[2,2]-B .(2,2]-C .[0,2]D .(0,2]【答案】B【解析】利用对数不等式及分式不等式的解法求出集合,P Q ,结合集合的补集及交集的定义即可求解.【详解】由2log 1x >,得2x >,所以{}2,P x x =>{}R 2P x x =≤ð.由302x x -≤+,得23x -<≤,所以{}23x x Q =-<≤,所以(){}{}{}R 23222P Q x x x x x x -<=≤=≤-<≤ ð,故选:B.【必刷22】已知集合204x A xx ⎧⎫+=<⎨⎬-⎩⎭,{}0,1,2,3,4,5B =,则()R A B ⋂=ð()A .{}5B .{}4,5C .{}2,3,4D .{}0,1,2,3【答案】B【解析】首先化简集合A ,再根据补集的运算得到R A ð,再根据交集的运算即可得出答案.【详解】因为20(2,4)4x A xx ⎧⎫+=<=-⎨⎬-⎩⎭,所以{R |2A x x =≤-ð或}4x ≥,所以(){}R 4,5A B = ð,故选:B.【必刷23】设集合{}2120A x x x =--≤,12416x B x ⎧⎫=<<⎨⎬⎩⎭,则A B 等于()A .(]3,4-B .[)3,2-C .(]4,4-D .[]3,4-【答案】C【解析】先解出集合A 、B ,再求A B .【详解】由题意{}{}212034A x x x x x =--≤=-≤≤,{}1244216x B x x x ⎧⎫=<<=-<<⎨⎬⎩⎭,所以(]4,4A B =- .故选:C.【必刷24】若集合{A y y ==,{}3log 2B x x =≤,则A B = ()A .(]0,9B .[)4,9C .[]4,6D .[]0,9【答案】A【解析】先解出集合A 、B ,再求A B .【详解】因为{{}0A y y y y ==≥,{}{}3log 209B x x x x =≤=<≤,所以{}09A B x x ⋂=<≤.故选:A .【必刷25】已知集合(){}0.2log 20A x x =->,{}24B x x =≤,则A B ⋃=()A .[]22-,B .(]2,1-C .[)2,3-D .∅【答案】C【解析】解对数不等式确定集合A ,解二次不等式确定集合B ,然后由并集定义计算.【详解】由题意{|021}{|23}A x x x x =<-<=<<,{|22}B x x =-≤≤,所以{|23}[2,3)A B x x =-≤<=- .故选:C .【必刷26】已知全集{1,2,3,4,5,6,7,8,9}U =,{1,3,5,8,9}A =,{2,3,4,6}B =,则()U A B = ð()A .{2,4}B .{2,4,6}C .{1,3,5,7}D .{3}【答案】B【解析】应用集合的交补运算求()U A B I ð.【详解】由题设{2,4,6,7}U A =ð,又{2,3,4,6}B =,所以()={2,4,6}U A B = ð,故选:B【必刷27】已知集合{}12M x x =-≤≤,{}ln N x y x ==,则M N = ()A .[]1,2-B .(]1,2-C .(]0,2D .()[),12,-∞-⋃+∞【答案】C【解析】先化简集合N ,再去求M N ⋂即可解决【详解】{}{}ln 0N x y x x x ===>,则{}{}{}12002M N x x x x x x ⋂=-≤≤⋂>=<≤,故选:C【必刷28】已知集合{}{}Z 33,2e xA x xB y y =∈-<<==-,则A B = ()A .{2,1,0,1,2}--B .(,2)-∞C .{2,1,0,1}--D .(3,2)-【答案】C【解析】求出函数2e x y =-的值域,再利用交集的定义求解作答.【详解】因e 0x >,则22e x -<,即(,2)B =-∞,而{}Z 33A x x =∈-<<,所以{2,1,0,1}A B =-- .故选:C【必刷29】若全集{}0,1,2,3,4,5U =,集合{}0,1,2A =,{}1,2,3B =,则()U A B = ð()A .{}0,1,2B .{}1,2,3C .{}0D .{}0,1,2,4,5【答案】D【解析】先求解集合B 的补集,再利用并集运算即可求解.【详解】由题得{}0,4,5U B =ð,又{}0,1,2A =,所以(){}0,1,2,4,5U B A ⋃=ð,故选:D.【必刷30】设集合{}{}11,124x M x x N x =-≤≤=<<∣∣,则M N = ()A .{10}xx -≤<∣B .{01}x x <≤∣C .{12}x x ≤<∣D .{12}xx -≤<∣【答案】B【解析】解指数不等式得到{}02N x x =<<,进而求出交集.【详解】因为124x <<,所以02x <<,所以{}02N x x =<<,所以M N = {}01x x <≤,故选:B【必刷31】如图,全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,则阴影部分表示集合()A .{}1,0,5,7-B .{}1,0,2,3,5,6,7-C .{}2,3D .{}1,0,5,6,7-【答案】D【解析】求出,A B A B ,阴影表示集合为()A B A B ð,由此能求出结果.【详解】矩形表示全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,{}{}2,3,1,0,2,3,5,6,7A B A B ∴⋂=⋃=-,则阴影表示集合为(){}1,0,5,6,7A B A B ⋃⋂=-ð.故选:D.【必刷32】设集合{}2|log ,4A y y x x ==>,{}2|320B x x x =-+<,则()A B =R U ð()A .(1,2)B .(1,2]C .(,2]-∞D .(,2)-∞【答案】C【解析】利用对数函数的单调性求得集合A ,解一元二次不等式求得B ,即可根据集合的补集以及并集运算求得答案.【详解】由题意得{}2|log ,4{|2}A y y x x y x ==>=>,则{|2}A y y =≤R ð,而{}2|320{|12}B x x x x x =-+<=<<,故()(,2]A B =-∞R ðU ,故选:C.【必刷33】已知全集{}0,1,2,3,4,5,6U =,集合{}0,2,4,5A =,集合{}2,3,4,6B =,用如图所示的阴影部分表示的集合为()A .{2,4}B .{0,3,5,6}C .{0,2,3,4,5,6}D .{1,2,4}【答案】B【解析】根据文氏图求解即可.【详解】{2,4}A B ⋂=,{}0,2,3,4,5,6A B ⋃=,阴影部分为{}0,3,5,6.故选:B .【必刷34】已知集合{}2A x x =<,(){}2ln 3B x y x x==-,则A B ⋃=()A .()0,2B .()0,3C .()2,3D .()2,3-【答案】D【解析】解出集合A 、B ,利用并集的定义可求得结果.【详解】{}{}222A x x x x =<=-<<,(){}{}{{}22ln 33003B x y x xx x xx x ==-=->=<<.所以,()2,3A B =- .故选:D.【必刷35】若集合{}{}21,0,1,2A x Z x B =∈-<<=,则A B ⋃=()A .(2,1)-B .{1,0}-C .(2,1]{2}-⋃D .{1,0,1,2}-【答案】D【解析】根据已知条件求出集合A ,再利用并集的定义即可求解.【详解】由题意可知{}}{211,0A x Z x =∈-<<=-,又{}0,1,2B =,所以}{{}1,00,1,2{1,0,1,2}A B =-=- ,故选:D .【必刷36】已知集合{}234|0A x x x =--=,{}2|B x a x a =<<,若A B =∅ ,则实数a 的取值范围是()A .(],1-∞-B .[)4,+∞C .()(),12,4-∞-⋃D .[][)1,24,-⋃+∞【答案】D【解析】由题知{}1,4A =-,进而分B =∅和B ≠∅空集两种情况讨论求解即可.【详解】由题知{}{}2|3401,4A x x x =--==-,因为A B =∅ ,所以,当{}2|B x a x a =<<=∅时,2a a ≥,解得01a ≤≤,当{}2|B x a x a =<<≠∅时,2241a a a a ⎧≤⎪≥-⎨⎪>⎩或24a a a ≥⎧⎨>⎩,解得[)(][)1,01,24,a ∈-+∞ ,综上,实数a 的取值范围是[][)1,24,-⋃+∞.故选:D【必刷37】已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅ ,则实数a 的取值范围是()A .()2,+∞B .{}()12,∞⋃+C .{}[)12,+∞U D .[)2,+∞【答案】C【解析】先解出集合A ,考虑集合B 是否为空集,集合B 为空集时合题意,集合B 不为空集时利用24a或211a +- 解出a 的取值范围.【详解】由题意(]40141x A x x ⎧⎫-==-⎨⎬+⎩⎭, ,(){}()(){}2222(1)210210B x x a x a a x x a x a ⎡⎤=-+++<=--+<⎣⎦,当B =∅时,221a a =+,即1a =,符合题意;当B ≠∅,即1a ≠时,()22,1B a a =+,则有24a或211a +- ,即 2.a 综上,实数a 的取值范围为{}[)12,+∞U .故选:C.【必刷38】设{}28120A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值不可以是()A .0B .16C .12D .2【答案】D【解析】根据题意可以得到B A ⊆,进而讨论0a =和0a ≠两种情况,最后得到答案.【详解】由题意,{}2,6A =,因为A B B = ,所以B A ⊆,若0a =,则B =∅,满足题意;若0a ≠,则1B a ⎧⎫=⎨⎬⎩⎭,因为B A ⊆,所以12a =或16a =,则12a =或16a =.综上:0a =或12a =或16a =.故选:D.【必刷39】已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是()A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【答案】D【解析】由题知{}1,0,1A =-,进而根据题意求解即可.【详解】因为{}{}231,0,1A x Z x =∈<=-,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则13012a a <-⎧⎪⎨<+≤⎪⎩或10312a a -≤<⎧⎪⎨+>⎪⎩,解得312a -<<-或102a -<<,所以,实数a 的取值范围是31,122⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭.故选:D .【必刷40】已知集合{}21,Z A x x n n ==+∈,{}2B =<,则A B = ()A .{}1,3B .{}1,3,5,7C .{}3,5,7D .{}3,5,7,9【答案】A【解析】先求出集合[)1,5B =,再根据集合的交集运算求得答案.【详解】由题意得[){2}1,5B x =<=,其中奇数有1,3,又{}21,Z A x x n n ==+∈,则{}1,3A B = ,故选:A .考点4.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;考点5.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为:∀x ∈M ,p (x ).(3)含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为:∃x 0∈M ,p (x 0).【必刷41】下列四个命题中真命题的个数是()①“x =1”是“2320x x -+=”的充分不必要条件;②命题“R x ∀∈,sin 1x ≤”的否定是“R x ∃∈,sin 1x >”;③命题p :[)1,x ∀∈+∞,lg 0x ≥,命题q :R x ∃∈,210x x ++<,则p q ∧为真命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为真命题.A .0B .1C .2D .3【答案】C【解析】①由2320x x -+=解得1x =或2x =,根据充分、必要条件定义理解判断;②根据全称命题的否定判断;③根据题意可得命题p 为真命题,命题q 为假命题,则p q ∧为假命题;④先写出原命题的否命题,取特值2πϕ=-,代入判断.【详解】①2320x x -+=,则1x =或2x =“1x =”是“1x =或2x =”的充分不必要条件,①为真命题;②根据全称命题的否定判断可知②为真命题;③命题p :[)1,x ∀∈+∞,lg lg10x ≥=,命题p 为真命题,22131024x x x ⎛⎫++=++> ⎪⎝⎭,命题q 为假命题,则p q ∧为假命题,③为假命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为“若2πϕ≠,则()sin 2y x ϕ=+不是偶函数”若2πϕ=-,则sin 2cos 22y x x π⎛⎫=-=- ⎪⎝⎭为偶函数,④为假命题故选:C .【必刷42】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+=,则2x ≠”B .若给定命题:R p x ∃∈,210x x +-<,则:R p x ⌝∀∈,210x x +->C .已知:12p x -<<,()12:2log 210x q x +++<,则p 是q 的充分必要条件D .若p q ∨为假命题,则p ,q 都为假命题【答案】D【解析】根据否命题,命题的否定,充分必要条件的定义,复合命题真假判断各选项.【详解】命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+≠,则2x ≠”,A 错;命题:R p x ∃∈,210x x +-<的否定是R x ∀∈,210x x +-≥,B 错;易知函数12()2log (2)x f x x +=++在定义域内是增函数,()11f -=,(2)10f =,所以12x -<<时,()1212log 210x x +<++<满足()122log 210x x +++<,但()122log 210x x +++<时,22x -<<不满足12x -<<,因此题中应不充分不必要条件,C 错;p q ∨为假命题,则p ,q 都为假命题,若,p q 中有一个为真,则p q ∨为真命题,D 正确.故选:D .【必刷43】下列说法错误的是()A .命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”B .在△ABC 中,sin sin A B ≥是A B ≥的充要条件C .若a ,b ,R c ∈,则“20ax bx c ++≥”的充要条件是“0a >,且240b ac -≤”D .“若1sin 2α≠,则6πα≠”是真命题【答案】C【解析】利用全称命题的否定可判断A ,由正弦定理和充要条件可判断B ,通过举特例可判断C ,通过特殊角的三角函数值可判断D .【详解】A.命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”,正确;B.在△ABC 中,sin sin A B ≥,由正弦定理可得22a bR R≥(R 为外接圆半径),a b ≥,由大边对大角可得A B ≥;反之,A B ≥可得a b ≥,由正弦定理可得sin sin A B ≥,即为充要条件,故正确;C.当0,0a b c ==≥时满足20ax bx c ++≥,但是得不到“0a >,且240b ac -≤”,则不是充要条件,故错误;D.若1sin 2α≠,则6πα≠与6πα=则1sin 2α=的真假相同,故正确;故选:C【必刷44】命题“若220x y +=,则0x y ==”的否命题为()A .若220x y +=,则0x ≠且0y ≠B .若220x y +=,则0x ≠或0y ≠C .若220x y +≠,则0x ≠且0y ≠D .若220x y +≠,则0x ≠或0y ≠【答案】D【解析】同时否定条件和结论即可,注意x =0且y =0,的否定为0x ≠或0y ≠.【详解】命题“若220x y +=,则0x y ==”即为“若220x y +=,则0x =且0y =”所以否命题为:若220x y +≠,则0x ≠或0y ≠.故选:D【必刷45】下列说法正确的是()A .若2000:,2310p x R x x ∃∈++>,则2:,2310p x R x x ⌝∀∈++<B .“(0)0f =”是“函数()f x 是奇函数”的充要条件C .(0,)∀∈+∞x ,都有22x x >D .在ABC 中,若A B >,则sin sin A B >【答案】D【解析】根据存在量词命题的否定为全称量词命题判断A ,根据奇函数的定义判断B ,利用特殊值判断C ,根据三角形的性质及正弦定理判断D ;【详解】对于A :2000:,2310p x R x x ∃∈++>则2:,2310p x R x x ⌝∀∈++≤,故A 错误;对于B :由(0)0f =,得不到函数()f x 是奇函数,如2()f x x =满足(0)0f =,但是2()f x x =为偶函数,由函数()f x 是奇函数也不一定得到(0)0f =,如()1f x x=为奇函数,当时函数在0处无意义,故B 错误;对于C :当2x =时22x x =,故C 错误;对于D :因为A B >根据三角形中大角对大边,可得a b >,再由正弦定理可得sin sin A B >,故D 正确;故选:D【必刷46】已知下列命题:①x ∀∈R ,210x x ++>;②“2a >”是“5a >”的充分不必要条件;③已知p 、q 为两个命题,若“p q ∨”为假命题,则“p q ⌝∧⌝”为真命题;④若x 、y ∈R 且2x y +>,则x 、y 至少有一个大于1.其中真命题的个数为()A .4B .3C .2D .1【答案】B【解析】利用配方法可判断①的正误;利用集合的包含关系可判断②的正误;利用复合命题的真假可判断③的正误;利用反证法可判断④的正误.【详解】对于①,因为22131024x x x ⎛⎫++=++> ⎪⎝⎭,①对;对于②,因为{}2a a >({}5a a >,故“2a >”是“5a >”的必要不充分条件,②错;对于③,“p q ∨”为假命题,则p 、q 均为假命题,所以,p q ⌝∧⌝为真命题,③对;对于④,假设1x ≤且1y ≤,则2x y +≤,与2x y +>矛盾,假设不成立,④对.故选:B.【必刷47】设命题0:p x R ∃∈,2010x +=,则命题p 的否定为()A .x R ∀∉,210x +=B .x R ∀∈,210x +≠C .0x R ∃∉,2010x +=D .0x R ∃∈,2010x +≠【答案】B【解析】根据特称命题的否定是全称命题,即可得到答案.【详解】利用含有一个量词的命题的否定方法可知,特称命题0:p x R ∃∈,2010x +=的否定为:x R ∀∈,210x +≠.故选:B.【必刷48】命题“x R ∀∈,sin x x >”的否定是()A .0x R ∃∈,00sin x x <B .0x R ∃∉,00sin x x ≤C .x R ∀∈,sin x x ≤D .0x R ∃∈,00sin x x ≤【答案】D【解析】根据命题否定的定义即可求解.【详解】对于全称量词的否定是特称量词,并对结果求反,即000,sin x R x x ∃∈≤;故选:D.【必刷49】命题“π,02x ⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是()A .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x≤B .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x<C .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x≤D .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x<【答案】C【解析】利用含有一个量词的命题的否定的定义求解.【详解】由全称命题的否定是存在量词命题,所以命题“,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是“,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x ≤”,故选:C .【必刷50】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“2320x x -+=,则2x ≠”B .若给定命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +->C .若p q ∧为假命题,则p ,q 都为假命题D .“1x <”是“2320x x -+>”的充分不必要条件【答案】D【解析】A 选项直接否定条件和结论即可;B 选项存在一个量词的命题的否定,先否定量词,后否定结论;C 选项“且”命题是一假必假;D 选项,利用“小集合”是“大集合”的充分不必要条件作出判断.【详解】对于A ,命题“若2320x x -+=,则2x =”的否命题为“2320x x -+≠,则2x ≠”,A 错误;对于B ,命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +-≥,B 错误;对于C ,若p q ∧为假命题,则p ,q 有一个假命题即可;C 错误;对于D , 2320x x -+>1x ∴<或2x >11x x ∴<⇒<或2x >,即“1x <”是“2320x x -+>”的充分不必要条件,D 正确.故选:D考点6:充分条件、必要条件与充要条件的概念若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q ⇏p p 是q 的必要不充分条件p ⇏q 且q ⇒p p 是q 的充要条件p ⇔q p 是q 的既不充分也不必要条件p ⇏q 且q ⇏p【必刷51】若x ,y 为实数,则“11x y<”是“22log log x y >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】根据充分必要条件的定义及对数不等式即可求解;【详解】由题意可知当2,1x y =-=时,满足11x y<,但不满足22log log x y >;由22log log x y >,得0x y >>,满足11x y <,所以“11x y<”是“22log log x y >”的必要不充分条件,故选:B .【必刷52】在ABC 中,“sin 2sin 2A B =”是“A B =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【答案】B【解析】根据给定条件,利用充分条件、必要条件的定义求解作答.【详解】在ABC 中,A B =,则22A B =,必有sin 2sin 2A B =,而,63A B ππ==,满足sin 2sin 2A B =,此时ABC 是直角三角形,不是等腰三角形,所以“sin 2sin 2A B =”是“A B =”的必要不充分条件.故选:B【必刷53】下列四个命题中正确的是()A .若函数()y f x =的定义域为[]1,1-,则()1y f x =+的定义域为[]0,2B .若正三角形ABC 的边长为2,则2AB BC ⋅=C .已知函数()()2log 11f x x =+-,则函数()y f x =的零点为()1,0D .“αβ=”是“tan tan αβ=”的既不充分也不必要条件【答案】D【解析】利用抽象函数的定义域可判断A 选项;利用平面向量数量积的定义可判断B 选项;利用函数零点的定义可判断C 选项;利用特殊值法结合充分条件、必要条件的定义可判断D 选项.【详解】对于A 选项,若函数()y f x =的定义域为[]1,1-,对于函数()1y f x =+,则有111x -≤+≤,解得20x -≤≤,即函数()1y f x =+的定义域为[]2,0-,A 错;对于B 选项,若正三角形ABC 的边长为2,则cos1202AB BC AB BC ⋅=⋅=-,B 错;对于C 选项,已知函数()()2log 11f x x =+-,令()0f x =,解得1x =,所以,函数()y f x =的零点为1,C 错;对于D 选项,若2παβ==,则tan α、tan β无意义,即“αβ=”⇒“tan tan αβ=”;若tan tan αβ=,可取4πα=,54πβ=,则αβ≠,即“αβ=”⇐/“tan tan αβ=”.因此,“αβ=”是“tan tan αβ=”的既不充分也不必要条件,D 对.故选:D.【必刷54】不等式1133x⎛⎫> ⎪⎝⎭成立是不等式21x <成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】根据指数不等式和一元二次不等式的解法解出对应的不等式,结合必要不充分条件的概念即可得出结果.【详解】解不等式1133x⎛⎫> ⎪⎝⎭,得1x <,解不等式21x <,得11x -<<,。

2020年高考数学试题分类汇编 专题常用逻辑用语 理

2020年高考试题数学(理科)常用逻辑用语一、选择题:1.(2020年高考浙江卷理科7)若,a b 为实数,则“01ab <<”是11a b b a<>或的 (A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件 【答案】A【解析】当0,0>>b a 时,由10<<ab 两边同除b 可得ba 1<成立;当0,0<<b a 时,两边同除以a 可得a b 1>成立,∴“10<<ab ”是“b a 1<或a b 1>”的充会条件,反过来0<ab ,由b a 1<或ab 1>得不到10<<ab .2. (2020年高考天津卷理科2)设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的 A. 充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .即不充分也不必要条件 【答案】A【解析】由2x ≥且2y ≥可得224x y +≥,但反之不成立,故选A.3.(2020年高考安徽卷理科7)命题“所有能被2整除的数都是偶数”的否定..是 (A )所有不能被2整除的数都是偶数 (B )所有能被2整除的数都不是偶数 (C )存在一个不能被2整除的数是偶数 (D )存在一个能被2整除的数不是偶数12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是(A )14,P P (B )13,P P (C )23,P P (D )24,P P 答案:A解析:由12>±b a 可得,点评:该题考查平面向量的的概念、数量积运算以及三角函数值与角的取值范围,要熟练把握概念及运算。

2020年高考数学总复习题库-常用逻辑用语ABQ

2020年高考总复习 理科数学题库常用逻辑用语学校:__________题号 一 二 三 总分 得分第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人 得分一、选择题1.已知a ,b ,c ∈R,命题“若a b c ++=3,则222a b c ++≥3”的否命题是( ) (A)若a +b +c ≠3,则222a b c ++<3 (B)若a +b +c =3,则222a b c ++<3(C)若a +b +c ≠3,则222a b c ++≥3 (D)若222a b c ++≥3,则a +b +c =3(2011山东文5) 12.设a 、b 是平面α外任意两条线段,则“a 、b 的长相等”是a 、b 在平面α内的射影长相等的( ) A .非充分也非必要条件 B .充要条件 C .必要非充分条件D .充分非必要条件(1994上海17)3.命题“若α=4π,则tan α=1”的逆否命题是 A.若α≠4π,则tan α≠1 B. 若α=4π,则tan α≠1C. 若tan α≠1,则α≠4πD. 若tan α≠1,则α=4π4.命题:“若12<x ,则11<<-x ”的逆否命题是( ) A .若12≥x ,则11-≤≥x x ,或 B .若11<<-x ,则12<xC .若11-<>x x ,或,则12>xD .若11-≤≥x x ,或,则12≥x (2007重庆)5.下列各小题中,p 是q 的充分必要条件的是( )①3:62:2+++=>-<m mx x y q m m p ;,或有两个不同的零点 ②()()()x f y q x f x f p ==-:1:;是偶函数③βαβαtan tan :cos cos :==q p ; ④A C B C q A B A p U U ⊆=::;I A .①②B .②③C .③④D . ①④(2007山东)6.设γβα、、为平面,l n m 、、为直线,则β⊥m 的一个充分条件是( ) (A) l m l ⊥=⋂⊥,,βαβα(B) γβγαγα⊥⊥=⋂,,m (C) αγβγα⊥⊥⊥m ,,(D)αβα⊥⊥⊥m n n ,,(2005天津理)(2005天津理)7.设,,a b c 分别是ABC ∆的三个内角,,A B C 所对的边,则()2a b b c =+是2A B =的AA .充分条件B .充分而不必要条件C .必要而充分条件D .既不充分又不必要条件(2006试题)8.设集合}30|{≤<=x x M ,}20|{≤<=x x N ,那么“M a ∈”是“N a ∈”的( )BA .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件(2006试题)9.“a>b>c ”是”ab<222a b +”的 AA .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件(2006试题)10.已知函数()21f x x =+,对于任意正数a ,12x x a -<是()()12f x f x a -<成立的A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件11.若a ∈R,则“a =1”是“|a |=1”的(A). 充分而不必要条件 (B). 必要而不充分条件(C). 充要条件 (D). 既不充分又不必要条(2011福建文3)12.设a ,b ∈R ,那么“1ab>”是“a>b>0”的( ) (A)充分不必要条件 (B)必要不充分条件(C)充要条件 (D)既不充分也不必要条件13.设集合{(,)|,},{(,)|20},U x y x R y R A x y x y m =∈∈=-+>{(,)|0}B x y x y n =+-≤,那么点P (2,3)()U A C B ∈I 的充要条件是( ) AA .5,1<->n mB .5,1<-<n mC .5,1>->n mD .5,1>-<n m (2004湖南)14.已知数列}{n a ,那么“对任意的*N n ∈,点),(n n a n P 都在直线12+=x y 上”是“}{n a 为等差数列”的( )A .必要而不充分条件B .充分而不必要条件C .充要条件D .既不充分也不必要条件(2004天津)15.“21sin =A ”是“A=30º”的( )B A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也必要条件(2006浙江)16.一元二次方程2210,(0)ax x a ++=≠有一个正根和一个负根的充分不必要条件是:( )A 0a <B 0a >C 1a <-D 1a >(2004重庆理)17.等比数列}{n a 的公比为q ,则“01>a ,且1>q ”是“对于任意正自然数n ,都有n n a a >+1”的 AA .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件(2006试题)18.a=3是直线ax+2y+3a=0和直线3x+(a -1)y=a -7平行且不重合的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既非充分也非必要条件(2001上海3)19.若y=f (x )是定义在R 上的函数,则y=f (x )为奇函数的一个充要条件为( ) A .f (x )=0B .对任意x ∈R ,f (x )=0都成立C .存在某x 0∈R ,使得f (x 0)+f (-x 0)=0D .对任意的x ∈R ,f (x )+f (-x )=0都成立(1996上海文6)20.设命题甲:“直四棱柱ABCD -A 1B 1C 1D 1中,平面ACB 1与对角面BB 1D 1D 垂直”;命题乙:“直四棱柱ABCD -A 1B 1C 1D 1是正方体”.那么,甲是乙的( ) A .充分必要条件 B .充分非必要条件 C .必要非充分条件D .既非充分又非必要条件(2002北京理10)21.集合A ={x |11+-x x <0=,B ={x || x -b|<a },若“a =1”是“A ∩B ≠φ”的充分条件, 则b 的取值范围是 ( ) A .-2≤b <0 B .0<b ≤2C .-3<b <-1D .-1≤b <2(2005湖南理)22.已知,a b 是实数,则“0a >且0b >”是“0a b +>且0ab >”的 ( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 (2009浙江理)23.“18a =”是“对任意的正数x ,21ax x+≥”的( )(陕西卷6) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件24.已知a ,b 都是实数,那么“22b a >”是“a >b ”的(浙江卷3) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件25.已知命题:p 所有有理数都是实数,命题:q 正数的对数都是负数,则下列命题中为真命题的是( D ) A .()p q ⌝∨ B .p q ∧ C .()()p q ⌝∧⌝ D .()()p q ⌝∨⌝26.命题p :a 2+b 2<0(a ,b ∈R);命题q :a 2+b 2≥0(a ,b ∈R),下列结论正确的是------------------------( ) A.“p 或q ”为真 B.“p 且q ”为真 C.“非p ”为假 D.“非q ”为真27.设有两个命题 :p 关于x 的不等式(0x +的解集为{|2}x x -≥,命题:q 若函数21y kx kx =--的值恒小于0,则40k -<<,则有---------------( ) A .“p q 且”为真命题 B .“p q 或”为真命题 C .“p H ”为真命题 D .“q H ”为假命28.若不等式||1x m -<成立的充分非必要条件为1132x <<,则实数m 的取值范围是 ---------------( )A.41[,]32-B.14[,]23-C.1(,]2-∞- D.4[,)3+∞29.等比数列{}n a 公比为q ,则“10a >,且1q >”是“对于*n N ∈,都有1n n a a +>”的-( )(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分又不必要条件 30.一元二次方程2210,(0)ax x a ++=≠有一个正根和一个负根的充分不必要条件是( )C A .0a < B .0a > C .1a <- D .1a >(2006重庆)31.下列命题中,真命题是 A. 0,00≤∈∃x eR xB. 22,x R x x >∈∀ C.a+b=0的充要条件是a b=-1 D.a>1,b>1是ab>1的充分条件32.命题"2x 2-5x-3<0"的一个必要不充分条件是( ) A. -21<x <3 B. -21<x <0 C. –3<x <21 D. –1<x <633.已知命题p :“|x -1|>2”,命题q :“x ∈Z ”,如果“p 且q ”与“非q ”同时为假....命题..,则满足条件的x 为 A .{x x ≥3或x ≤}1,x Z -∉B .{1x -≤x ≤3},x Z ∉ C .{}1,0,1,2,3- D .{}0,1,2(2006试题)34.“1x <-”是“210x ->”的(A )充分而不必要条件 (B)必要而不充分条件(C) 充要条件 (D)既不充分也不必要条件(2011年高考重庆卷理科2)35.设””是“则“x x x R x ==∈31,的.A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件(2009天津卷文)36.把下列命题中的“=”改为“>”,结论仍然成立的是 ( )A .如果a b =,0c ≠,那么a bc c= B .如果a b =,那么22a b = C .如果a b =,c d =,那么a d b c +=+ D .如果a b =,c d =,那么a d b c -=-37.“()24x k k Z ππ=+∈”是“tan 1x =”成立的 [答]( A )(A )充分不必要条件. (B )必要不充分条件. (C )充分条件. (D )既不充分也不必要条件.38.命题“所有能被2整除的数都是偶数”的否定..是 (A )所有不能被2整除的数都是偶数(B )所有能被2整除的数都不是偶数 (C )存在一个不能被2整除的数是偶数 (D )存在一个能被2整除的数不是偶数39.设,a b 是向量,命题“若a b =-,则a b =”的逆命题是 (A )若a b ≠-则a b ≠ (B )若a b =-则a b ≠(C )若a b ≠则a b ≠- (D )若a b =则a b =-(2011年高考陕西卷理科1)2.下面四个条件中,使a b >成立的充分而不必要的条件是 (A )1a b >+ (B )1a b >- (C )22a b > (D )33a b >40.设O 为ABC ∆所在平面上一点.若实数x y z 、、满足0xOA yOB zOC ++=u u u r u u u r u u u r r222(0)x y z ++≠,则“0xyz =”是“点O 在ABC ∆的边所在直线上”的[答]( )(A)充分不必要条件. (B)必要不充分条件. (C)充分必要条件. (D)既不充分又不必要条件.41.若条件4|1:|≤+x p ,条件65:2-<x x q ,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件42.下列说法错误..的是() A .命题“若2320x x -+=,则1x =”的逆否命题为:“若1x ≠,则2320x x -+≠” B .“1x >”是“||1x >”的充分不必要条件C .若q p ∧为假命题,则p 、q 均为假命题. .D .若命题p :“x R ∃∈,使得210x x ++<”,则p ⌝:“x R ∀∈,均有210x x ++≥” 43.设x Z ∈,集合A 是奇数集,集合B 是偶数集.若命题:,2p x A x B ∀∈∈,则( )A .:,2p x A xB ⌝∀∃∈∉ B .:,2p x A x B ⌝∀∉∉C .:,2p x A x B ⌝∃∉∈D .:,2p x A x B ⌝∃∈∈(2013年高考四川卷(理))44.“|x -1|<2成立”是“x (x -3)<0成立”的 A .充分而不必要条件B.必要而不充分条件C .充分必要条件 D.既不充分也不必要条件 (2008湖南理)(B )45."等式sin(α+γ)=sin2β成立"是"α、β、γ成等差数列"的( )A.必要而不充分条件B.充分而不必要条件C.充分必要条件D.既不充分又不必要条件(2006陕西理)46.若空间中有两条直线,则“这两条直线为异面直线”是“这两条直线没有公共点”的 ( )(A )充分非必要条件 (B )必要非充分条件(C )充分必要条件 (D )既非充分又非必要条件(2006上海文)47.设a∈R ,则“a=1”是“直线l 1:ax+2y=0与直线l 2 :x+(a+1)y+4=0平行的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件(2012浙江文) 48.设1111()()1232f k k N k k k k*=++++∈+++L ,那么(1)()f k f k +-= .49.设O 为ABC ∆所在平面上一点.若实数x y z 、、满足0xOA yOB zOC ++=u u u r u u u r u u u r r222(0)x y z ++≠,则“0xyz =”是“点O 在ABC ∆的边所在直线上”的[答]( )A .充分不必要条件.B .必要不充分条件.C .充分必要条件.D .既不充分又不必要条件. (2012上海春)50.“18a =”是“对任意的正数x ,21ax x+≥”的( ) A .充分不必要条件B .必要不充分条件 C .充要条件D .既不充分也不必要条件(2008陕西理)51.对于常数m 、n ,“0>mn ”是“方程122=+ny mx 的曲线是椭圆”的 ( )A .充分不必要条件.B .必要不充分条件C .充分必要条件.D .既不充分也不必要条件. (2012上海文)52.命题p :若a 、R b ∈,则1<+b a 是1<+b a 的充分而不必要条件; 命题q :函数21-+=x y 的定义域是),1[]3,(+∞⋃--∞.则A .“p 或q ”为假命题B .“p 且q ”为真命题C .p 为真命题,q 为假命题D .p 为假命题,q 为真命题(2006试题)53.给出下列命题:①“x >2”是“x ≥2”的必要不充分条件;②“若x ≠3,则2230x x --≠”的逆否命题是假命题;③“9<k <15”是“方程221159x y k k +=--表示椭圆”的充要条件.其中真命题的个数是 个.54.有限集合S 中元素的个数记做()card S ,设,A B 都为有限集合,给出下列命题: ①A B =∅I 的充要条件是()()()card A B card A card B =+U ; ②A B ⊆的充要条件是()()card A card B ≤; ③A B Ú的充要条件是()()card A card B ≤; ④A B =的充要条件是()()card A card B =; 其中真命题的序号是 ( B ) A .③④ B .①② C .①④ D .②③(2006湖北理)55.在一次跳伞训练中,甲.乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 ( )A .()()p q ⌝∨⌝B .()p q ∨⌝C .()()p q ⌝∧⌝D .p q ∨(2013年高考湖北卷(理))56.钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的 ( )A .充分条件B .必要条件C .充分必要条件D .既非充分也非必要条件(2013年高考上海卷(理)) 57.已知下列三个命题: ①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等;③直线x + y + 1 = 0与圆2212x y +=相切. 其中真命题的序号是: ( )A .①②③B .①②C .②③D .②③(2013年普通高等学校招生统一考试天津数学(理)试题(含答案)) 58.设z 1, z 2是复数, 则下列命题中的假命题是 ( )A .若12||0z z -=, 则12z z =B .若12z z =, 则12z z =C .若||||21z z =, 则2112··z z z z = D .若12||||z z =, 则2122z z = (2013年高考陕西卷(理))59.双曲线221y x m-=的充分必要条件是( )A .12m >B .1m ≥C .1m >D .2m >(2013年高考北京卷(文))60.给定两个命题q p ,,p q ⌝是的必要而不充分条件,则p q ⌝是 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件(2013年高考山东卷(文))61.钱大姐常说“好货不便宜”,她这句话的意思是:“好货”是“不便宜”的 ( )A .充分条件B .必要条件C .充分必要条件D .既非充分又非必要条件(2013年上海高考数学试题(文科))62.已知命题:p x R ∀∈,23x x <;命题:q x R ∃∈,321x x =-,则下列命题中为真命题的是: ( )A .p q ∧B .p q ⌝∧C .p q ∧⌝D .p q ⌝∧⌝(2013年高考课标Ⅰ卷(文))63.已知命题p :∀x 1,x 2∈R,(f (x 2)-f (x 1)(x 2-x 1)≥0,则⌝p 是 ( )A .∃x 1,x 2∈R,(f (x 2)-f (x 1)(x 2-x 1)≤0B .∀x 1,x 2∈R,(f (x 2)-f (x 1)(x 2-x 1)≤0C .∃x 1,x 2∈R,(f (x 2)-f (x 1)(x 2-x 1)<0D .∀x 1,x 2∈R,(f (x 2)-f (x 1)(x 2-x 1)<0(2012辽宁文)64.命题p :若a 、b ∈R ,则|a|+|b|>1是|a+b|>1的充分而不必要条件; 命题q :函数y=2|1|--x 的定义域是(-∞,-1]∪[3,+∞).则( )DA .“p 或q ”为假B .“p 且q ”为真C .p 真q 假D .p 假q 真(2004福建)65.若α∈R,则“α=0”是“sinα<cosα”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件(2013年高考浙江卷(文))66.若m n 、都是正整数,那么“m n 、中至少有一个等于1”是“m n mn +>”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件(2006试题)67.若命题P :x ∈A ∪B ,则⌝P 是 ( ) A .x ∉A 且x ∉B B .x ∉A 或x ∉BC .x ∉A ∩BD .x ∈A ∩B(2006试题)68.设a r ,b r 是向量,命题“若a b =-r r ,则||||a b =r r”的逆命题是 ( ) (A )若a b ≠-r r ,则||||a b ≠r r (B )若a b =-r r ,则||||a b ≠r r(C )若||||a b ≠r r ,则a b ≠-r r (D )若||||a b =r r,则a b =-r r (2011陕西理1)69.设p :x 2-x -20>0,q :212--x x <0,则p 是q 的( )AA .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2006试题)70.设p ∶22,x x q --<0∶1||2xx +-<0,则p 是q 的(A ) (A)充分不必要条件 (B)必要不充分条件(C)充要条件 (D)既不充分也不必要条件(2006山东文)71.“x >1”是“x 2>x ”的( )A A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件(2006浙江文3)72.已知,,,a b c d 为实数,且c d >。

2020年高考数学总复习题库-常用逻辑用语AGW

2020年高考总复习 理科数学题库常用逻辑用语学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题1.设11229(,),(4,),(,)5A x yBC x y 是右焦点为F 的椭圆221259x y +=上三个不同的点,则“,,AF BF CF 成等差数列”是“128x x +=”的 A A .充要条件 B .必要不充分条件C .充分不必要条件D .既非充分也非必要(2006试题)2.若m n 、都是正整数,那么“m n 、中至少有一个等于1”是“m n mn +>”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件(2006试题)3.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥,则“αβ⊥”是“a b ⊥”的( )()A 充分不必要条件 ()B 必要不充分条件()C 充要条件 ()D 即不充分不必要条件4.命题“存在实数x ,使x > 1”的否定是(A )对任意实数x , 都有x >1 (B )不存在实数x ,使x ≤1 (C )对任意实数x , 都有x ≤1 (D )存在实数x ,使x ≤15.设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是(A)p 为真 (B)q ⌝为假 (C)p q ∧为假 (D)p q ∨为真6.命题“所有能被2整除的整数都是偶数”的否定..是 (A )所有不能被2整除的整数都是偶数 (B )所有能被2整除的整数都不是偶数 (C )存在一个不能被2整除的整数是偶数 (D )存在一个不能被2整除的整数不是偶(2011安徽理7)7.命题p :若a 、b ∈R ,则|a |+|b|>1是|a +b|>1的充分而不必要条件; 命题q :函数y=2|1|--x 的定义域是(-∞,-1]∪[3,+∞).则 ( )A .“p 或q ”为假B .“p 且q ”为真C .p 真q 假D .p 假q 真(2004福建理)8.命题“若α=π4,则tan α=1”的逆否命题是 若tan α≠1,则α≠π49.“a>b>c ”是”ab<222a b +”的 AA .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件(2006试题)10.设O 为ABC ∆所在平面上一点.若实数x y z 、、满足0xOA yOB zOC ++=u u u r u u u r u u u r r222(0)x y z ++≠,则“0xyz =”是“点O 在ABC ∆的边所在直线上”的[答]( )(A)充分不必要条件. (B)必要不充分条件. (C)充分必要条件. (D)既不充分又不必要条件.11.已知数列}{n a ,那么“对任意的*N n ∈,点),(n n a n P 都在直线12+=x y 上”是“}{n a 为等差数列”的( )A .必要而不充分条件B .充分而不必要条件C .充要条件D .既不充分也不必要条件(2004天津)12.已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条 件.那么p 是q 成立的:( )A A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件(2006重庆)13.等比数列}{n a 的公比为q ,则“01>a ,且1>q ”是“对于任意正自然数n ,都有n n a a >+1”的 AA .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件(2006试题)14.函数f (x )=x|x+a|+b 是奇函数的充要条件是( ) A .ab=0 B .a+b=0 C .a=b D .a 2+b 2=0(2006试题)15.命题甲:2≠x 或3≠y ;命题乙:5≠+y x ,则甲是乙的( ) A .充分非必要条件; B .必要非充分条件; C .充要条件; D .既不是充分条件,也不是必要条件.(2006试题)16.0a <是方程2210ax x ++=至少有一个负数根的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件D .既不充分也不必要条件17.设γβα、、为平面,l n m 、、为直线,则β⊥m 的一个充分条件是( ) (A) l m l ⊥=⋂⊥,,βαβα (B) γβγαγα⊥⊥=⋂,,m (C) αγβγα⊥⊥⊥m ,,(D)αβα⊥⊥⊥m n n ,,(2005天津理)(2005天津理)18.”“22≤≤-a 是“实系数一元二次方程012=++ax x 有虚根”的(A )必要不充分条件 (B )充分不必要条件(C )充要条件 (D )既不充分也不必要条件. (2009年上海卷理)19.已知真命题:“a b c d ⇒>≥”和“a b e f <⇔≤”,则“c d ≤”是“e f ≤”的---------( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 20.若不等式||1x m -<成立的充分非必要条件为1132x <<,则实数m 的取值范围是 ---------------( )A.41[,]32- B.14[,]23- C.1(,]2-∞- D.4[,)3+∞21.对任意实数a b c 、、,在下列命题中,真命题是----------------------------------------( )(A)“ac bc >”是“a b >”的必要条件 (B)“ac bc =”是“a b =”的必要条件 (C)“ac bc >”是“a b >”的充分条件 (D)“ac bc =”是“a b =”的充分条22.等比数列{}n a 公比为q ,则“10a >,且1q >”是“对于*n N ∈,都有1n n a a +>”的-( )(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分又不必要条件 23.若R b a ∈,,则31a 31b >成立的一个充分不必要的条件是() A .0<<b aB .a b >C .0>abD .0)(<-b a ab24.命题"2x 2-5x-3<0"的一个必要不充分条件是( ) A. -21<x <3 B. -21<x <0 C. –3<x <21D. –1<x <625.下列命题中,真命题是 A. 0,00≤∈∃x eR xB. 22,x R x x >∈∀ C.a+b=0的充要条件是ab=-1 D.a>1,b>1是ab>1的充分条件26.命题“存在0x ∈R ,02x ≤0”的否定是.(A )不存在0x ∈R, 02x>0 (B )存在0x ∈R, 02x ≥0(C )对任意的x ∈R, 2x ≤0 (D )对任意的x ∈R, 2x >0(2009天津卷理) 【考点定位】本小考查四种命题的改写,基础题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年高考总复习 理科数学题库常用逻辑用语学校:__________题号 一 二 三 总分 得分第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人 得分一、选择题1.命题“若p 则q ”的逆命题是(A )若q 则p (B )若⌝p 则⌝ q (C )若q ⌝则p ⌝ (D )若p 则q ⌝2.“18a =”是“对任意的正数x ,21ax x+≥”的( )(陕西卷6) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件3.设,a b 是向量,命题“若a b =-,则a b =”的逆命题是 (A )若a b ≠-则a b ≠ (B )若a b =-则a b ≠(C )若a b ≠则a b ≠- (D )若a b =则a b =-(2011年高考陕西卷理科1)1.下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b >+ (B )1a b >- (C )22a b > (D )33a b >4.若,a b 为实数,则“01ab <<”是11a b b a<>或的 (A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件(2011年高考浙江卷理科7)5.设O 为ABC ∆所在平面上一点.若实数x y z 、、满足0xOA yOB zOC ++=u u u r u u u r u u u r r222(0)x y z ++≠,则“0xyz =”是“点O 在ABC ∆的边所在直线上”的[答]( )(A)充分不必要条件. (B)必要不充分条件. (C)充分必要条件. (D)既不充分又不必要条件.6.“为真且q p ”是“为真或q p ”的______________条件。

(填充要,充分不必要,必要不充分,既不充分又不必要)7.若条件4|1:|≤+x p ,条件65:2-<x x q ,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.命题“若α=π4,则tan α=1”的逆否命题是 若tan α≠1,则α≠π49.设{}n a 是各项为正数的无穷数列,i A 是边长为1,i i a a +的矩形面积(1,2,i =L ),则{}n A 为等比数列的充要条件为( )A .{}n a 是等比数列。

B .1321,,,,n a a a -L L 或242,,,,n a a a L L 是等比数列。

C .1321,,,,n a a a -L L 和242,,,,n a a a L L 均是等比数列。

D .1321,,,,n a a a -L L 和242,,,,n a a a L L 均是等比数列,且公比相同。

10.命题“存在实数x ,使x > 1”的否定是(A )对任意实数x , 都有x >1 (B )不存在实数x ,使x ≤1 (C )对任意实数x , 都有x ≤1 (D )存在实数x ,使x ≤111.已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是(A )14,P P (B )13,P P (C )23,P P (D )24,P P (2011年高考全国新课标卷理科10)12.设a,b ,c,∈ R,,则“abc=1”是“a b c a b c++≤+=”的 A.充分条件但不是必要条件,B 。

必要条件但不是充分条件 C.充分必要条件 D.既不充分也不必要的条件13.命题“所有能被2整除的整数都是偶数”的否定..是 (A )所有不能被2整除的整数都是偶数 (B )所有能被2整除的整数都不是偶数 (C )存在一个不能被2整除的整数是偶数 (D )存在一个不能被2整除的整数不是偶(2011安徽理7)14.已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件。

现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不是充分条件;④s p ⌝⌝是的必要条件而不是充分条件;⑤r 是s 的充分条件而不是必要条件,则正确命题序号是( ) A .①④⑤ B .①②④ C .②③⑤ D . ②④⑤ (2007湖北)15.命题“对任意的01,23≤+-∈x x R x ”的否定是( ) A .不存在01,23≤+-∈x x R x B .存在01,23≥+-∈x x R xC .存在01,23>+-∈x x R x D . 对任意的01,23>+-∈x x R x (2007山东)16.命题p :若a 、b ∈R ,则||||b a +>1是||b a +>1的充分而不必 要条件;命题q :函数2|1|--=x y 的定义域是(-∞,][31Y -,+∞). 则( )D A .“p 或q ”为假 B .“p 且q ”为真 C .p 真q 假D .p 假q 真(2007福建)17.“a>b>c ”是”ab<222a b +”的 AA .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件(2006试题)18.集合A ={x |11+-x x <0=,B ={x || x -b|<a },若“a =1”是“A ∩B ≠φ”的充分条件, 则b 的取值范围是 ( ) A .-2≤b <0 B .0<b ≤2C .-3<b <-1D .-1≤b <2(2005湖南理)19.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥,则“αβ⊥”是“a b ⊥”的( )()A 充分不必要条件 ()B 必要不充分条件()C 充要条件 ()D 即不充分不必要条件20.已知a ,b ,c ,d 为实数,且c >d .则“a >b ”是“a -c >b -d ”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件(2009四川文)21.设a b 、是两个实数,给出下列条件:①1a b +>; ②2a b +=; ③2a b +>; ④222a b +>; ⑤1ab >,其中能推出“a b 、中至少有一个数大于1”的条件是-----------------------------------------------( )(A)②、③ (B)①、②、③ (C)③、④、⑤ (D)22.x y R ∈、,则下列命题中,甲是乙的充分不必要条件的命题是------------------------------------------( )(A)甲:0xy = 乙:220x y += (B)甲:0xy = 乙:||||||x y x y +=+ (C)甲:0xy = 乙:x y 、中至少有一个为零 (D)甲:x y < 乙:1x y<23.设有两个命题 :p 关于x 的不等式(0x +的解集为{|2}x x -≥,命题:q 若函数21y kx kx =--的值恒小于0,则40k -<<,则有---------------( ) A .“p q 且”为真命题 B .“p q 或”为真命题 C .“p H ”为真命题 D .“q H ”为假命24.若c b a 、、是常数,则“0402<->c a b a 且”是“对任意R ∈x ,有02>++c x b x a ”的-------( )(A )充分不必要条件. (B )必要不充分条件(C )充要条件. (D )既不充分也不必要条件.25.已知命题P :[)+∞∈∀,0b ,c bx x x f ++=2)(在[)+∞,0上为增函数,命题Q :{},|0Z x x x ∈∈∃ 使 0log 02>x ,则下列结论成立的是()A .﹁P 或﹁QB .﹁P 且﹁Q C.P或﹁Q D.P且﹁Q26.命题“若a b >,则a c b c +>+”的逆否命题为-----------------------------------------------( )(A)若a b <,则a c b c +<+ (B)若a b ≤,则a c b c ++≤ (C)若a c b c +<+,则a b < (D)若a c b c ++≤,则a b ≤27.一元二次方程2210,(0)ax x a ++=≠有一个正根和一个负根的充分不必要条件是( )C A .0a < B .0a > C .1a <- D .1a >(2006重庆)28.设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的 A. 充分而不必要条件 B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件29.下列命题是真命题的为 A .若11x y=,则x y = B .若21x =,则1x = C .若x y =,则x y = D .若x y <,则 22x y <(2009江西卷文)30.设11229(,),(4,),(,)5A x yBC x y 是右焦点为F 的椭圆221259x y +=上三个不同的点,则“,,AF BF CF 成等差数列”是“128x x +=”的 A A .充要条件 B .必要不充分条件C .充分不必要条件D .既非充分也非必要(2006试题)31.命题“存在0x ∈R ,02x ≤0”的否定是.(A )不存在0x ∈R, 02x>0 (B )存在0x ∈R, 02x ≥0(C )对任意的x ∈R, 2x ≤0 (D )对任意的x ∈R, 2x>0(2009天津卷理)【考点定位】本小考查四种命题的改写,基础题。

32.”“22≤≤-a 是“实系数一元二次方程012=++ax x 有虚根”的 (A )必要不充分条件 (B )充分不必要条件(C )充要条件 (D )既不充分也不必要条件. (2009年上海卷理)33.在△ABC 中,sin A >sin B 是A >B 的 A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件34.已知条件:1p x >,条件1:1q x<,则p 是q 成立的 ( ) A .充分非必要条件; B .必要非充分条件; C .充要条件; D .既非充分也非必要条件.35.若123,,a a a r r r 均为单位向量,则136,33a ⎛= ⎝⎭r是(1233,6a a a ++=r r r的( ).A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件36.把下列命题中的“=”改为“>”,结论仍然成立的是 ( )A .如果a b =,0c ≠,那么a bc c= B .如果a b =,那么22a b = C .如果a b =,c d =,那么a d b c +=+ D .如果a b =,c d =,那么a d b c -=-37.“()24x k k Z ππ=+∈”是“tan 1x =”成立的 [答]( A )(A )充分不必要条件. (B )必要不充分条件. (C )充分条件. (D )既不充分也不必要条件.38.若R b a ∈,,则31a 31b>成立的一个充分不必要的条件是() A .0<<b a B .a b >C .0>abD .0)(<-b a ab39.设1111()()1232f k k N k k k k*=++++∈+++L ,那么(1)()f k f k +-= .40.设a ∈R,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件(2012浙江理)41.“21sin =A ”“A=30º”的( ) (A) 充分而不必要条件 (B) 必要而不充分条件 (C) 充分必要条件 (D) 既不充分也必要条件(2004浙江文) 42.给出下列三个命题 ①若1->≥b a ,则bba a +≥+11 ②若正整数m 和n 满足n m ≤,则2)(n m n m ≤- ③设),(11y x P 为圆9:221=+y x O 上任一点,圆2O 以),(b a Q 为圆心且半径为1. 当1)()(2121=-+-y b x a 时,圆1O 与圆2O 相切 其中假命题的个数为 A .0B .1C .2D .343.已知()f x 是定义在R 上的偶函数,且以2为周期,则“()f x 为[0,1]上的增函数”是“()f x 为[3,4]上的减函数”的 ( )A .既不充分也不必要的条件B .充分而不必要的条件C .必要而不充分的条件D .充要条件(2012重庆理)44.设a r 、b r 都是非零向量,下列四个条件中,使||||a ba b =r rr r 成立的充分条件是( )A .a b =-r rB .//a b r rC .2a b =r rD .//a b r r 且||||a b =r r (2012四川理)45.设p :x 2-x -20>0,q :212--x x <0,则p 是q 的( A )(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件(2006山东理)46.若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上” 的 ( )(A )充分非必要条件;(B )必要非充分条件;(C )充要条件;(D )非充分非必要条件;(2006上海理)47.若a ∈R ,则“a =2”是“(a -1)(a -2)”=0的( ) (A).充分而不必要条件 (B)必要而不充分条件(C).充要条件 (D).既不充分又不必要条件(2011福建理2)48.设a∈R ,则“a=1”是“直线l 1:ax+2y=0与直线l 2 :x+(a+1)y+4=0平行的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件(2012浙江文)49.记实数1x ,2x ,……n x 中的最大数为max {}12,,......n x x x ,最小数为min {}12,,......n x x x 。

相关文档
最新文档