广东省江门市2018高三数学一轮复习专项检测试题03 Word版 含答案
广东省江门市2018高三数学一轮复习专项检测试题25201712190276

19.已知直线 交于P,Q两点,若点F为该椭圆的左焦点,则 取最小值的t值为
A.— B.— C. D.
【答案】B
【解析】椭圆的左焦点 ,根据对称性可设 , ,则 , ,所以 ,又因为 ,所以
,所以当 时, 取值最小,选B.
20.椭圆 的左右焦点分别为 ,若椭圆 上恰好有6个不同的点 ,使得 为等腰三角形,则椭圆 的离心率的取值范围是
A.当 增大时, 增大, 为定值
B.当 增大时, 减小, 为定值
C.当 增大时, 增大, 增大
D.当 增大时, 减小, 减小
26.我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”.已知 、 是一对相关曲线的焦点, 是它们在第一象限的交点,当 时,这一对相关曲线中双曲线的离心率是( )
. . . .
【答案】A
【解析】设椭圆的半长轴为 ,椭圆的离心率为 ,则 .双曲线的实半轴为 ,双曲线的离心率为 , . ,则由余弦定理得 ,当点 看做是椭圆上的点时,有 ,当点 看做是双曲线上的点时,有 ,两式联立消去 得 ,即 ,所以 ,又因为 ,所以 ,整理得 ,解得 ,所以 ,即双曲线的离心率为 ,选A.
.
36.双曲线 的右焦点与抛物线 的焦点重合,则该双曲线的焦点到其渐近线的距离等于(A)
(A) (B) (C)3(D)5
【答案】D
37.已知 分别为双曲线 的左、右焦点, 为双曲线左支上的一点,若 的值为 ,则双曲线离心率的取值范围是( )
【答案】D
38.已知双曲线 的一个焦点与抛物线 的焦点重合,且双曲线的离心率等于 ,则该双曲线的方程为( )
A. B. C. D.
【答案】D
广东省江门市2018高三数学一轮复习专项检测试题20

高考数学选考内容专题检测试题及答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若点P(3,m)在以点F 为焦点的抛物线244x t y t⎧=,⎨=⎩ (t 为参数)上,则|PF|等于( )A .2B .3C .4D .5【答案】C 2.已知x,y ∈R 且122=+y x ,a,b ∈R 为常数,22222222y a x b y b x a t +++=则( )A .t 有最大值也有最小值B .t 有最大值无最小值C .t 有最小值无最大值D .t 既无最大值也无最小值【答案】A3.如图,E 是平行四边形ABCD 的边BC 的延长线上 的一点,连结AE 交CD 于F ,则图中共有相似三角形( )A . 1对B . 2对C . 3对D . 4对 【答案】C4.已知,则使得都成立的取值范围是( )A (,)B .(,)C .(,)D.(,)【答案】B 5.如图,1l 、2l 、3l 是同一平面内的三条平行直线,1l 与2l 间的距离是1,2l 与3l 间的距离是2,正三角形ABC 的三个顶点分别在1l 、2l 、3l 上,则△ABC 的边长是( )A .32 B .364 C .473 D .3212【答案】D6.若关于x 的不等式2124x x a a +--<-有实数解,则实数a 的取值范围为( )A .(,1)(3,)-∞+∞UB .(1,3)C .(,3)(1,)-∞--+∞UD .(3,1)-- 【答案】A7.已知点P 的极坐标是(1,π),则过点P 且垂直于极轴的直线方程是( )A .1ρ=B .ρ=cos θC .1cos ρθ=-D .1cos ρθ= 【答案】C8.如图,边长为1的正方形ABCD 绕点A 逆时针旋转30︒到正方形AB C D ''',图中阴影部分的面积为( )A .13-B .3C .14-D .12 【答案】A9.圆内接三角形ABC 角平分线CE 延长后交外接圆于F ,若2,FB =1EF =,则CE =( )A . 3B . 2C . 4D . 1【答案】A10.若不等式|2x 一a |>x -2对任意x ∈(0,3)恒成立,则实数a 的取值范围是( )A . (-∞, 2] U [7, +∞)B . (-∞, 2) U (7, +∞)C . (-∞, 4) U [7, +∞)D .(-∞, 2) U (4,+ ∞)【答案】C11.圆)sin (cos 2θθρ+=的圆心坐标是( )A . ⎪⎭⎫⎝⎛4,21π B .⎪⎭⎫ ⎝⎛4,1π C .⎪⎭⎫ ⎝⎛4,2π D .⎪⎭⎫ ⎝⎛4,2π 【答案】B12.设0a >,不等式||ax b c +<的解集是{|21}x x -<<,则::a b c 等于( )A .1:2:3B . 2:1:3C .3:1:2D .3:2:1【答案】B二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.不等式32>++x x 的解集是 .【答案】 ),21()25,(+∞⋃--∞ 14.已知曲线C 的极坐标方程为θρcos 2=,则曲线C 上的点到直线t t y t x (21⎩⎨⎧=+-=为参数)的距离的最大值为____________【答案】5515.如图:若PA PB =,2APB ACB ∠=∠,AC 与PB 交于点D ,且4PB =,3PD =,则AD DC ⋅=.【答案】716.如图:在ACD 直角三角形中,已知AC=1,延长斜边CD 至B,使DB=1,又知030=∠DAB .则CD= 。
广东省江门市2018高三数学一轮复习专项检测试题12201712190263

2018高考数学一轮复习数列专题检测试题及答案 01一、选择题(本大题共 12个小题,每小题 5分,共 60分,在每小题给出的四个选项中,只有 一项是符合题目要求的) 1.设S 是等差数列{a }的前 n 项和,若 a 49,S 315 ,则数列{ }a 的通项为() nnnA .2n-3B .2n-1C .2n+1D .2n+3【答案】C2.在公差不为零的等差数列a 中, na a a 依次成等比数列,前 7项和为 35,则数列1, 3,7an的通项 a() nA . nB . n1 C . 2n 1 D . 2n 1【答案】Ba3.数列a 中,a 等于()an,且 a 1 2 ,则nnn 1a 1 3nA .16 5n 1B .2 6n5C .4 6n5D .4 3n 1【答案】B4.在等差数列{a n }中,已知 a 4+a 8=16,则该数列前 11项和 S 11=( )A .58B .88C .143D .176 【答案】B5.设 s n 是等差数列{a n }的前 n 项和,已知 s 6 =36, s n =324, s n 6 =144 (n>6),则n=( ) A . 15 B . 16 C . 17 D . 18【答案】D6.已知等差数列A.8B.9C.10D.11【答案】C7.在等差数列{a}中,若前1111( )11项和S,则a a a an25710A. 5 B.6 C.4 D.8【答案】C8.用数学归纳法证明3n n3(n≥3,n∈N)第一步应验证( )- 1 -A . n=1B . n=2C . n=3D . n=4【答案】C9.等差数列{a n }中,a 5+a 7=16,a 3=4,则 a 9=( )A .8B .12C .24D .25【答案】B 10.在等差数列a 中,若前 5项和 S 520 ,则a 等于() n3A .4B .-4C .2D .-2【答案】A11.等差数列{a }前 n 项和满足 S 20S ,下列结论正确的是()n40A . S是 30S 中最大值B . nS是 30S 中最小值nC . S =0D . S6030【答案】D12.已知实数列1,a ,b ,2 成等比数列,则 ab ()A . 4B .4 C . 2 D .2【答案】C二、填空题(本大题共 4个小题,每小题 5分,共 20分,把正确答案填在题中横线上)12213.已知数列a 的前 n 项和为 Sn n 3nn,则这个数列的通项公式为____________43【答案】an59 ,n 1 126n 5 ,n 121 a4【答案】3SS,则 15.在等差数列a中, a ,其前 n 项和为 S ,若1210 212008S的值等nn201112 10于 . 【答案】402216.已知数列{a n }的前三项依次是-2,2,6,前 n 项和 S n 是 n 的二次函数,则 a 100=____________- 2 -【答案】394三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)12317.已知数列{a n}的前n项和Sn n.n22(1)求{a n}的通项公式;1b ,求{b (2)若数列{b n}满足n}的前10项和T10.n a an n1【答案】n 1时,a1S 21n13132a n2n n2n n时,1(1)(1)1S Sn n n2222当n 1时, 112a1也满足上式所以a n 1n1111(2)由(1)得:bna an1n2n1n2n n1b b b 11111111518.设数列满足,,。
2018广东江门市第一中学高三数学一轮复习专项检测试题 24 含答案 精品

2018高三数学一轮复习平面解析几何专题检测试题及答案011.在△ABC 中,角A ,B ,C 的对边分别a ,b ,c ,若22212a b c +=.则直线0ax by c -+=被圆2x + 29y =所截得的弦长为 .【答案】【解析】由题意:设弦长为l圆心到直线的距离d ===由几何关系:2222l r d l ⎛⎫=+⇒= ⎪⎝⎭2.经过圆错误!未找到引用源。
的圆心错误!未找到引用源。
,且与直线错误!未找到引用源。
平行的直线方程为( )A. 错误!未找到引用源。
B. 错误!未找到引用源。
C. 错误!未找到引用源。
D. 错误!未找到引用源。
3.已知错误!未找到引用源。
为圆错误!未找到引用源。
内异于圆心的一点,则直线错误!未找到引用源。
与该圆的位置关系是( )A.相切B.相交C.相离D.相切或相交 【答案】C【解析】因错误!未找到引用源。
为圆错误!未找到引用源。
内异于圆心的一点,故错误!未找到引用源。
圆心到直线错误!未找到引用源。
的距离为错误!未找到引用源。
,故直线与圆相离.4. 已知点P 的坐标4(,)1x y x y y x x +≤⎧⎪≥⎨⎪≥⎩满足,过点P 的直线l 与圆22:14C x y +=相交于A 、B 两点,则AB 的最小值为 . 【答案】4【解析】如图,点P 位于三角形CDE 内。
要使AB 的最小值,则有圆心到直线l 的距离最大,有图象可知当点P 位于E 点时,圆心到直线l 的距离最大,此时直线l OP⊥,(1,3)E 所以2AE ====,所以24AB AE ==,即最小值为4.5.直线13=+by ax 与圆222=+y x 相交于B ,A 两点(R b ,a ∈),且AOB ∆是直角三角形(O 是坐标原点),则点)b ,a (P 与点()10,之间距离的最大值是A .417 B .4 C .2 D . 37【答案】C【解析】因为△AOB 是直角三角形,所以圆心到直线的距离为11=,即2231a b +=。
2018广东江门市第一中学高三数学一轮复习专项检测试题 12 含答案 精品

2018高考数学一轮复习数列专题检测试题及答案01一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设n S 是等差数列{}n a 的前n 项和,若439,15a S ==,则数列{}n a 的通项为( ) A .2n-3 B .2n-1C .2n+1D .2n+3【答案】C2.在公差不为零的等差数列{}n a 中,137,,a a a 依次成等比数列,前7项和为35,则数列{}n a 的通项n a =( ) A .n B .1n +C .21n -D .21n +【答案】B3.数列{}n a 中,nnn a a a 311+=+,且21=a ,则n a 等于( )A .1651n - B .265n - C .465n - D .431n -【答案】B4.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=( )A .58B .88C .143D .176 【答案】B5.设s n 是等差数列{a n }的前n 项和,已知s 6=36, s n =324, s 6-n =144 (n>6),则n=( )A . 15B . 16C . 17D . 18【答案】D6.已知等差数列{}n a 满足32=a ,)2(,171≥=-n a n ,100=n S ,则n 的值为( ) A .8 B .9 C .10 D .11 【答案】C7.在等差数列}{n a 中,=+++=10752111111a a a a S ,则项和若前 ( ) A . 5B .6C .4D .8【答案】C8.用数学归纳法证明33n n ≥(n ≥3,n ∈N)第一步应验证( )A . n=1B . n=2C . n=3D . n=4 【答案】C9.等差数列{a n }中,a 5+a 7=16,a 3=4,则a 9=( )A .8B .12C .24D .25 【答案】B10.在等差数列{}n a 中,若前5项和520S =,则3a 等于( ) A .4 B .-4C .2D .-2【答案】A11.等差数列{}n a 前n 项和满足4020S S =,下列结论正确的是( )A .30S 是n S 中最大值B .30S 是n S 中最小值C .30S =0D .060=S【答案】D12.已知实数列1,,,2a b 成等比数列,则ab =( )A . 4B . 4-C . 2D . 2- 【答案】C二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知数列{}n a 的前n 项和为332412++=n n S n ,则这个数列的通项公式为____________【答案】⎪⎩⎪⎨⎧>+==1,12561,1259n n n a n14.已知等差数列{}n a 满足:100543a π=,则12009tan()a a +=____________.【答案】15.在等差数列{}n a 中,12008a =-,其前n 项和为n S ,若101221210S S -=,则2011S 的值等于 .【答案】402216.已知数列{a n }的前三项依次是-2,2,6,前n 项和S n 是n 的二次函数,则a 100=____________ 【答案】394三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.已知数列{a n }的前n 项和n n S n23212+=. (1)求{a n }的通项公式;(2)若数列{b n }满足11+=n n n a a b ,求{b n }的前10项和10T .【答案】2,111===S a n 时 1)1(23)1(212321,2221+=----+=-=≥-n n n n n S S a n n n n 时 当1=n 时,2111=+=a 也满足上式 所以1+=n a n (2)由(1)得:()()111111212n n n b a a n n n n +===-++++ 12101111111152334111221212b b b ⎛⎫⎛⎫⎛⎫∴++=-+-+-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭18.设数列满足,, 。
江门市2018届高三一轮复习《圆与方程》专项检测试题含答案

圆与方程一.选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线过点,与圆有两个交点时,斜率的取值范围是( ) A. B.C.D.2.圆在点处的切线方程为()A. B.C. D.3.若方程x+y+4kx-2y+5k=0表示圆,则k的取值范围是( )A,<k<1 B .k<或k>1 C. k=或k=1 D.k任意实数4.设直线过点,且与圆相切,则的斜率是()A. B. C. D.5. 圆上的点到直线的距离最大值是()A B C D6.直线3x+4y-5=0与圆2x2+2y2―4x―2y+1=0的位置关系是( ).A.相离 B.相切C.相交但直线不过圆心 D.相交且直线过圆心7.圆关于原点对称的圆的方程为 ( )A BC D8.直线x-y+4=0被圆x2+y2+4x-4y+6=0截得的弦长等于( ).A. B.2 C.2 D.49.圆x2+y2+2x+4-3=0上到直线x+y+1=0的距离为的点共有( )个A. 1B.2C.3D.410.圆x2+y2+2x+4y-3=0上且到直线x+y+1=0的距离为的点共有( )A.1个B.2个C.3个D.4个11.过点P(-2,4)作圆O:(x-2)2+(y-1)2=25的切线l,直线m:ax-3y=0与直线l平行,则直线l与m的距离为( )A.4 B.2 C. D.12.若直线mx+2ny-4=0(m.n∈R,n≠m)始终平分圆x2+y2-4x-2y-4=0的周长,则mn的取值范围是( )A.(0,1) B.(0,-1) C.(-∞,1) D.(-∞,-1)二.填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.三角形ABC的三个顶点A(1,4),B(-2,3),C(4,-5),则△ABC的外接圆方程是。
14.已知圆的方程x2+y2-8x-2y+12=0,P(1,1),则圆上距离P点最远的点的坐标是。
【高三数学试题精选】2018届高考数学一轮复习模拟试题1(江门市含答案)
2018届高考数学一轮复习模拟试题1(江门市含答案)
5
c
一轮复习数学模拟试题01
满分150分用时19和字母A-F共16个记数符号,这些符号与十进制的数的对应关系如下表
例如,用十六进制表示E+D=1B,则A×B=()
A、6E
B、72 c、5F D、5F D、B0
第二部分(非选择题满分110分)
二、填空题本大题共6小题,每小题5分,满分30分.
(一)必做题.
9、已知数列{ }的前几项为用观察法写出满足数列的一个通项式=___
10、的展开式中,x3的系数是____(用数字作答)
11、已知a,b,c分别是△ABc的三个内角A,B,c所对的边,若a=1,,
A+B=2c,则sinB=____
12、已知x>0,>0,且=1,则2x+3的最小值为____
13、设f(x)是R是的奇函数,且对都有f(x+2)=f(x),又当[0,1]时,f(x)=x2,那么x [② 得-2 =
= = …………………………(13分)
,即……………………(14分)
-------------------------------(4分)
连结AE
又且
………………………………(5分)
由(Ⅰ)知
………………………………(7分)。
广东省江门市2018高三数学一轮复习专项检测试题19201712190270
2018高考数学一轮复习推理与证明专题检测试题及答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a ,b ,c 都是正数,则三数111,,a b c b c a +++( ) A .都大于2B .都小于2C .至少有一个不大于2D .至少有一个不小于2【答案】D 2.用反证法证明“方程)0(02≠=++a c bx ax 至多有两个解”的假设中,正确的是( )A . 至多有一个解B . 有且只有两个解C . 至少有三个解D . 至少有两个解【答案】C 3.用反证法证明命题“若022=+b a ,则b a ,全为0”其反设正确的是( )A .b a ,至少有一个不为0B . b a ,至少有一个为0C . b a ,全不为0D . b a ,中只有一个为0【答案】A4.已知b a ,为不相等的正数,a b b a B b b a a A +=+=,,则A 、B 的大小关系( )A .B A >B .B A ≥C .B A <D .B A ≤【答案】A 5.设x ,y ,z 都是正实数,a =x +1y ,b =y +1z ,c =z +1x,则a ,b ,c 三个数( ) A .至少有一个不大于2 B .都小于2C .至少有一个不小于2D .都大于2【答案】C6.用反证法证明某命题时,对某结论:“自然数a b c ,,中恰有一个偶数”,正确的假设为( )A .a b c ,,都是奇数B .a b c ,,都是偶数C .a b c ,,中至少有两个偶数D .a b c ,,中至少有两个偶数或都是奇数【答案】D7.下边所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律,a 所表示的数是( )A .2B .4C .6D . 8【答案】C8.若)0(,3,47≥-+=+-+=a a a Q a a P ,则,P Q 的大小关系是( )A .P Q >B .P Q =C .P Q <D .由a 的取值确定 【答案】C9.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )A .假设三内角都不大于60度B .假设三内角都大于60度C .假设三内角至多有一个大于60度D .假设三内角至多有两个大于60度【答案】B10.平面内有n 条直线,最多可将平面分成)(n f 个区域,则()f n 的表达式为( )A . 1+nB . n 2C .222++n nD . 12++n n【答案】C 11.用反证法证明:“方程,02=++c bx ax 且c b a ,,都是奇数,则方程没有整数根” 正确的假设是方程存在实数根0x 为( )A .整数B .奇数或偶数C .自然数或负整数D .正整数或负整数【答案】C12.下列推理是归纳推理的是( )A .A ,B 为定点,动点P 满足|PA|+|PB|=2a>|AB|,得P 的轨迹为椭圆B .由a 1=a,a n =3n-1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式C .由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆22221x y a b +=的面积S=πab D .科学家利用鱼的沉浮原理制造潜艇【答案】B二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.研究问题:“已知关于x 的不等式02>+-c bx ax 的解集为)2,1(,解关于x 的不等式02>+-a bx cx ”,有如下解法:解:由02>+-c bx ax ⇒0)1()1(2>+-x c x b a ,令x y 1=,则)1,21(∈y ,所以不等式02>+-a bx cx 的解集为)1,21(. 参考上述解法,已知关于x 的不等式0<++++cx b x a x k 的解集为)3,2()1,2( --,则关于x 的不等式0111<--+-cx bx ax kx 的解集为 【答案】111,,1232⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ 14.若三角形内切圆的半径为r ,三边长为a b c ,,,则三角形的面积等于1()2S r a b c =++,根据类比推理的方法,若一个四面体的内切球的半径为R ,四个面的面积分别是1234S S S S ,,,,则四面体的体积V = .【答案】12341()3R S S S S +++ 15.用反证法证明命题“三角形的内角至多有一个钝角”,正确的假设是【答案】三角形的内角中至少有两个钝角16.若正数c b ,,a 满足14=++c b a ,则c b a 2++的最大值为 .【答案】210三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.求证:2222,2,2y ax bx c y bx cx a y cx ax b =++=++=++(,,a b c 是互不相等的实数),三条抛物线至少有一条与x 轴有两个交点.【答案】假设这三条抛物线全部与x 轴只有一个交点或没有交点,则有 ⎪⎩⎪⎨⎧≤-=≤-=≤-=044044044232221bc a Δab c Δac b Δ 三式相加,得a 2+b 2+c 2-ab -ac -bc ≤0⇒(a -b )2+(b -c )2+(c -a )2≤0.∴a=b=c 与已知a ,b ,c 是互不相等的实数矛盾,∴这三条抛物线至少有一条与x 轴有两个交点.18.已知函数)1(,12)(>+-+=a x x a x f x ,用反证法证明:方程0)(=x f 没有负实数根. 【答案】假设存在x 0<0(x 0≠-1),满足f(x 0)=0,则0x a =-0021x x -+,且0<0x a <1, 所以0<-0021x x -+<1,即12<x 0<2.与假设x 0<0矛盾,故方程f(x)=0没有负数根.19.已知a ,b ,c 均为实数,且2πa =x 2y +2-,2πb =y 2z +3-,2πc =z 2x +6-,求证:a ,b ,c 中至少有一个大于0.【答案】假设a ,b ,c 都不大于0,即a ≤0,b ≤0,c ≤0,得a+b+c ≤0,而a+b+c=(x -1)2+(y -1)2+(z -1)2+π-3>0,即a+b+c>0,与a+b+c ≤0矛盾,故假设a ,b ,c 都不大于0是错误的,所以a ,b ,c 中至少有一个大于0.20.有一种密英文的明文(真实文)按字母分解,其中英文的a,b,c,…,z 的26个字母(不分大小写),依次对应1,2,3,…,26这26个自然数,见如下表格:给出如下变换公式:⎪⎪⎩⎪⎪⎨⎧≤≤∈+≤≤∈+=)2,261,(132)2,261,(21'整除能被整除不能被x x N x x x x N x x X 将明文转换成密文,如8→82+13=17,即h 变成q ;如5→5+12=3,即e 变成c. ①按上述规定,将明文good 译成的密文是什么?②按上述规定,若将某明文译成的密文是shxc ,那么原来的明文是什么?【答案】①g →7→7+12=4→d; o →15→15+12=8→h; d →o; 则明文good 的密文为dhho②逆变换公式为⎪⎩⎪⎨⎧≤≤∈-≤≤∈-=)2614,(262)131,(12''''''x N x x x N x x x 则有s →19→2×19-26=12→l ; h →8→2×8-1=15→o ;x →24→2×24-26=22→v ; c →3→2×3-1=5→e故密文shxc 的明文为love21.已知,,a b c R +∈3a b c ++。
2018届广东省江门市高考数学一轮复习专项检测试题13数列(2)
( an an 1) ,
2(1 2 3
n)
n2 n .
an n( n 1) (n N *) .
( Ⅲ ) 解法 1 :∵ bn
1
1
1
an 1 an 2 an 3
1 (n N *) ,
a2 n
∴ bn 1
1 an 2
1 an 3
1 an 4
1 (n N *) .
a2 n 2
bn 1 bn
1 a2 n 1
① ②
an 1 an 1 ,
an 1 an 1 2an 2 0 ,
(an 1 an ) (an an 1) 2 (n 2,n N *) .
∴数列 an 1 an 是以 a2 a1 4为首项,公差为 2 的等差数列 .
an 1 an 2(n 1),(n N *) ,
an a1 (a2 a1 ) (a3 a2 ) (a4 a3 )
数列 02
19.如图, P1 ( x1, y1 ), P2 ( x2 , y2 ), , Pn ( xn , yn ),(0 y1 y2
yn ) 是曲线
C : y2 3x ( y 0) 上的 n 个点,点 Ai (ai ,0) (i 1,2,3, , n) 在 x 轴的正半轴上, Ai 1 Ai Pi 是
1 a2 n 2
1 an 1
1
1
1
(2n 1)(2n 2) (2 n 2)(2 n 3) (n 1)(n 2)
2(2n2 2n 1)
.
(2n 1)(2n 2)(2n 3)(n 2)
∴当 n N * 时,上式恒为负值,
∴当 n N * 时, bn 1 bn ,
∴数列 bn 是递减数列 .
广东省江门市2018高三数学一轮复习专项检测试题02201712190253
2018高考数学一轮复习导数及应用专题检测试题及答案一、选择题(本大题共 12个小题,每小题 5分,共 60分,在每小题给出的四个选项中,只有 一项是符合题目要求的) 1.由直线 y 1与曲线 y x 2 所围成的封闭图形的面积是()A .4 3B .2 3C .1 3D .1 2【答案】A 2.曲线ysin x 1M ( ,0)sin x cos x 2在点4处的切线的斜率为( )A .1 2 B .12C .22D . 22【答案】A3.曲线 y x 3 2x 4 在点 (1,3)处切线的倾斜角为()A .6B .3C .4D .2【答案】Ckx x dx4.若 (23 2 ),则k =()A . 1B . 0C . 0或1D .以上都不对【答案】 C5.3x sin x dx2 0是()A . 321D . 321B .2 1 C .2133 8448【答案】A6.由直线 x=15 4A .1 21,x=2,曲线 y及 x 轴所围图形的面积为( )x 17 1B .C . ln 24 2D .2ln2【答案】D7.函数y cos2x在点(,0)处的切线方程是( )4A.4x2y0B.4x2y0C.4x2y0D.4x2y0【答案】D- 1 -8.(sin x cosx)=( )A.2 B.4 C.πD.2π【答案】A9.设点P是曲线2y3上的任意一点,P 点处切线倾斜角为,则角的取值范x x33围是( )2A.C.[0,)[,)232[,)D.35(,]26B.5[0,)[,)26【答案】A10.曲线yx33x2在点(1,2)处的切线方程为( )A.y 3x 5B.y3x 5C.y 3x 1D.y 2x 【答案】C11.曲线y 1x31x2在点(1,5)A处的切线与两坐标轴围成的三角形的面积为( ) 32649494949 A.B.C.D.183672144【答案】D12.函数y1在点x 4处的导数是( )xA.18B.1C.8116( D)116【答案】D二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.1dx23(11+5x)______.【答案】7 7214.已知一组抛物线y ax2bx c,其中a为1、3、5、7中任取的一个数,b为2、4、6、8中任取的一个数,从这些抛物线中任意抽取两条,它们在与直线平行的概率是.1x 交点处的切线相互2【答案】3 315.已知f(x)xe x,则f'(1)=【答案】2e- 2 -16.函数 y e x 的图象在点ea ,a处的切线与 x 轴的交点的横坐标为a ,其中 kN *,kkk 1a 10 ,则aaa.135【答案】 6三、解答题(本大题共 6个小题,共 70分,解答应写出文字说明,证明过程或演算步骤)F x yx y x y.17.定义函数 ( , ) (1) , , 0,(1)令函数 f xFx x( )1, log33 2的图象为曲线C 求与直线 4x15y 3 0垂直的1曲线C 的切线方程;1(2)令函数 g x F xaxbx ( )1, l og13 22的图象为曲线C ,若存在实数 b 使得曲线2C2在x x处有斜率为8的切线,求实数 a 的取值范围;1,4 (3)当 x , yN* ,且 xy 时,证明 F x , y Fy , x.【答案】(1)f xFxxxx( )1, log ( 33 )(11)log 2 (x3 )33,3x2由 log 2 (x 3 3x ) 0 ,得 x 3 3x 1. 又 ) f15 ,由 fx0,得 3(x3x 23x4 2x 33x1, x3 .又3 9 ,切点为3 , 9f.2 28 2 8存在与直线 4x15y 30垂直的切线,其方程为 y 9 15 x 38 4 2,即15x 4y 27(2)()1,l og(1)1g x F x ax bx x ax bx.23223由log2(x3ax2bx1)0,得0x.3ax2bx由g(x)3x22ax b8,得b3x22ax8.x3ax bx x ax x(3x22ax8)2x3ax28x0在x(1,4)上有解.2328x ax在x1,4上有解得2282x在x1,4上有解,0ax8.而282(4)448a2x,x1,4x,x xx x xxmax当且仅当x2时取等号,a8.(3)证明:F(x,y)F(y,x)(1x)y(1y)x y ln(1x)x ln(1y) ln(1x)ln(1y)N.x,y*,x yx yxln(1x)ln(1x) 1x令h(x),则,h(x)x x2x当x2时,∵1ln1x,∴h(x)0,h(x)单调递减,1x1当2x y时,h(x)h(y).又当x1且y2时,h1ln2ln3h2,2- 3 -当 x , y N *.且 x y 时, h (x ) h (y ) ,即 F (x , y ) F (y , x ) .18.某分公司经销某种品牌产品,每件产品的成本为 3元,并且每件产品需向总公司交 a 元(3a 5)的管理费,预计当每件产品的售价为 x 元(9 x 11)时,一年的销售量为(12- x )2万件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018高考数学一轮复习概率专题检测试题及答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设随机变量X 的分布列为3,2,1,2)(===i aii X P ,则==)2(X P ( ) A .91 B .61 C . 31 D .41【答案】C2.若随机变量X 的概率分布密度函数是),(,221)(8)1(2+∞-∞∈=--x ex f x π则(21)E X +的值是( )A .5B .9C .3D .2 【答案】C3.从2010名学生中选50人组成参观团,先用简单随机抽样方法剔除10人,再将其余2000人按系统抽样方法选取,则每人入选的概率( )A .不全相等B 均不相等C .都是2015 D .都是401 【答案】C4.从装有除颜色外完全相同的2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A .至少有1个白球,都是白球B .至少有1个白球,至少有1个红球C .恰有1个白球,恰有2个白球D .至少有1个白球,都是红球 【答案】C5.某游戏中,一个珠子从如右图所示的通道(图中的斜线)由上至下滑下,从最大面的六个出口出来,规定猜中出口者为胜.如果你在该游戏中,猜得珠子从出口3出来,那么你取胜的概率为( )A .165 B .325 C .61 D .以上都不对【答案】A6.设ξ是一个离散型随机变量,其分布列为:则q 等于( )A .1B .1±22 C .1-22 D .1+22【答案】C7.下列事件:①一个口袋内装有5个红球,从中任取一球是红球;②抛掷两枚骰子,所得点数之和为9;③20()x x R ≥∈;④方程2350x x -+=有两个不相等的实数根;⑤巴西足球队会在下届世界杯足球赛中夺得冠军。
其中,随机事件的个数为( ) A .1 B .2 C .3 D .4 【答案】B8.随机变量X 服从二项分布X ~()p n B ,,且,200,300==DX EX 则p 等于( )A .32B .31 C . 1 D . 0【答案】B9.已知随机变量X 服从正态分布N (2,2σ),8.0)4(=≤X P ,则=≤)0(X P ( ) A . 0.4 B .0.2C .0.6D .0.8【答案】B10.从20的展开式中任取一项,则取到有理项的概率为( ) A .521 B .27C .310D .37【答案】B11.某班一学习兴趣小组在开展一次有奖答题活动中,从3道文史题和4道理科题中,不放回地抽取2道题,第一次抽到文史题,第二次也抽到文史题的概率是( )A . 17;B.649;C.314;D. 949;【答案】A12.在长为12cm 的线段AB 上任取一点M ,并且以线段AM 为边的正方形,则这正方形的面积介于36cm2与81cm2之间的概率为( )A .14B .13C .274D .4512【答案】A二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.随机变量ξ的分布列为则ξ为奇数的概率为 .【答案】81514.某渔船要对下月是否出海做出决策,如出海后遇到好天气,可得收益6000元,如出海后天气变坏将损失8000元,若不出海,无论天气如何都将承担1000元损失费,据气象部门的预测下月好天的概率为0.6,天气变坏的概率为0.4,则该渔船应选择_____________(填“出海”或“不出海”). 【答案】出海15.在12个正整数(其中10个偶数,2个奇数)中,随机抽取3个的必然事件是___________________. 【答案】至少有一个是偶数16.设()f x 与g(x)都是定义在R 上的函数,且(1)(1)5()0,()(),.(1)(1)2xf fg x f x a g x g g -≠=+=-在数列(){}(1,2,,10)()f n n g n = 中,任取前k 项相加,则前k 项和大于1516的概率为【答案】53三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.某河流上的一座水力发电站,每年六月份的发电量Y (单位:万千瓦时)与该河上游在六月份是我降雨量X (单位:毫米)有关,据统计,当X=70时,Y=460;X 每增加10,Y 增加5.已知近20年X 的值为:140, 110, 160, 70, 200, 160, 140, 160, 220, 200, 110, 160, 160, 200, 140, 110, 160, 220, 140, 160. (Ⅰ)完成如下的频率分布表 近20年六月份降雨量频率分布表(Ⅱ)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率是为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率. 【答案】(I )在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个,故近20年六月份降雨量频率分布表为(II )P (“发电量低于490万千瓦时或超过530万千瓦时”)(490530)(130210)(70)(110)(220)1323.20202010P Y Y P X X P X P X P X =<>=<>==+=+==++=或或故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为310. 18.某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取n 人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:(1)补全频率分布直方图并求n 、a 、p 的值;(2)从[40,50)岁年龄段的“低碳族...”中采用分层抽样法抽取18人参加户外低碳体验活动,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁的人数为X ,求X 的分布列和期望EX . 【答案】(1)第二组的频率为1(0.040.040.030.020.01)50.3-++++⨯=,所以高为0.30.065=.频率直方图如下:第一组的人数为1202000.6=,频率为0.0450.2⨯=,所以20010000.2n ==.由题可知,第二组的频率为0.3,所以第二组的人数为10000.3300⨯=,所以1950.65300p ==. 第四组的频率为0.0350.15⨯=,所以第四组的人数为10000.15150⨯=,所以1500.460a =⨯=.(2)因为[40,45)岁年龄段的“低碳族”与[45,50)岁年龄段的“低碳族”的比值为60:302:1=,所以采用分层抽样法抽取18人,[40,45)岁中有12人,[45,50)岁中有6人. 随机变量X 服从超几何分布.031263185(0)204C C P X C ===,1212631815(1)68C C P X C ===,2112631833(2)68C C P X C ===,3012631855(3)204C C P X C ===. 所以随机变量X 的分布列为∴数学期望5153355012322046868204EX =⨯+⨯+⨯+⨯=. 19.为了解今年某校高三毕业班准备报考清华大学的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.(1)求该校报考清华大学的总人数;(2)以这所学校的样本数据来估计全省的总体数据,若从全省报考清华大学的同学中任选三人,设ξ表示体重超过60公斤的学生人数,求ξ的分布列及数学期望.【答案】(1)设报考清华大学的人数为n ,前三小组的频率分别为321,,p p p ,则由条件可得:⎪⎩⎪⎨⎧=⨯++++==15)013.0037.0(323212312p p p p p p p 解得375.0,25.0,125.0321===p p p 又因为np 1225.02==,故48=n(2) 由(1)可得,一个报考学生体重超过60公斤的概率为855)013.0037.0(3=⨯++=p p 所以x 服从二项分布,k k k C k x p -==33)83()85()( · 随机变量x 的分布列为:则815512125351222525121351512270=⨯+⨯+⨯+⨯=Ex 或: 815853=⨯=Ex20.已知关于x 的一元二次函数 )0(1)(2≠+-=a bx ax x f ,设集合 },3,2,1{=P =Q }4,3,2,1,1{-,分别从集合P 和Q 中随机取一个数a 和b 得到的数对),(b a . (1)列举出所有的数对(,)a b , 并求函数()y f x =有零点的概率;(2)求函数),1[)(+∞=在区间x f y 上是增函数的概率. 【答案】(1)),4,2(),3,2(),2,2(),1,2(),1,2(),4,1(),3,1(),2,1(),1,1(),1,1(),(--共有b a)4,3(),3,3(),2,3(),1,3(),1,3(-,15种情况函数04,)(2≥-=∆=a b x f y 有零点,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种情况所以函数52156)(==有零点的概率为x f y (2)函数,2)(a b x x f y ==的对称轴为 ),1[+∞在区间上是增函数则有12≤ab, (1,—1),(1,1),(1,2),(2,—1),(2,1),(2,2),(2,3),(2,4), (3,—1),(3,1),(3,2),(3,3),(3,4),共13种情况满足条件 所以函数.1513),1[)(上是增函数的概率为在区间+∞=x f y 21.用一台自动机床加工一批螺母,从中抽出100个逐个进行直径检验,结果如下:从这100个螺母中,任意抽取1个,求事件A (6.92<d ≤6.94) 事件B (6.90<d ≤6.96)、事件C (d>6.96)、事件D (d ≤6.89)的频率.【答案】事件A 的频率P (A )=1002617+=0.43,事件B 的频率 P (B )=10081526171710+++++=0.93,事件C 的频率P (C )=10022+=0.04,事件D 的频率P (D )=1001=0.01.22. 某社区举办2010年上海世博会知识宣传活动,进行现场抽奖. 抽奖规则是:盒中装有10张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案.参加者每次从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖.(Ⅰ)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人笑说:我只知道若从盒中抽两张都不是“海宝”卡的概率是13.求抽奖者获奖的概率; (Ⅱ)现有甲乙丙丁四人依次抽奖,抽后放回,另一人再抽.用ξ表示获奖的人数.求ξ的分布列及,E D ξξ.【答案】(Ⅰ)设“世博会会徽”卡有n 张,由221013n C C =,得n =6.故“海宝”卡有4张. 抽奖者获奖的概率为24210215C C =.(Ⅱ)2(4,)15B ξ , ξ的分布列为 44213()()()1515k k k p k C ξ-==(k=0,1,2,3,4) 或28221044,4(1)15151515225E D ξξ∴=⨯==⨯⨯-=。