2009年中考数学复习教材回归知识讲解+例题解析+强化训练(二次函数与方程(组)或不等式)

合集下载

[09数学汇编]_2009年全国中考数学试题汇编_二次函数1讲解

[09数学汇编]_2009年全国中考数学试题汇编_二次函数1讲解

09年中考-二次函数 习题版一、选择题 1、(2009年台湾)向上发射一枚炮弹,经x 秒后的高度为y 公尺,且时间与高度关系为y =ax 2+bx 。

若此炮弹在第7秒与第14秒时的高度相等,则再下列哪一个时间的高度是最高的? (A) 第8秒 (B) 第10秒 (C) 第12秒 (D) 第15秒 。

2、(2009年泸州)在平面直角坐标系中,将二次函数22x y =的图象向上平移2个单位,所得图象的解析式为A .222-=x yB .222+=x yC .2)2(2-=x yD .2)2(2+=x y3、 (2009年四川省内江市)抛物线3)2(2+-=x y 的顶点坐标是( ) A .(2,3) B .(-2,3) C .(2,-3) D .(-2,-3) 5、(2009年桂林市、百色市)二次函数2(1)2y x =++的最小值是( ). A .2 B .1 C .-3 D .236、(2009年上海市)抛物线22()y x m n =++(m n ,是常数)的顶点坐标是( )A .()m n ,B .()m n -,C .()m n -,D .()m n --,7、(2009年陕西省)根据下表中的二次函数c bx ax y ++=2的自变量x 与函数y 的对应值,可判断二次函数的图像与x 轴 【 】x … -1 0 1 2 …y … -1 47- -2 47- …A .只有一个交点B .有两个交点,且它们分别在y 轴两侧C .有两个交点,且它们均在y 轴同侧D .无交点8、(2009威海)二次函数2365y x x =--+的图象的顶点坐标是( )A .(18)-,B .(18),C .(12)-,D .(14)-, 9、(2009湖北省荆门市)函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是( )解析:本题考查函数图象与性质,当0a >时,直线从左向右是上升的,抛物线开口向上,D 是错的,函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象必过(0,1),所以C 是正确的,故选C . 10、(2009年贵州黔东南州)抛物线的图象如图所示,根据图象可知,抛物线的解析式可能..是( ) A 、y=x 2-x-2 B 、y=121212++-x C 、y=121212+--x x D 、y=22++-x x11、(2009年齐齐哈尔市)已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论:0ac >①;②方程20ax bx c ++=的两根之和大于0;y ③随x 的增大而增大;④0a b c -+<,其中正确的个数()A .B .C .D .1111xo yyo x yo xxoyA .4个B .3个C .2个D .1个12、(2009年深圳市)二次函数c bx ax y ++=2的图象如图2所示,若点A (1,y 1)、B (2,y 2)是它图象上的两点,则y 1与y 2的大小关系是( ) A .21y y < B .21y y = C .21y y > D .不能确定12、(2009桂林百色)二次函数2(1)2y x =++的最小值是( ). A .2 B .1 C .-3 D .2313、(2009丽水市)已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,给出以下结论: ①a >0.②该函数的图象关于直线1x =对称. ③当13x x =-=或时,函数y 的值都等于0. 其中正确结论的个数是( ) A .3 B .2 C .1 D .014、(2009烟台市)二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )15、(2009年甘肃庆阳)图6(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面2m ,水面宽4m .如图6(2)建立平面直角坐标系,则抛物线的关系式是( ) A .22y x =- B .22y x = C .212y x=-D .212y x =1-1O xyxyO 1 y xO y xO B .C .yxO A .y xO D .O16、(2009年甘肃庆阳)将抛物线22y x =向下平移1个单位,得到的抛物线是( )A .22(1)y x =+B .22(1)y x =-C .221y x =+D .221y x =-17、(2009年广西南宁)已知二次函数2y ax bx c =++(0a ≠)的图象如图4所示,有下列四个结论:20040b c b ac <>->①②③④0a b c -+<,其中正确的个数有( )A .1个B .2个C .3个D .4个18、(2009年鄂州)已知=次函数y =ax 2+bx+c 的图象如图.则下列5个代数式:ac ,a+b+c ,4a -2b+c , 2a+b ,2a -b 中,其值大于0的个数为( ) A .2 B 3 C 、4 D 、519、(2009年孝感)将函数2y x x =+的图象向右平移a (0)a >个单位,得到函数232y x x =-+的图象,则a 的值为 A .1B .2C .3D .420、(2009泰安)抛物线1822-+-=x x y 的顶点坐标为 (A )(-2,7) (B )(-2,-25) (C )(2,7) (D )(2,-9)21、(2009年烟台市)二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )22、(2009年嘉兴市)已知0≠a ,在同一直角坐标系中,函数ax y =与2ax y =的图象有可能是( ▲ )1图 4O xy3图6(1) 图6(2)1- 1 O x y y x Oy x O B . C . y x O A . y x O D . Oy x1-1A . xyO 1-1B . xyO1-1C . xyO1-1D .23、(2009年新疆)如图,直角坐标系中,两条抛物线有相同的对称轴,下列关系不正确...的是( ) A .h m =B .k n =C .k n >D .00h k >>,24、(2009年天津市)在平面直角坐标系中,先将抛物线22y x x =+-关于x 轴作轴对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经两次变换后所得的新抛物线的解析式为( ) A .22y x x =--+ B .22y x x =-+-C .22y x x =-++D .22y x x =++25、(2009年南宁市)已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列四个结论:20040b c b ac <>->①②③④0a b c -+<,其中正确的个数有( )A .1个B .2个C .3个D .4个26、(2009年衢州)二次函数2(1)2y x =--的图象上最低点的坐标是A .(-1,-2)B .(1,-2)C .(-1,2)D .(1,2) 27、(2009年舟山)二次函数2(1)2y x =--的图象上最低点的坐标是A .(-1,-2)B .(1,-2)C .(-1,2)D .(1,2) 28、(2009年广州市)二次函数2)1(2+-=x y 的最小值是( )A.2 (B )1 (C )-1 (D )-229、(2009年济宁市)小强从如图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:(1)0a <;(2) 1c >;(3)0b >;(4) 0a b c ++>; (5)0a b c -+>. 你认为其中正确信息的个数有A .2个B .3个C .4个D .5个30、(2009年广西钦州)将抛物线y =2x 2向上平移3个单位得到的抛物线的解析式是( )1211O1xy (第12题)A .y =2x 2+3B .y =2x 2-3C .y =2(x +3)2D .y =2(x -3)231、(2009宁夏)二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴是直线1x =,则下列四个结论错误..的是( )D A .0c > B .20a b += C .240b ac -> D .0a b c -+>32、(2009年南充)抛物线(1)(3)(0)y a x x a =+-≠的对称轴是直线( )A .1x =B .1x =-C .3x =-D .3x =33、(2009年湖州)已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点,请你在图中任意画一条抛物线,问所画的抛物线最多能经过81个格点中的多少个?( ) A .6 B .7 C .8 D .9 34、(2009年兰州)在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可能..是35、(2009年兰州)把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为A .2(1)3y x =---B .2(1)3y x =-+-C .2(1)3y x =--+D .2(1)3y x =-++36、(2009年兰州)二次函数c bx ax y ++=2的图象如图6所示,则下列关系式不正确的是A .a <0 B.abc >0C.c b a ++>0D.ac b 42->0 37、(2009年遂宁)把二次函数3412+--=x x y 用配方法化成()k h x a y +-=2的形式A.()22412+--=x yB. ()42412+-=x y111-O x y(8题图)C.()42412++-=x yD. 321212+⎪⎭⎫ ⎝⎛-=x y39、(2009年广州市)二次函数2)1(2+-=x y 的最小值是( )A.2 (B )1 (C )-1 (D )-2【关键词】二次函数41、(2009年台湾)向上发射一枚炮弹,经x 秒后的高度为y 公尺,且时间与高度关系为y =ax 2+bx 。

最新2009年中考数学复习教材回归知识讲解+例题解析+强化训练(方程和方程组的应用)文档

最新2009年中考数学复习教材回归知识讲解+例题解析+强化训练(方程和方程组的应用)文档

2009年中考数学复习教材回归知识讲解+例题解析+强化训练方程和方程组的应用◆知识讲解1.行程问题的几种类型及等量关系:(1)相遇问题:全路程=甲走的路程+乙走的路程.(2)追及问题:若甲为快者,则被追路程=甲走的路程-乙走的路程.(3)流水问题:船速+水速,逆流航速=船速-水速.2.工程问题的基本等量关系:甲的工作量+乙的工作量=甲乙合作的工作总量,•工程问题通常把总工作量看作“1”,解工程问题的关键是先找出单位时间内的工作效率.3.浓度问题的基本等量关系:浓度=溶质质量溶液质量×100% 溶液质量=溶质质量+溶剂质量. 4.数学问题的等量关系: n 位数12n a a a=a 1×10n -1+a 2×10n -2+…+a n . 5.增长率等量关系: 增长率=(增量÷基础量)×100%.6.利润问题:利润=销售价-进货价;利润率=利润进货价; 销售价=(1+利润率)×进货价. 7.利息问题: 利息=本金×利率×期数; 本息和=本金+利息.8.其他经济类问题◆例题解析例1 (2004,黄冈市)某超市对顾客实行优惠购物,规定如下:(1)若一次购物少于200元,则不予优惠;(2)若一次购物满200元,但不超过500元,按标价给予九折优惠;(3)若一次购物超过500元,其中500元以下部分(包括500元)给予九折优惠,超过500元部分给予八折优惠.小李两次去该超市购物,分别付款198元和554元,现在小张决定一次性地购买和小李分两次购买同样多的物品,他需付多少元?【分析】首先要求出小李两次去超市购物付款198元和554元的实际购物所值金额,因为付款198元时,小李购物可能不超过200元,也可能超过200元,而付款554元时,小李购物肯定超过554元,所以小李两次购物中,第一次购物有两种情况,•因此本题应分类求解.【解答】(1)小李第一次购物付款198元.①当小李购买的物品不超过200元时,不予优惠,此时实际购买198元的物品;②当小李购买的物品超过200元时,设小李购买x元的物品,依题意可得:x×90%=198,解之,得x=220即小李实际购买220元的物品.(2)小李第二次购物付款554元,因为554>500,故第二次小李购物超过500元,•设第二次小李购物y元,依题意可得:(y-500)×80%+500×90%=554,解之得y=630,即小李实际购买630元的物品.当小张决定一次性购买和小李分两次购买同样多的物品时,•小张应购买的物品为:198+630=828(元)或者220+630=850(元),此时应付款为:500×90%+(828-500)×80%=712.4(元)或者:500×90%+(850-500)×80%=730(元)答:小张应付款712.4元或730元.【点评】解答本例要注意三点:(1)由于超市实际购物优惠,•所以顾客购买物品时,所付金额数与购物金额数不一定相等;(2)•要根据付款金额数正确确定顾客购物时所符合的优惠条款,从而利用该条款求出该顾客的购物金额;(3)•若顾客所付金额数属于两种或两种以上优惠条款时,应分情况讨论求解,切忌遗漏.例2 (2004,哈尔滨市)某通信器材商场,计划用60000元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,•出厂价分别为甲种手机每部1800元,乙种手机每部600元,丙种手机每部1200元.(1)若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完,请你帮助商场计算一下如何购买;(2)若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号手机的购买数量不少于6部且不多于8部,•请你求出商场每种型号的手机的购买数量.【分析】(1)题中将60000元恰好用完容易理解,•即所选的两种手机的总钱数等于60000元;共有三种不同型号的手机,购其中两种不同型号的手机共40部,需要分三种情况考虑:①选甲,丙两种手机共40部;②选甲,丙两种手机共40部;③选乙,丙两种手机共40部;(2)题中告诉了乙种手机买数的范围,•可得乙种手机的购买数量可能的取值为6,7,8,若设甲种手机购x 部,丙种手机购y 部,则可列3个不同的方程组,即①64018006006120060000x y x y ++=⎧⎨+⨯+=⎩ ②74018006007120060000x y x y ++=⎧⎨+⨯+=⎩③74018006008120060000x y x y ++=⎧⎨+⨯+=⎩ 【解答】(1)①选购甲,乙两种型号的手机,设甲种手机购x 部,乙种手机购y 部.•依题意:40180060060000x y x y +=⎧⎨+=⎩,解这个方程组得30,10.x y =⎧⎨=⎩②选购甲,丙两种型号的手机,设甲种手机购a 部,丙种手机购b 部.依题意,得401800120060000a b a b +=⎧⎨+=⎩解这个方程组,得20,20.a b =⎧⎨=⎩ ③选购乙,丙两种型号的手机,设购乙种手机m 部,购丙种手机n 部,依题意得40600120060000m n m n +=⎧⎨+=⎩解这个方程组,得20,60.m n =-⎧⎨=⎩(不合实际,舍去). 答:有两种购买方案:①甲种手机购30部,乙种手机购买10部;②甲种手机购20部,丙种手机购20部.(2)由乙种手机的购买数量不少于6部且不多于8部,则乙种手机的购买数量有三种可能,即6部,7部,8部.设购甲种手机x 部,丙种手机y 部,由以上分析可列三个方程组:①64018006006120060000x y x y ++=⎧⎨+⨯+=⎩ ②74018006007120060000x y x y ++=⎧⎨+⨯+=⎩③74018006008120060000x y x y ++=⎧⎨+⨯+=⎩解方程组①得:268xy=⎧⎨=⎩,解方程组②:得276xy=⎧⎨=⎩,解方程组③得:284xy=⎧⎨=⎩.答:若购买乙种手机6部,则甲种手机购26部,丙种手机购8部;•若购买乙种手机7部,则甲种手机购27部,丙种手机购6部;若购买乙种手机8部,则甲种手机购28部,•丙种手机购4部.【点评】在现有的可能条件下,运用所学知识探寻最佳、最优方案,以获取最佳效益,是每个经营者所追求的目标,也是每个学生走进社会后所应具备的基本素质,这类题体现了素质教育的要求,必奖是今后中考的热点题型.同时,本题只有题设条件,结论不具体、不唯一,这对解题思路的探寻也是一种挑战,解题者必须具备创造性思维,不能囿于传统解法的限制.本例的解题关键在于依题合理分类考虑,不能漏掉存在的任何一种可能,其次是对所得的结果检验,看其是否满足生活实际.例3 为了营造人与自然和谐共处的生态环境,某市近年加快实施城乡绿化一体化工程,创建国家城市绿化一体化城市.某校甲,乙两班师生前往郊区参加植树活动.已知甲班每天比乙班少种10棵树,甲班种150棵树所用的天数比乙班种120棵树所用的天数多2天,求甲,乙两班每天各植树多少棵?【分析】这是一道工程问题.本题提供的关键信息有:①甲班种150•棵树所用的天数=乙班种120棵树所用的天数+2天;②甲班每天植树的棵树+10棵=•乙班每天植树的棵树.我们可以从不同的角度入手.【解答】(1)从工作时间入手,寻求解题的途径(直接设解法):设甲班每天植树x棵,那么乙班每天植树(x+10)棵.由①中的数量关系列方程,得150x=12010x++2.150(x+10)=120x+2x(x+10).150x+1500=120x+2x+20x.2x2-10x-1500=0.x2-5x-750=0.(x-30)(x+25)=0,x1=30,x2=-25.经检验知:x1=30,x2=-25都是原方程的解.但x=-25不符合题意舍去.∴当x=30时,x+10=40.(2)从工作效率入手,寻求解题途径(间接设解法):设乙班植树x天,那么甲班植树(x+2)天,甲班每天植树1502x+棵,乙班每天植树120x棵.由②中的数量关系列方程得1502x++10=120x.去分母,整理,得x2+5x-24=0.解得x1=-8,x2=3,经检验:x1=-8,x2=3都是原方程的解.又∵x>0,∴x=-8舍去,只取x=3.∴1502x+=30(棵),120x=40(棵).答:甲班每天植树30棵;乙班每天植树40棵.◆强化训练一、填空题1.某班学生为希望工程共捐款131元,比每人平均2元还多35元,设这个班的学生有x 人,根据题意,列方程为_______.2.一种药品经过两次降价后,每盒的价格由原来的60元降至48.6元,那么平均每次降价的百分率是_______.3.轮船顺水航行40km所需的时间和逆水航行30km所需的时间相同,•已知水流速度为3km/h,设轮船在静水中的速度xkm/h,可列方程_______.4.杉杉打火机厂生产某种型号的打火机.每只的成本为2元,毛利润为25%.•工厂通过改进工艺,降低成本,在售价不变的情况下,毛利率增加了15%,•则这种打火机每只的成本降低了_____元(精确到0.01元,毛利率=-售价成本成本×100%).5.高温煅烧石灰石(CCO3)可以制取生石灰(CaO)和二氧化碳(CO2),•如果不考虑杂质及损耗,生产生石灰14t就需要煅烧石灰石25t.那么生产生石灰224t,•需要石灰石_______t.6.为了绿色北京,北京市在执行严格的机动车尾气排放标准,同时正在不断设法减少工业及民用燃料所造成的污染.随着每年10亿m3的天然气输到北京,•北京每年将少烧300万t煤,这样,到2006年底,北京的空气质量将会基本达到发达国家城市水平.某单位1个月用煤30t,若改用天然气,1年大约要用_______m2的天然气.7.李明计划在一定日期内读完200页的一本书,读了5天后改变了计划,每天多读5页,结果提前一天读完,求他原计划平均每天读几页书.解题方案设李明原计划平均每天读书x页,用含x的代数式表示:(1)李明原计划读完这本书需用_____天;(2)改变计划时,已读了_____页,还剩____页;(3)读了5天后,每天多读5页,读完剩余部分还需______天;(4)根据问题中的相等关系,列出相应方程________;(5)李明原计划平均每天读书_______页(用数字作答).8.依法纳税是公民应尽的义务,根据我国税法规定,工资所得不超过1600元不必纳税,超过1600元的部分为全月应纳税所得额,此项税款按下表累加计算:某人本月纳税150.1元,则他本月的工资收入为______元.二、选择题9.一件商品按成本价提高40%后标价,再打8折(标价的80%)销售,售价为240元.•设这件商品的成本价为x元,根据题意,下面所列的方程正确的是()A.x×40%×80%=240 B.x(1+40%)×80%=240C.240×40%×80%=x D.x×40%=240×80%10.刘刚同学买了两种不同的贺卡共8张,单价分别是1元和2元,共用10元,•设刘刚买的两种贺卡分别为x张,y张,则下面的方程组正确的是()A.1028yxx y⎧+=⎪⎨⎪+=⎩B.128210x yx y⎧+=⎪⎨⎪+=⎩C.1028x yx y+=⎧⎨+=⎩D.8210x yx y+=⎧⎨+=⎩11.小萍要在一幅长90cm,宽40cm的风景画的四周外围,•镶上一条宽度相同的金色纸边,制成一幅挂图(图4-5),使风景画的面积是整个挂图面积的54%.•设金色纸边的宽为xcm,根据题意所列方程为()A.(90+x)(40+x)×54%=90×40B.(90+2x)(40+2x)×54%=90×40C.(90+x)(40+2x)×54%=90×40D.(90+2x)(40+x)×54%=90×4012.某商场第一季度的利润是82.75万元,其中一月份的利润是25万元,若利润平均月增长率为x,则依题意列方程为()A.25(1+x)2=82.75 B.25+50x=82.75C.25+75x=82.75 D.25[1+(1+x)+(1+x)]=82.7513.为了贫困家庭子女能完成初中作业,国家给他们免费提供教科书,•下表是某中学免费提供教科书补助的部分情况:若设获得免费提供教科书补助的七年级为x人,八年级为y人,根据题意列出方程组为()A.4012010994190010095x yx y++=⎧⎨++=⎩B.1201099410095x yx y+=⎧⎨+=⎩C.40109941900x yx y+=⎧⎨+=⎩D.1099440120190010095x yx y++=⎧⎨++=⎩14.古代有这样一个寓言故事:驴和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,•那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴原来所驮货物的袋数是()A.5 B.6 C.7 D.815.A,B两地相距450km,甲,乙两车分别从A,B两地同时出发,相向而行,已知甲车速度为120km/h,乙车速度为80km/h,经过th两车相距50km,则t的值是()A.2或2.5 B.2或0 C.10或12.5 D.2或12.516.某原料供应商对购买其原料的顾客实行如下优惠办法:(1)一次购买金额不超过1万元,不予优惠;(2)一次购买金额超过1万元,但不超过3万元,给九折优惠;(3)一次购买超过3万元的,其中3万元九折优惠,超过3万元的部分八折优惠.某厂因库容原因,第一次在该供应商处购买原料付示7800•元,•第二次购买付款26100元,如果他是一次购买同样数量的原料,可少付金额为()A.1460元B.1540元C.1560元D.2000元三、解答题17.(2005,湘潭市)2004年年底,东南亚地区发生海啸,给当地人民带来了极大的灾难,听到这个消息,某校初中毕业班中的30名同学踊跃捐款,支援灾区人民.其中女同学共捐款150元,男同学共捐款120元,男同学比女同学平均每人少捐款2元,男,•女同学平均每人各捐款多少元?18.(2008,温州)某皮鞋专卖店老板对第一季度男女皮鞋的销售收入进行统计,•并绘制了扇形统计图(图4-6),由于三月份开展促销活动,男,女皮鞋的销售收入分别比二月份增长了40%,64%,已知第一季度男女皮鞋的销售总收入为200万元.(1)一月份销售收入___万元,二月份销售收入____•万元,•三月份销售收入____万元;(2)二月份男,女皮鞋的销售收入各是多少万元?19.(2005,海南省)在当地农业技术部门指导下,小明家增加种植菠萝的投资,使今年的菠萝喜获丰收.图4-7所示是小明爸爸,妈妈的一段对话.请你用学过的知识帮助小明算出他们家今年菠萝的收入.(收入-投资=净赚)20.(2005,武汉市)武汉江汉一桥维修工程中,拟由甲,乙两个工程队共同完成某项目.从两个工程队的资料可以知道:若两个工程队合做24天恰好完成;•若两个工程队合做18天后,甲工程队再单独做10天,也恰好完成.请问:(1)甲,乙两个工程队单独完成该项目各需多少天?(2)又已知甲工程队每天的施工费为0.6万元,乙工程队每天的施工费为0.35•万元,要使该项目总的施工费不超过22万元,则乙工程队最少施工多少天?21.(2008,连云港)“爱心”帐篷集团的总厂和分厂分别位于甲,乙两市,两厂原来每周生产帐篷共9千顶,现某地震灾区急需帐篷14千顶,•该集团决定在一周内赶制出这批帐篷.为此,全体职工加班加点,•总厂和分厂一周内制作的帐篷数分别达到了原来的1.6倍,1.5倍,恰好按时完成了这项任务.(1)在赶制帐篷的一周内,总厂和分厂各生产帐篷多少千顶?(2)现要将这批帐篷用卡车一次性运送到该地震灾区的A,B两地,•由于两市通往A,B两地道路的路况不同,卡车的运载量也不同,已知运送帐篷每千顶所需的车辆数,两地所急需的帐篷数如表所示:请设计一种运送方案,使所需的车辆总数最少.说明理由,并求出最少车辆总数.22.(2008,广州市)2008年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30km远的郊区进行抢修.维修工骑摩托车先走,15min后,抢修车装载所需材料出发,结果两车同时到达抢修点.已知抢修车的速度是摩托车速度的1.5倍,求这两种车的速度.答案1.2x+35=131 2.10% 3.403x+=303x-4.0.21 5.400 6.1.2×1057.(1)200x(2)5x,200-5x (3)20055xx-+(4)200x-(20055xx-++5)=1(5)208.3101 9.B 10.D 11.B 12.D 13.A 14.A 15.A 16.A 17.设男同学平均每人捐款x元,则女同学平均每人捐款为(x+2)元依题得:1501202x x++=30化简得:x2-7x-8=0解之得x=-1或x=8经检验它们都是原方程的根,但x=-1<0(舍去)答:男同学平均每人捐款8元,女同学平均每人捐款10元.18.(1)50;60;90(2)解:设二月份男,女皮鞋的销售收入分别为x 万元,y 万元,根据题意,得 60(140%)(164%)90x y x y +=⎧⎨+++=⎩解得3525x y =⎧⎨=⎩ 答:二月份男,女皮鞋的销售收入分别为35万元,25万元.19.设小明家去年种植菠萝的收入为x 元,投资y 元,依题意,得8000(135%)(110%)11800x y x y -=⎧⎨+-+=⎩解方程组,得120004000x y =⎧⎨=⎩ ∴小明家今年菠萝的收入应为:(1+35%)x=1.35×12000=16200元20.(1)设甲工程队单独完成该项目需x 天,乙工程队单独完成该项目需y 天.依题意得242411818101x y xy x ⎧+=⎪⎪⎨⎪++=⎪⎩,解之得4060x y =⎧⎨=⎩ 经检验4060x y =⎧⎨=⎩是原方程的解,并且符合题意.答:甲,乙两工程队单独完成此项目各需40天,60天.(2)设甲工程队施工a 天,乙工程队施工b 天时总的施工费用不超过22万元,• 根据题意得140600.60.3522a b a b ⎧+=⎪⎨⎪+≤⎩解之得b ≥40答:要使该项目总的施工费用不超过22万元,乙工程队最少施工40天.21.(1)设总厂原来每周制作帐篷x 千顶,分厂原来每周制作帐篷y 千顶.由题意,得9,1.6 1.514,x y x y +=⎧⎨+=⎩ 解得5,4.x y =⎧⎨=⎩ 所以1.6x=8(千顶),1.5y=6(千顶).答:在赶制帐篷的一周内,总厂,分厂各生产帐篷8千顶,6千顶.(2)设从(甲市)总厂调配m 千顶帐篷到灾区的A 地,则总厂调配到灾区B •地的帐篷为(8-m )千顶,(乙市)分厂调配到灾区,A ,B 两地的帐篷分别为(9-m )千顶和(m -3)千顶.甲,乙两市所需运送帐篷的车辆总数为n 辆.由题意,得n=4m+7(8-m )+3(9-m )+5(m -3)(3≤m ≤8),即n=-m+68(3≤m≤8).因为-1<0,所以n随m的增大而减小.所以,当m=8时,n有最小值60.答:从总厂运送到灾区A地帐篷8千顶,从分厂运送到灾区A,B两地帐篷分别为1千顶,5千顶时所用车辆最少,最少的车辆为60辆.22.设抢修车的速度为xkm/h,则吉普车的速度为1.5xkm/h.由题意得1515151.560x x-=,解得x=20.经检验,x=20是原方程的解,且x=20,1.5x=30都符合题意.答:抢修车的速度为20km/h,吉普车的速度为30km/h.。

【VIP专享】最新2009年中考数学复习教材回归知识讲解+例题解析+强化训练(平面直角坐标系)文档

【VIP专享】最新2009年中考数学复习教材回归知识讲解+例题解析+强化训练(平面直角坐标系)文档
◆例题解析
xA yA
例 1 已知点 A(a,-5),B(8,b)根据下列要求,确定 a,b 的值.
(1)A,B 两点关于 y 轴对称;(2)A,B 两点关于原点对称;
(3)AB∥x 轴;(4)A,(1)两点关于 y 轴对称时,它们的横坐标互为相反数,而纵坐标相同;
(0,6),(-8,0),求 Rt△ABO 的内心的坐标.
a b
【分析】本题考查勾股定理,直角三角形内心的概念,运用内心到两坐标轴的距离,
2009 年中考数学复习教材回归知识讲解+例题解析+强化训练
平面直角坐标系
◆知识讲解 ①坐标平面内的点与有序实数对一一对应; ②点 P(a,b)到 x 轴的距离为│b│,到 y 轴距离为│a│,到原点距离为
a2 b2 ;
③各象限内点的坐标的符号特征:P(a,b),P在第一象限 a>0 且 b>0, P 在第二象限 a<0,b>0,P 在第三象限 a<0,b<0,P 在第四象限
(2)两点关于原点对称时,两点的横纵坐标都互为相反数;
(3)两点连线平行于 x 轴时,这两点纵坐标相同(但横坐标不同);
(4)当两点位于一,三象限两坐标轴夹角的平分线上时,每个点的横纵坐标相同.
【解答】(1)当点 A(a,-5),B(8,b)关于 y 轴对称时有:
xB yB
(2)当点
ba
8 5
a>0,b<0; ④点 P(a,b):若点 P 在 x 轴上 a 为任意实数,b=0; P 在 y 轴上 a=0,b 为任意实数;P 在一,三象限坐标轴夹角平分线上 a=0; P 在二,四象限坐标轴夹角平分线上 a=-b;
⑤A(x1,y1),B(x1,y2):A,B 关于 x 轴对称 x1=x2,y1=-y2; A、B 关于的 y 轴对称 x1=-x2,y1=y2; A,B 关于原点对称 x1=-x2,y1=-y2;AB∥x 轴 y1=y2 且 x1≠x2; AB∥y 轴 x1=x2 且 y1≠y2(A,B 表示两个不同的点).

2009年中考数学复习教材回归知识讲解+例题解析+强化训练(反比例函数在中考中的常见题型)[001]

2009年中考数学复习教材回归知识讲解+例题解析+强化训练(反比例函数在中考中的常见题型)[001]

2009年中考数学复习教材回归知识讲解+例题解析+强化训练反比例函数在中考中的常见题型◆知识讲解1.反比例函数的图像是双曲线,故也称双曲线y=kx(k≠0).2.反比例函数y=kx(k≠0)的性质(1)当k>0时⇔函数图像的两个分支分别在第一,三象限内⇔在每一象限内,y随x的增大而减小.(2)当k<0时⇔函数图像的两个分支分别在第二,四象限内⇔在每一象限内,y随x的增大而增大.(3)在反比例函数y=kx中,其解析式变形为xy=k,故要求k的值,•也就是求其图像上一点横坐标与纵坐标之积,•通常将反比例函数图像上一点的坐标当作某一元二次方程的两根,运用两根之积求k的值.(4)若双曲线y=kx图像上一点(a,b)满足a,b是方程Z2-4Z-2=0的两根,求双曲线的解析式.由根与系数关系得ab=-2,又ab=k,∴k=-2,故双曲线的解析式是y=2x-.(5)由于反比例函数中自变量x和函数y的值都不能为零,所以图像和x轴,y•轴都没有交点,但画图时要体现出图像和坐标轴无限贴近的趋势.◆例题解析例1(2006,某某市)如图,在直角坐标系中,O为原点,点A在第一象限,它的纵坐标是横坐标的3倍,反比例函数y=12x的图像经过点A,(1)求点A的坐标;(2)如果经过点A的一次函数图像与y轴的正半轴交于点B,且OB=AB,•求这个一次函数的解析式.【分析】(1)用含一个字母a的代数式表示点A的横坐标,纵坐标,把点A的坐标代入y=12x可求得a的值,从而得出点A的坐标.(2)设点B的坐标为(0,m),根据OB=AB,可列出关于m的一个不等式,•从而求出点B的坐标,进而求出经过点A,B的直线的解析式.【解答】(1)由题意,设点A的坐标为(a,3a),a>0.∵点A在反比例函数y=12x的图像上,得3a=12a,解得a1=2,a2=-2,经检验a1=2,a2=-2•是原方程的根,但a2=-2不符合题意,舍去.∴点A的坐标为(2,6).(2)由题意,设点B的坐标为(0,m).∵m>0,∴.解得m=103,经检验m=103是原方程的根,∴点B的坐标为(0,1013).设一次函数的解析式为y=kx+10 13.由于这个一次函数图像过点A(2,6),∴6=2k+103,得k=43.∴所求一次函数的解析式为y=43x+103.例2 如图,已知Rt△ABC的顶点A是一次函数y=x+m与反比例函数y=mx的图像在第一象限内的交点,且S△AOB=3.(1)该一次函数与反比例函数的解析式是否能完全确定?如能确定,•请写出它们的解析式;如不能确定,请说明理由.(2)如果线段AC的延长线与反比例函数的图像的另一支交于D点,过D作DE⊥x•轴于E,那么△ODE的面积与△AOB的面积的大小关系能否确定?(3)请判断△AOD为何特殊三角形,并证明你的结论.【分析】△AOB 是直角三角形,所以它的面积是两条直角边之积的12,•而反比例函数图像上任一点的横坐标,纵坐标之积就是反比例函数中的系数.由题意不难确定m ,则所求一次函数,反比例函数的解析式就确定了.由反比例函数的定义可知,过反比例函数图像上任一点作x 轴,y 轴的垂线,•该点与两垂足及原点构成的矩形的面积都是大小相等的. 【解答】(1)设B (x ,0),则A (x 0,mx ),其中0>0,m>0. 在Rt △ABO 中,AB=mx ,OB=x 0. 则S △ABO =12·x 0·0m x =3,即m=6.所以一次函数的解析式为y=x+6;反比例函数的解析式为y=6x. (2)由66y x y x =+⎧⎪⎨=⎪⎩得x 2+6x -6=0,解得x 1=-15x 2=-315∴A (-1515D (-315315由反比例函数的定义可知,对反比例函数图像上任意一点P (x ,y ),有y=6x.即xy=6. ∴S △DEO =12│x D y D │=3,即S △DEO =S △ABO .(3)由A (-1515和D (-315315可得3,3即AO=DO .由图可知∠AOD>90°,∴△AOD 为钝角等腰三角形.【点评】特殊三角形主要指边的关系和角的关系.通过对直观图形的观察,借助代数运算验证,便不难判断.◆强化训练 一、填空题1.(2006,某某)如图1,直线y=kx (k>0)与双曲线y=4x交于A (x 1,y 1),B (x 2,y 2)两点,•则2x 1y 2-7x 2y 1的值等于_______.图1 图2 图32.(2006,某某)如图2,矩形AOCB 的两边OC ,OA 分别位于x 轴,y 轴上,点B 的坐标为B (-203,5),D 是AB 边上的一点,将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图像上,那么该函数的解析式是______.3.近视眼镜的度数y (度)与镜片焦距x (m )成反比例,已知400•度近视眼镜镜片的焦距为,则y 与x 的函数关系式为_______. 4.若y=2131a a a x--+中,y 与x 为反比例函数,则a=______.若图像经过第二象限内的某点,则a=______. 5.反比例函数y=kx的图像上有一点P (a ,b ),且a ,b 是方程t 2-4t -2=0的两个根,则k=_______;点P 到原点的距离OP=_______.6.已知双曲线xy=1与直线y=-b 无交点,则b 的取值X 围是______. 7.反比例函数y=kx的图像经过点P (a ,b ),其中a ,b 是一元二次方程x 2+kx+4=0的两个根,那么点P 的坐标是_______.8.(2008,某某)两个反比例函数y=k x 和y=1x在第一象限内的图像如图3所示,•点P 在y=k x 的图像上,PC ⊥x 轴于点C ,交y=1x 的图像于点A ,PD ⊥y 轴于点D ,交y=1x的图像于点B ,•当点P 在y=kx的图像上运动时,以下结论:①△ODB 与△OCA 的面积相等; ②四边形PAOB 的面积不会发生变化; ③PA 与PB 始终相等④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是_______(把你认为正确结论的序号都填上,•少填或错填不给分). 二、选择题9.(2008,某某)如图4所示,等腰直角三角形ABC 位于第一象限,AB=AC=2,直角顶点A 在直线y=x 上,其中A 点的横坐标为1,且两条直角边AB ,AC 分别平行于x 轴,y 轴,•若双曲线y=kx(k≠0)与△ABC 有交点,则k 的取值X 围是( ) A .1<k<2 B .1≤k≤3C .1≤k≤4 D .1≤k<4图4 图5 图6 10.反比例函数y=kx(k>0)的第一象限内的图像如图5所示,P 为该图像上任意一点,PQ 垂直于x 轴,垂足为Q ,设△POQ 的面积为S ,则S 的值与k 之间的关系是( ) A .S=4k B .S=2kC .S=kD .S>k 11.如图6,已知点A 是一次函数y=x 的图像与反比例函数y=2x的图像在第一象限内的交点,点B 在x 轴的负半轴上,且OA=OB ,那么△AOB 的面积为( ) A .2 B .22C 2D .2 12.函数y=mx与y=mx -m (m≠0)在同一平面直角坐标系中的图像可能是( )13.如果不等式mx+n<0的解集是x>4,点(1,n)在双曲线y=2x上,那么函数y=(n-1)x+2m的图像不经过()A.第一象限B.第二象限C.第三象限D.第四象限14.(2006,某某)正比例函数y=2kx与反比例函数y=1kx在同一坐标系中的图像不可能是()15.已知P为函数y=2x的图像上一点,且P到原点的距离为3,则符合条件的P点数为(•)A.0个B.2个C.4个D.无数个16.如图,A,B是函数y=1x的图像上关于原点O对称的任意两点,AC平行于y轴,•交x轴于点C,BD平行于y轴,交x轴于点D,设四边形ADBC的面积为S,则()A.S=1 B.1<S<2 C.S=2 D.S>2三、解答题17.已知:如图,反比例函数y=-8x与一次函数y=-x+2的图像交于A,B两点,求:(1)A,B两点的坐标;(2)△AOB的面积.18.(2006,某某白云区)如图,已知一次函数y=kx+b的图像与反比例函数y=-8x的图像交于A,B两点,且点A的横坐标和点B的纵坐标都是-2,求:(1)一次函数的解析式;(2)△AOB的面积.19.已知函数y=kx的图像上有一点P(m,n),且m,n是关于x方程x2-4ax+4a2-6a-8=0•的两个实数根,其中a是使方程有实根的最小整数,求函数y=kx的解析式.20.(2006,市)在平面直角坐标系Oxy中,直线y=-x绕点O顺时针旋转90•°得到直线L.直线L与反比例函数y=kx的图像的一个交点为A(a,3),试确定反比例函数的解析式.21.(2008,某某)如图所示,已知双曲线y=kx与直线y=14x相交于A,B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线y=kx上的动点.过点B作BD∥y轴交x轴于点D.•过N(0,-n)作NC∥x轴交双曲线y=kx于点E,交BD于点C.(1)若点D的坐标是(-8,0),求A,B两点的坐标及k的值;(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式;(3)设直线AM,BM分别与y轴相交于P,Q两点,且MA=pMP,MB=qMQ,求p-q 的值.22.如图,在等腰梯形ABCD中,CD∥AB,CD=6,AD=10,∠A=60°,以CD•为弦的弓形弧与AD相切于D,P是AB上的一个动点,可以与B重合但不与A重合,DP•交弓形弧于Q.(1)求证:△CDQ∽△DPA;(2)设DP=x,CQ=y,试写出y关于x的函数关系式,并写出自变量x的取值X围;(3)当DP之长是方程x2-8x-20=0的一根时,求四边形PBCQ的面积.答案:1.20 2.y=-12x 3.y=100x4.2或-1;-1 5.-2;6.0≤b<4 7.(-2,-2)8.①②④ 9.C 10.B 11.C 12.C 13.B 14.D 15.A 16.C17.(1)由82y x y x ⎧=-⎪⎨⎪=-+⎩,解得1142x y =⎧⎨=-⎩,1124x y =-⎧⎨=⎩ ∴A (-2,4),B (4,-2).(2)当y=0时,x=2,故y=-x+2与x 轴交于M (2,0),∴OM=2.∴S △AOB =S △AOM +S △BOM =12OM·│y A │+12OM·│y B │=12·2·4+12·2·2=4+2=6. 18.(1)y=-x+2 (2)S △AOB =619.由△=(-4a )2-4(4a 2-6a -8)≥0得a≥-43, 又∵a 是最小整数, ∴a=-1.∴二次方程即为x 2+4x+2=0,又mn=2,而(m ,n )在y=k x 的图像上,∴n=k m,∴mn=k ,∴k=2,∴y=2x. 20.依题意得,直线L 的解析式为y=x . ∵A (a ,3)在直线y=x 上, 则a=3.即A (3,3). 又∵A (3,3)在y=kx的图像上, 可求得k=9.∴反比例函数的解析式为y=9x. 21.(1)∵D (-8,0),∴B 点的横坐标为-8,代入y=14x 中,得y=-2. ∴B 点坐标为(-8,-2),而A ,B 两点关于原点对称,∴A (8,2). 从而k=8×2=16.(2)∵N (0,-n ),B 是CD 的中点,A ,B ,M ,E 四点均在双曲线上,∴mn=k ,B (-2m ,-2n),C (-2m ,-n ),E (-m ,-n ). S 矩形DO =2mn=2k ,S △DBO =12mn=12k ,S △OEN =12mn=12k ,∴S 四边形OBCE =S 矩形DO -S △DBO -S △OEN =k . ∴k=4. 由直线y=14x 及双曲线y=4x,得A (4,1),B (-4,-1), ∴C (-4,-2),M (2,2).设直线CM 的解析式是y=ax+b ,由C ,M 两点在这条直线上,得42,2 2.a b a b -+=-⎧⎨+=⎩解得a=b=23. ∴直线CM 的解析式是y=23x+23. (3)如图所示,分别作AA 1⊥x 轴,MM 1⊥x 轴,垂足分别为A 1,M 1.设A 点的横坐标为a ,则B 点的横坐标为-a ,于是p=111A M MA a mMP M O m-==. 同理q=MB MQ =m am+, ∴p -q=a m m --m am+=-2. 22.(1)证∠CDQ=∠DPA ,∠DCQ=∠PDA . (2)y=60x(185 (3)S 四边形PBCQ =48-3word 11 / 11。

2009年中考数学复习教材回归知识讲解+例题解析+强化训练(变量与函数)[001]

2009年中考数学复习教材回归知识讲解+例题解析+强化训练(变量与函数)[001]

2009年中考数学复习教材回归知识讲解+例题解析+强化训练变量与函数◆知识讲解①在某一变化过程中,可以取不同数值的值叫做变量.数值保持不变的量叫常量.常量和变量是相对的,判断常量和变量的前提是“在某一变化的过程中”,同一量在不同的变化过程中可以为常量也可以为变量,这是根据问题的条件而定的.常量和变量并一定都是量,也可以是常数或变数.②在某一变化的过程中有两个变量x与y,如果对于x在取值X围内取的每一个确定的值,y都有唯一确定的值与它对应,那么说x是自变量,y是x的函数,函数不是数,•它是指某一变化过程中两个变量之间的关系.③自变量的取值必须使含自变量的代数式有意义.自变量的取值X围可以是无限的也可以是有限的.可以是几个数,也可以是单独的一个数,表示实际问题时,自变量的取值必须使实际问题有意义.④对于自变量在取值X围内取一个确定的值,函数都有唯一确定的值与之对应,这个对应值叫做函数的一个函数值.函数由一个解析式表示时,求函数的值,就是求代数式的值,函数的值是唯一确定的,但对应的自变量的值可以是多个.函数值的取值X围是随自变量的取值X围的变化而变化的.⑤函数的三种表示法:解析法、列表法、图像法.这三种表示法各具特色,在应用时,•通常将这三种方法结合在一起运用,其中画函数图像的一般步骤为:列表、描点、连线.◆例题解析例1 观察右图,回答下列问题:(1)自变量x的取值X围;(2)函数y的取值X围;(3)当x取何值时,y的值最小,并写出这个最小值;(4)当x取何值时,y的值最大,并写出这个最大值;(5)当x=0或-5时,y的值;(6)当y=0和2时,x的值;(7)当y随x的增大而增大时,x的取值X围;(8)当y随x的增大而减小时,x的取值X围.【分析】由于函数图像与自变量x、函数y的取值有关,因此图像能反映出x、•y的取值X围,从左到右,x的值逐渐增大,因此,观察图像应从左到右,这时若图像逐渐升高,则y的值逐渐增大,若图像逐渐下降,则y的值逐渐变小.【解答】(1)由图像可知:图像左端端点横坐标为-5,右端端点横坐标为5,且5用了空心点,所以自变量x的取值X围为-5≤x<5;(2)由于图像最低点的纵坐标为-3,最高点的纵坐标4,所以-3≤y<4;(3)由于图像最低点坐标为(-3,-3),所以当x=-3时,y有最小值为-3;(4)由于图像最高点坐标为(2,4),所以当x=2时,y有最大值为4;\(5)因为图像过点(0,2)与点(-5,0),所以当x=0时,y=2;当x=-5时,y=0;(6)由图像可知,图像与x轴有两个交点,它们的横坐标为-5和-1,故当y=0时,•x=-5或-1;同理当y=2时,x=0或4;(7)图像从点(-3,-3)到点(2,4)是逐渐升高的,因此当-3≤x≤2时,y随x•的增大而增大;(8)图像从点(-5,0)到点(-3,-3)及从点(2,4)到点(5,0)是逐渐降低的,因此当-5≤x≤-3或2≤x<5时,y随x的增大而减少.【点评】虽然图像法表示函数形象直观,但有时却不精细,所以利用图像观察得出的数值往往有时精确,有时近似,这因题而异.根据函数的图像求函数的某些值,探讨函数y 随自变量x变化的规律,是数形结合的具体表现.例2 如图所示表示玲玲骑自行车离家的距离与时间的关系,•她9•点离开家,15点回到家,请根据图像回答下列问题:(1)玲玲到达离家最远的地方是什么时间?离家多远?(2)她何时开始第一次休息?休息多长时间?(3)第一次休息时,离家多远?(4)11:00到12:00她骑了多少千米?(5)她在9:00~10:00和10:00~10:30的平均速度各是多少?(6)她在何时至何时停止前进并休息用午餐?(7)她在停止前进后返回,骑了多少千米?(8)返回时的平均速度是多少?【分析】小玲骑自行车离家的距离是时间的函数,从图像中线段CD和EF与横轴平行,表明这两段时间她在休息,通过读图可分别求解各问题.【解答】(1)由图像知,玲玲到达离家最远的地方是12点,离家30km;(2)由线段CD平行于横轴知,10:30开始休息,休息半个小时;(3)第一次休息时离家17km;(4)从纵坐标看出,11:00到12:00,她骑了13km(30-17=13);(5)由图像知,9:00~10:00共走了10km,速度为10km/h,10:00~10:30•共走了7km,速度为14km/h;(6)她在12:00~13:00时停止前进并休息用午餐;(7)她在停止前进后返回,骑了30km回到家(离家0km);(8)返回时的路程为30km,时间为2h,故返回时的平均速度为15km/h.【点评】如图a所示,表示速度v与时间t的函数图像中,①表示物体从0开始加速运动,②代表物体匀速运动,③代表物体减速运动到停止.如图b所示,•表示路程s与时间t的函数图像中,①代表物体匀速运动,②代表物体停止,③代表物体反向运动直至回到原地.(a) (b)◆强化训练一、填空题1.如果水的流速是am/min(一定量),那么每分钟的进水量Q(m3)与所选择的水管直径D(m)之间的函数关系式是________,其自变量是_______.中,自变量x的取值X围是________.2.(2006,某某)在函数5x3.三角形的面积是12,三角形底边长y是高x的函数,在平面直角坐标系中,•它的图像只能在第______象限.4.设点P(3,m),Q(n,2)在函数y=x+b的图像上,则m+n=______.5.若点(3,-3)在反比例函数y=k x(k ≠0)的图像上,则k=______. 6.某地铁自行车存车处在某星期日的车量为4000辆次,,,若普通车存车数为x 辆次,存车费总收入y (元)与x 的函数关系式是___________________.7.题目中的图是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察发现:第n 个“上”字的棋子数S 与n之间的关系式为_______________.8.(2006,某某)下列函数中,自变量x 的取值X 围是x>2的函数是()A .y=2x -B .y=21x -C .y=12x - D .y=121x - 二、选择题9.(2006,某某)在物理实验课上,小明用弹簧秤将铁块A 悬于盛有水的水槽中(右图),然后匀速向上提起,直至铁块完全露出水面一定高度,则能反映弹簧秤的读数y (N )与铁块被提起的高度x (cm )之间的函数关系的大致图像是()A B C D10.汽车由驶往相距120km 的某某,平均速度是30km/h ,则汽车距某某的路程s (km )与行驶时间t (h )的函数关系式及自变量t 的取值X 围是()A .s=120-30t (0≤t ≤4)B .s=30t (0≤t ≤4)C .s=120-30t (t>0)D .s=30t (t=4)11.下列关于变量x ,y 的关系式中:①5x -2y=1;②y=│3x │;③x -y=2,•其中表示y是x 的函数的是()A .②B .②③C .①②D .①②③12.(2008,某某)三军受命,我解放军各部奋力抗战在货物救灾一线,现有甲,•乙两支解放军小分队将救灾货物送往重灾小镇,甲队先出发,从部队基地到该小镇只有唯一通道,且路程为24km,下图是他们行走的路程关于时间的函数图像,•四位同学观察此函数图像得到有关信息,其中正确的个数是()A.1 B.2 C.3 D.413.某班同学在探究弹簧的长度跟外力的变化关系时,实验记录得到的数据如下表:砝码的质量x/g 0 50 100 150 200 250 300 400 500指针位置y/cm 2 3 4 5 6 7则y关于x的函数图像是()14.小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还.”如果用纵轴y•表示父亲与儿子行进中离家的距离,用横轴x表示父亲离家的时间,•那么下面的图像与上述诗的含义大致吻合的是()15.某人骑车外出所行的路程s(km)与时间t(h)的函数关系如图所示,•现有下列四种说法:①第3h中的速度比第1h中的速度快;②第3h中的速度比第1h中的速度慢;③第3h后已停止前进;④第3h后保持匀速前进.其中说法正确的是()A.②③B.①③C.①④D.②④16.(2008,某某)如图所示,A,B,C,D为⊙O的四等分点,动点P从圆心O出发,•沿O─C─D─O路线做匀速运动,设运动时间为t(s),∠APB=y(°),则下列图像中表示y与t之间函数关系最恰当的是()三、解答题17.如图所示,周长为24的凸五边形ABCDE被对角线BE分为等腰△ABE及矩形BCDE,且AE=DE,设AB的长为x,CD的长为y,求y与x之间的函数关系式,写出自变量的取值X围.18.(2008,某某)在平面直角坐标系中,一动点P(x,y)从M(1,0)出发,沿由A (-•1,1),B(-1,-1),C(1,-1),D(1,1)四点组成的正方形边线(图①)•按一定方向运动.图②是P点运动的路程s(个单位)与运动时间t(秒)之间的函数图像,图③是P点的纵坐标y与P点运动的路程s之间的函数图像的一部分.(1)s与t之间的函数关系式是________;(2)与图5-26③相对应的P点的运动路径是:______;P点出发____•秒首次到达点B;(3)写出当3≤s≤8时,y与s之间的函数关系式,并在图③中补全函数图像.19.(2006,枣庄)如图所示,在△ABC中,AB=AC=1,点D,E在直线BC上运动.•设BD=x,CE=y.(1)如果∠BAC=30°,∠DAE=105°,试确定y与x之间的函数关系式;(2)如果∠BAC=α,∠DAE=β,当α、β满足怎样的关系时,(1)中的y与x之间的函数关系式还成立?试说明理由.20.A市和B市有两条路可走,一辆最多可载19人的依维柯汽车在这条公路行驶时的有关数据如下表所示:路程/km 耗油量(L/100km)票价/(元/人)过路费/(元/辆)油价/(元/L)第一条路60 14 16 20第二条路64 10 12 5如果用y1(元),y2(元)表示从A市到B市分别走两条路时司机的收入,仅就其中数据求出y1,y2与载客人数x(人)之间的函数表示式.21.(2005,某某省)小明受《乌鸦喝水》故事的启发,•利用量筒和体积相同的小球进行了如下操作:请根据图中给出的信息,解答下列问题:(1)放入一个小球量筒中水面升高_______cm;(2)求放入小球后量筒中水面的高度y(cm)与小球个数x(个)•之间的一次函数关系式(不要求写出自变量的取值X围)(3)量筒中至少放入几个小球时有水溢出?22.观察图中小黑点的摆入规律,并按照这样的规律继续摆放,记第n个图中小黑点的个数为y.解答下列问题:(1)填表:n 1 2 3 4 5 6 7 …y 1 3 7 13 …(2)当n=8时,y=_______;(3)根据上表中的数据,把n作为横坐标,把y作为纵坐标,在图5-30的平面直角坐标系中描出相应的各点(n,y),其中1≤n≤5;(4)请你猜一猜上述各点会在某一函数的图象上吗?如果在某一函数的图像上,•请写出该函数的解析式.答案:1.Q=14a D2,D 2.x>5 3.一4.5 5.-36.y=-0.10x+1200(0≤x≤4000)7.S=4n+2(n>0且为整数)8.C 9.C 10.A 11.C 12.D 13.B 14.C 15.A 16.C 17.y=24-4x,4<x<618.(1)设s=kt,知(2,1)在图像上,把(2,1)代入解析式得k=12,∴s与t•的函数关系式为s=12t(t≥0).(2)M→D→A→N 10(3)当3≤s<5,即P从A到B时,y=4-s;当5≤s<7,即P从B到C时,y=-1;当7≤s≤8,即P从C到M时,y=s-8.补全图像如图所示.19.(1)在△ABC中,AB=AC=1,∠BAC=30°∵∠ABC=∠ACB=75°∴∠ABD=∠ACE=105°.∵∠DAE=105°,∴∠DAB+∠CAE=75°又∠DAB+∠ADB=∠ABC=75°∴∠CAE=∠ADB,∴△ADB∽△EAC∴AB BDEC AC=即11xy=,∴y=1x.(2)当α、β满足关系式β-2α=90°时,函数关系式y=1x成立.理由如下:要使y=1x即AB BDEC AC=成立,•则需且只需△ADB∽△EAC,由于∠ABD=∠ECA,故只需∠ADB=∠EAC,又∠ADB+∠BAD=•∠ABC=90°-2α,∠EAC+∠BAD=β-α,只需90°-2α=β-α,∴β-2α=90°.20.由题意可知:司机收入=客人付票款-耗油费-过路费.耗油费=•油价×耗油量,word11 / 11 则y 1=16x -20-×14100×60,即y=16x -,同理y 2=12x -(0<x ≤19). 21.(1)2.(2)设y=kx+b ,把(0,30),(3,36)代入得: 30,336.b k b =⎧⎨+=⎩解得2,30.k b =⎧⎨=⎩ 即y=2x+30.(3)由2x+30>49,.即至少放入10个小球时有水溢出.22.(1)n=5时y=21,n=6时y=31,n=7时y=43.(2)n=8时y=57.(3)根据题设要求可把点(1,1),(2,3),(3,7),(4,13),(5,21)五个点在图中直观地表示出来.(4)在y=n 2-n+1上.。

2009年中考数学复习教材回归知识讲解+例题解析+强化训练用统计图表描述数据

2009年中考数学复习教材回归知识讲解+例题解析+强化训练用统计图表描述数据

2009年中考数学复习教材回归知识讲解+例题解析+强化训练用统计图表描述数据◆知识讲解描述数据常用三种统计图表:条形统计图、折线统计图、扇形统计图.条形统$计图能清楚地表示出每个项目的具体数目;折线统计图能清楚地反映事物的变化情况;扇形统计图能清楚地表示出各部分在总体中所占的百分比.要熟悉三种统计图的制作方法及其特点,运用它描述数据要作合理的选择;作出合理预测与决断.◆例题解析例1根据北京市统计局公布的2000年,2005•年北京市常住人口相关数据,绘制统计图表如下:2000年,2005年北京市常住人口数统计图 2005年北京市常住人口各年龄段人数统计图图6-1 图6-22000年,2005年北京市常住人口中受教育程度情况统计表(人数单位:万人)请利用上述统计图表提供的信息回答下列问题:(1)从2000年到2005年北京市常住人口增加了多少万人?(2)2005年北京市常住人口中,少儿(0~14岁)人口约为多少万人?(3)请结合2000年和2005年北京市常住人口受教育程序的状况,谈谈你的看法.【分析】(1)由条形统计图6-1获知:从2000年到2005•年北京市常住人口增加了1536-1382=154(万人).(2)由扇形统计图6-2获知2005年北京市常住人口中,少儿(•0•~14•岁)•人口为1536×10.2%=156.672≈157(万人).(3)由统计表可以给出各个层面受教育程度的状况,例如:依数据可得,2000年受大学教育的人口比例为16.86%,2005年受大学教育的人口比例为23.57%,可知,•受大学教育的人口比例明显增加,教育水平有所提高.【点评】条形图能清楚地表示出每个项目的具体数目,扇形图能清楚地表示出各部分在总体中所占的百分比,折线图能清楚反映事物的变化情况.我们在选择统计图整理数据时,应注意“扬长避短”.例2(2005,贵阳市)“国际无烟日”来临之际,小彬就公众对在餐厅吸烟的态度进行了调查,并将调查结果制作成如图6-3所示的统计图,•请根据图中的信息回答下列问题:(1)被调查者中,不吸烟者赞成在餐厅彻底禁烟的人数是______;(2)被调查者中,希望在餐厅设立吸烟室的人数是_______;(3)求被调查者中赞成在餐厅彻底禁烟的频率;(4)贵阳市现有人口约为370万,•根据图中的信息估计贵阳市现有人口中赞成在餐厅彻底禁烟的人数.【分析】(1),(2),(3)分清题意,(4)应用百分比求人数.【解答】(1)97 (2)63 (3)0.6 (4)370×0.6=222(万)【点拨】在三种意向中,每一种都含有不吸烟的人和吸烟的人,在审题中要注意这些区别是关键.◆强化训练一、填空题1.(2005,安徽省)某校九年级(1)班有50名同学,•综合素质评价“运动与健康”方面的等级统计如图所示,则该班“运动与健康”评价等级为A的人数是______.2.(2005,吉林省)图a,b是县统计部门对某地农村,县城近四年彩电,冰箱,摩托车三种商品购买情况的抽样调查统计图.根据统计图提供的信息回答问题:(1)分别对农村,县城购买的趋势作出大致判断(填“上升”、•“下降”或“基本平稳”);农村购买趋势彩电______;冰箱_____;摩托车_______;•县城购买趋势彩电_______;冰箱_______;摩托车________.(2)若2003年农村购买的彩电平均价格每台1500元,冰箱每台2000元,•摩托车每台4000元;县城购买的彩电平均价格每台2500元,冰箱每台3000元,•摩托车每台6000元,农村,县城2003年三种商品消费总值的比_______.图a 图b3.“三年的初中学习生活结束了,•愿中考将我送达另一个理想的彼岸”.•这27个字中,每个字的笔画数依次是:3,6,8,7,4,8,3,5,9,9,7,2,14,4,6,9,7,9,6,•5,1,3,11,13,8,8,8.其中笔画数是8的字出现的频数是______,频率是______.4.如图是某学校的一学生到校方式的频数分布直方统计图,根据图形可得步行人数占总人数的_____%.(第4题) (第6题)5.对某班同学的身高进行统计(单位:cm),频数分布表中165.5~170.5这一组的学生人数是12.频率为0.2,则该班有_____名同学.6.(2006,旅顺市)某区从2300•名参加初中毕业升学统一考试数学试测的学生中随机抽取200名学生的试卷,成绩从低到高按59~89,90~119,120~134,135~150分成四组进行统计(最低成绩为59分,且分数均为整数),整理后绘出如图所示的各分数段频数分布直方图的一部分,已知前三个小组从左到右的频率依次为0.25,•0.30,0.35.(1)第四组的频数为______,并将频数分布直方图补充完整;(2)若90分及其以上成绩为及格,则此次测试中数学成绩及格以上为_____人.7.(2008,重庆)光明中学七年级甲,乙,丙三个班中,每班的学生人数都为40名,•某次数学考试的成绩统计如下:(每组分数含最小值,不含最大值)丙班数学成绩频数统计表根据以上图,表提供的信息,则80~90分这一组人数最多的班是_____.二、选择题8.某农场今年粮食,棉花,油料三种作物种植面积的比是5:2:1,在扇形统计图上表示粮食面积的扇形圆心角是()A.220° B.45° C.225° D.90°9.(2008,南通)图6-9是我国2003~2007年粮食产量及其增长速度的统计图,•下列说法不正确的是()A.这5年中,我国粮食产量先增后减 B.后4年中,我国粮食产量逐年增加C.这5年中,2004年我国粮食产量年增长率最大D.后4年中,2007年我国粮食产量年增长率最小10.(2005,安徽省)某市社会调查队对城区的一个社区居民的家庭经济状况进行调查,调查的结果是,该社区共有500户,设收入,中等收入和低收入家庭分别有125户,280户和95户,已知该市有100万户家庭,下列表述正确的是()A.该市高收入家庭约25万户B.该市中等收入家庭约56万户C.该市低收入家庭约19万户D.因城市社区家庭经济状况较好,•所以不能据此数据估计全市所有家庭经济状况11.(2005,南京市)图6-10是甲,乙两户居民家庭全年支出费用的扇形统计图.A.甲户比乙户多 B.甲,乙两户一样多C.乙户比甲户多 D.无法确定哪一户多12.下表是某一地区在一年中不同季节对同一商品的需求情况统计:若你是工商局的统计员,要为国家提供关于这商品的直观统计图,则应选择的统计图是()A.条形统计图 B.折线统计图 C.扇形统计图 D.前面三种都可以三、解答题13.(2008,河南)下图甲、乙反映的是某综合商场2008年1~5•月份的商品销售额统计情况,观察图甲和图乙,解答下面问题:(1)来自商场财务部的报告表明,商场1~5月份的销售总额一共是370万元,请你根据这一信息补全图甲,并写出两条由如上两图获得的信息;(2)商场服装部5月份的销售额是多少万元?(3)小华观察图乙后认为,5月份服装部的销售额比4月份减少了,•你同意他的看法吗?为什么?14.(2008,大连)典典同学学完统计知识后,•随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成扇形和条形统计图,如图所示.请根据以上不完整的统计图提供的信息,解答下列问题:(1)典典同学共调查了______名居民的年龄,扇形统计图中a=_____,b=_____;(2)补全条形统计图.(3)若该辖区年龄在0~14岁的居民约有3人,请估计年龄在15~59岁的居民的人数.15.(2006,浙江绍兴)下图是某校七年级360•位同学购买不同品牌计算器人数的扇形统计图,每位同学购买一只计算器.试回答下列问题:(1)分别求出购买各品牌计算器的人数;(2)试画出购买不同品牌计算器人数的频数分布直方图.16.(2006,浙江金华)某年级组织学生参加夏令营活动,本次夏令营分为甲,乙,•丙三组进行.下面统计图反映了学生参加夏令营的报名情况,请你根据图中的信息回答下列问题:(1)该年级报名参加丙组的人数为_______;(2)该年级报名参加本次活动的总人数为______,并补全频数分布直方图;(3)根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少学生到丙组?答案1.19(提示:50×38%=19.)2.(1)上升;基本平稳;上升;基本平稳;上升;下降;(2)73:1293.5;0.185 4.50 5.606.(1)20;图略(2)1725 7.甲班8.C (提示:58×360°=225°.)9.D 10.D 11.D 12.A13.(1)图略.(按照4月份商场销售总额为65万元,正确补出图形)(答案不唯一,根据图中的信息,回答合理即可)(2)70×15%=10.5(万元).(3)不同意.因为4月份服装销售额为:65×16%=10.4(万元)<10.5(万元),所以5•月份服装部的销售额比4月份增加了,而不是减少了.14.(1)500 20% 12%(2)条形统计图如图所示:(3)∵3500÷20%=17500,∴17500×(46%+22%)=11900.∴年龄在15~59岁的居民总数约11900人.15.(1)购买甲品牌计算器人数:360×20%=72(人).购买乙品牌计算器人数:360×30%=108(人).购买丙品牌计算器人数:360×50%=180(人).(2)如图所示.16.(1)25 (2)50,图略(3)应从甲组抽调5名学生到丙组.。

2009年中考数学试题分类汇编14 二次函数与一元二次方程(含答案)

14.二次函数与一元二次方程一、选择题1、(2009年台湾)下列哪一个函数,其图形与x 轴有两个交点? A .y =17(x +83)2+2274 B .y =17(x -83)2+2274 C .y = -17(x -83)2-2274 D . y =-17(x +83)2+2274。

【关键词】二次函数与一元二次方程的关系 【答案】D2、(2009年台州市)已知二次函数c bx ax y ++=2的y 与x 的部分对应值如下表:A .抛物线开口向上B .抛物线与y 轴交于负半轴C .当x =4时,y >0D .方程02=++c bx ax 的正根在3与4之间 【关键词】二次函数与一元二次方程根之间的内在联系 【答案】D 二、填空题1、(2009年包头)将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm 2. 【答案】252或12.5 【解析】本题考查的二次函数求最值或配方法求最值。

设其中一段铁丝的长为x cm ,则另一段为(20-x) cm;则这两个正方形的面积之和为()22221010020202004488x x x x x -+--+⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭, ∴当x =10时,222044x x -⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭有小值1002512.582==; 所以这两个正方形的面积之和最小值为252或12.5。

2、(2009年甘肃白银)抛物线2y x bx c =-++的部分图象如图8所示,请写出与其关系式、图象相关的2个正确结论: , .(对称轴方程,图象与x 正半轴、y 轴交点坐标例外)【关键词】二次函数和抛物线有关概念【答案】答案不唯一.如:①c =3;②b +c =1;③c -3b =9;④b =-2;⑤抛物线的顶点为(-1,4),或二次函数的最大值为4;⑥方程-x 2+bx +c =0的两个根为-3,1;⑦y >0时,-3<x <1;或y <0时,x <-3或x >1;⑧当x >-1时,y 随x 的增大而减小;或当x <-1时,y 随x 的增大而增大.等等3、(2009年甘肃庆阳)从地面垂直向上抛出一小球,小球的高度h (米)与小球运动时间t (秒)的函数关系式是29.8 4.9h t t =-,那么小球运动中的最大高度为 米. 【关键词】二次函数的应用 【答案】4.94、(2009年包头)将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值 是 cm 2. 【关键词】面积、最小值 答案:252或12.5 5、(2009年包头)已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;④210a b -+>.其中正确结论的个数是 个.【关键词】二次函数 答案:4三、解答题第 3 页 (共 24 页)1、(2009年北京市)已知关于x 的一元二次方程22410x x k ++-=有实数根,k 为正整数. (1)求k 的值;(2)当此方程有两个非零的整数根时,将关于x 的二次函数2241y x x k =++-的图象向下平移8个单位,求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线()12y x b b k =+<与此图象有两个公共点时,b 的取值范围. 【关键词】一元二次方程 二次函数【答案】2、(2009 安徽)已知某种水果的批发单价与批发量的函数关系如图(1)所示.(1)请说明图中①、②两段函数图象的实际意义.【解】(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.【关键词】二次函数的应用,二次函数的极值问题【答案】(1)解:图①表示批发量不少于20kg且不多于60kg的该种水果,可按5元/kg批发;……3分图②表示批发量高于60kg的该种水果,可按4元/kg批发.(2)解:由题意得:20606054m mwm m⎧=⎨⎩≤≤())>(,函数图象如图所示.第 5 页 (共 24 页)由图可知资金金额满足240<w ≤300时,以同样的资金可 批发到较多数量的该种水果. (3)解法一:设当日零售价为x 元,由图可得日最高销量32040w m =- 当m >60时,x <6.5 由题意,销售利润为2(4)(32040)40[(6)4]y x m x =--=--+当x =6时,160y =最大值,此时m =80即经销商应批发80kg 该种水果,日零售价定为6元/kg , 当日可获得最大利润160元. 解法二:设日最高销售量为x kg (x >60)则由图②日零售价p 满足:32040x p =-,于是32040xp -= 销售利润23201(4)(80)1604040x y x x -=-=--+ 当x =80时,160y =最大值,此时p =6即经销商应批发80kg 该种水果,日零售价定为6元/kg , 当日可获得最大利润160元.3、(2009年常德市)已知二次函数过点A (0,2-),B (1-,0),C (5948,). (1)求此二次函数的解析式;)图8(2)判断点M (1,12)是否在直线AC 上? (3)过点M (1,12)作一条直线l 与二次函数的图象交于E 、F 两点(不同于A ,B ,C 三点),请自已给出E 点的坐标,并证明△BEF 是直角三角形.【关键词】二次函数【答案】(1)设二次函数的解析式为c bx ax y ++=2(0a ≠), 把A (0,2-),B (1-,0),C (5948,)代入得2092558164c a b c a b c⎧⎪=-⎪=-+⎨⎪⎪=++⎩解得 a =2 , b =0 , c =-2, ∴222y x =-(2)设直线AC 的解析式为(0)y kx b k =+≠ ,把A (0,-2),C (5948,)代入得29584b k b =-⎧⎪⎨=+⎪⎩, 解得522k b ==-, ,∴522y x =- 图8第 7 页 (共 24 页)当x =1时,511222y =⨯-= ∴M (1,12)在直线AC 上 (3)设E 点坐标为(1322--,),则直线EM 的解析式为4536y x =- 由 2453622y x y x ⎧=-⎪⎨⎪=-⎩化简得2472036x x --=,即17()(2)023x x +-=, ∴F 点的坐标为(713618,).过E 点作EH ⊥x 轴于H ,则H 的坐标为(102-,). ∴3122EH BH ==, ∴2223110()()224BE =+=,类似地可得 22213131690845()()186324162BF =+==, 222401025001250()()186324162EF =+==, ∴2221084512504162162BE BF EF +=+==,∴△BEF 是直角三角形. 4、(2009年湖南长沙)为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y (万件)与销售单价x (元)之间的函数关系如图所示.(1)求月销售量y (万件)与销售单价x (元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额-生产成本-员工工资-其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?【答案】解:(1)当4060x <≤时,令y kx b =+,则404602k b k b +=⎧⎨+=⎩,解得1108.k b ⎧=-⎪⎨⎪=⎩, ∴1810y x =-+.同理,当60100x <<时,1520y x =-+. 18(4060)1015(60100)20x x y x x ⎧-+<⎪⎪∴=⎨⎪-+<<⎪⎩,≤ (直接写出这个函数式也记4分.)(2)设公司可安排员工a 人,定价50元时, 由a x x 25.015)40)(8101(5---+-=得 30-15-0.25a =5, ∴40a =(人).(3)当40<x ≤60时,利润a x x w 25.015)40)(8101(1---+-= .5)60(1012+--=x ∴60x =时,w max =5(万元); 当60<x <100时,利润a x x w 25.015)40)(5201(2---+-= .10)70(2012+--=x第 9 页 (共 24 页)∴70x =时,w max =10(万元).∴要尽早还清贷款,只有当单价x =70元时,获得最大月利润10万元. 设该公司n 个月后还清贷款,则1080n ≥. ∴8n ≥,即8n =为所求.5、(2009年内蒙古包头)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =. (1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元? (3)若该商场获得利润不低于500元,试确定销售单价x 的范围.【解析】本题考查用待定系数法求一次函数的关系式,列二次函数关系式求最值和借助函数图象由函数值的范围求自变量的范围解决实际问题;此类题注意要结合实际,注意自变量的取值范围, 【答案】(1)、根据题意得65557545k b k b +=⎧⎨+=⎩,解得1120k b =-⎧⎨=⎩,所求一次函数的表达式为120y x =-+。

2009年中考数学复习教材回归知识讲解+例题解析+强化训...

2009年中考数学复习教材回归知识讲解+例题解析+强化训练一次函数◆知识讲解1.正比例函数的定义一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数.2.正比例函数的图像正比例函数y=kx(k是常数且k≠0)的图像是一条经过原点(0,0)和点(1,k)•的直线,我们称它为直线y=kx;当k>0时,直线y=kx经过第一,三象限,y随着x的增大而增大,当k<0时,直线y=kx 经过第二,四象限,y随着x的增大而减少.3.一次函数的定义如果y=kx+b(k,b为常数,且k≠0),那么y叫做x的一次函数.一次函数的标准形式为y=kx+b,是关于x的一次二项式,其中一次项系数k必须是不为零的常数,b可以为任何常数.当b=0而k≠0时,它是正比例函数,由此可知正比例函数是一次函数的特殊情况.当k=0而b≠0时,它不是一次函数.4.一次函数的图像一次函数y=kx+b(k≠0)的图像是一条直线,通常也称直线y=kx+b,由于两点确定一条直线,故画一次函数的图像时,只要先描出两点,再连成直线就可以了,为了方便,通常取图像与坐标轴的两个交点(0,b),(-bk,0)就行了.5.一次函数的图像与性质直线y=kx+b(k≠0)中,k和b决定着直线的位置及增减性,当k>0时,y随x的增大而增大,此时若b>0,则直线y=kx+b经过第一,二,三象限;若b<0,则直线y=kx+b经过第一,三,四象限,当k<0时,y随x的增大而减小,此时当b>0时,直线y=kx+b经过第一,二,四象限;当b<0时,直线y=kx+b 经过第二,三,四象限.6.一次函数图像的平移与图像和坐标轴围成的三角形的面积一次函数y=kx+b沿着y轴向上(“+”)、下(“-”)平移m(m>0)•个单位得到一次函数y=kx+b ±m;一次函数y=kx+b沿着x轴向左(“+”)、•右(“-”)平移n(n>0)个单位得到一次函数y=k (x±n)+b;一次函数沿着y轴平移与沿着x轴平移往往是同步进行的.只不过是一种情况,两种表示罢了;直线y=kx+b与x轴交点为(-bk,0),与y轴交点为(0,b),且这两个交点与坐标原点构成的三角形面积为S△=12²│-bk│²│b│.◆例题解析例1 (2006,江西省)已知直线L 1经过点A (-1,0)与点B (2,3),另一条直线L 2经过点B ,且与x 轴相交于点P (m ,0). (1)求直线L 1的解析式;(2)若△APB 的面积为3,求m 的值.【分析】函数图像上的两点坐标也即是x ,y 的两组对应值,•可用待定系数法求解,求函数与坐标轴所围成的三角形面积关键是求出函数解析式的k ,b 的值. 【解答】(1)设直线L 的解析式为y=kx+b ,由题意得 0,2 3.k b k b -+=⎧⎨+=⎩解得1,1.k b =⎧⎨=⎩所以,直线L 1的解析式为y=x+1.(2)当点P 在点A 的右侧时,AP=m -(-1)=m+1,有S △APC =12³(m+1)³3=3. 解得m=1,此时点P 的坐标为(1,0);当点P 在点A 的左侧时,AP=-1-m ,有S=³(-m -1)³3=3,解得m=-3,此时,点P 的坐标为(-3,0).综上所述,m 的值为1或-3.【点评】先设一次函数的解析式,再代入点的坐标,利用方程组求解,其步骤是:设、代,求、答. 例2 (2004,黑龙江省)下图表示甲,乙两名选手在一次自行车越野赛中,路程y (km )随时间x (min )的变化的图像(全程),根据图像回答下列问题: (1)求比赛开始多少分钟时,两人第一次相遇? (2)求这次比赛全程是多少千米?(3)求比赛开始多少分钟时,两人第二次相遇.【分析】观察图像知,甲选手的路程y 随时间x 变化是一个分段函数,第一次相遇时是在AB 段,故求出15≤x ≤33时的函数关系式;欲求出比赛全程,则需知乙的速度,这可由第一次相遇时的路程与时间的关系求得,要求第二次相遇时间,•即先求甲在BC 段的函数关系式,再求出BC 和OD 的交点坐标即可.【解答】(1)当15≤x ≤33时,设y AB =k 1x+b 1,将(15,5)与(33,7)代入得:1111515733k b k b =+⎧⎨=+⎩解得1119103k b ⎧=⎪⎪⎨⎪=⎪⎩∴y AB =19x+103当y=6时,有:6=19x+103,解得x=24. ∴比赛进行到24min 时,两人第一次相遇. (2)设y OD =kx ,将(24,6)代入得:6=24k, ∴k=14∴y OD =14x 当x=48时,y OD =14³48=12 ∴比赛全程为12km .(3)当33≤x ≤43时,设y BC =k 2x+b 2,将(33,7)和(43,12)代入得:22227331243k b k b =+⎧⎨=+⎩解得2212192k b ⎧=⎪⎪⎨⎪=-⎪⎩∴y BC =12x -192∴1192214x y x y -=⎧=⎪⎪⎨⎪⎪⎩解得19238x y =⎧⎪⎨=⎪⎩∴比赛进行到38min 时,两人第二次相遇.【点评】解答图像应用题的要领是从图像的形状特点、变化趋势、相关位置、相关数据出发,充分发掘图像所蕴含的信息,利用函数、方程(组)、不等式等知识去分析图像以解决问题.例3 (2006,贵州铜仁)铜仁某水果销售公司准备从外地购买西瓜31t ,柚子12t ,现计划租甲,乙两种货车共10辆,将这批水果运到铜仁,已知甲种货车可装西瓜4t 和柚子1t ,乙种货车可装西瓜,柚子各2t .(1)该公司安排甲,乙两种货车时有几种方案?(2)若甲种货车每辆要付运输费1800元,乙种货车每辆要付运输费1200元,•则该公司选择哪种方案运费最少?最少运费是多少元?【解答】(1)设安排甲种货车x 辆,则安排乙种货车为(10-x )辆,依题意,得42(10)312(10)12x x x x +-≥⎧⎨+-≥⎩解这个不等式组,得5.5≤x ≤8. ∵x 是整数,∴x 可取6,7,8. 即安排甲,乙两种货车有三种方案:①甲种货车6辆,乙种货车4辆 ②甲种货车7辆,乙种货车3辆 ③甲种货车8辆,乙种货车2辆(2)设运费为y 元,则y=1800x+1200(10-x )=600x+12000. ∴当x 取6时,运费最少,最少运费是:15600元.【点评】本例需要考生构建一元一次不等式和一次函数来解决实际问题,以考查学生运用综合知识,分析、解决问题的能力.◆强化训练 一、填空题1.(2006,绍兴)如图所示,一次函数y=x+5的图像经过点P (a ,b ),Q (c ,d ),•则a (c -d )-b (c -d )的值为______. 2.(2005,重庆市)直线y=-43x+8与x 轴,y 轴分别交于点A 和点B ,M 是OB 上的一点,•若将△ABM 沿AM 折叠,点B 恰好落在x 轴上的点B ′处,则直线AM 的解析式为______.3.(2006,白云区)关于x 的一次函数y=(a -3)x+2a -5的图像与y 轴的交点不在x •轴的下方,且y 随x 的增大而减小,则a 的取值范围是______.4.已知一次函数y=kx+b (k ≠0)的图像经过点(0,1),且y 随x 的增大而增大,•请你写出一个符合上述条件的函数关系式_______.5.(2005,黑龙江省)一次函数y=kx+3•的图像与坐标轴的两个交点之间的距离为5,则k 的值为________. 6.(2005,包头市)若一次函数y=ax+1-a 中,y 随x 的增大而增大,且它的图像与y 轴交于正半轴,则│a -1│.7.(2005,四川省)如果记y=221x x+=f (x ),并且f (1)表示当x=1时y 的值,即f (1)=22111+=12;f (12)表示当x=12时y 的值,即f (12)=22()112(1)2+=15;如果f (1)+f (2)+f (12)+f (3)+f (13)+…+f (n )+f (1n)=______.(结果用含n 的代数式表示,n 为正整数).8.如图所示,点M 是直线y=2x+3上的动点,过点M 作MN垂直x轴于点N,y轴上是否存在点P,使以M,N,P为顶点的三角形为等腰直角三角形.小明发现:当动点M运动到(-1,1)时,y轴上存在点P(0,1),此时有MN=MP,能使△NMP为等腰直角三角形.在y 轴和直线上还存在符合条件的点P和点M.请你写出其他符合条件的点P的坐标_______.二、选择题9.(2006,南安)如图所示,一个蓄水桶,60min可匀速将一满桶水放干.其中,水位h(cm)随着放水时间t(min)的变化而变化.h与t的函数的大致图像为()10.(2005,杭州市)已知一次函数y=kx-k,若y随x的增大而减小,则该函数的图像经过()A.第一,二,三象限B.第一,二,四象限C.第二,三,四象限D.第一,三,四象限11.(2008,济南)济南市某储运部紧急调拨一批物资,调进物资共用4h,调进物资2h后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(t)•与时间t(h)之间的函数关系如图5-35所示,•这批物资从开始调进到全部调出所需要的时间是()A.4h B.4.4h C.4.8h D.5h12.(2006,泉州)小明所在学校离家距离为2km,某天他放学后骑自行车回家,行驶了5min后,因故停留10min,继续骑了5min到家,下面哪一个图像能大致描述他回家过程中离家的距离s(km)与所用时间t(min)之间的关系()13.(2006,黄冈)如图所示,在光明中学学生体力测试比赛中,甲,•乙两学生测试的路程s(m)与时间t(s)之间的函数关系图像分别为折线OABC和线段OD,•下列说法正确的()A.乙比甲先到达终点B.乙测试的速度随时间增加而增大C.比赛进行到29.7s时,两人出发后第一次相遇D.比赛全程甲的测试速度始终比乙的测试速度快14.(2005,黄冈市)有一个装有进,出水管的容器,单位时间内进,•出的水量都是一定的.已知容器的容积为600L,又知单开进水管10min可把空容器注满.若同时打开进,出水管,20min可把满容器的水放完.现已知水池内有水200L,先打开进水管5min,再打开出水管,两管同时开放,直至把容器中的水放完,则能正确反映这一过程中容器的水量Q(L)随时间t(min)变化的图像是下图中的()15.(2005,重庆市)为了增强抗旱能力,保证今年夏粮丰收,某村新修建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同),一个进水管和一个出水管的进出水速度如图a,b所示,某天0点到6点(•至少打开一个水管),该蓄水池的蓄水量如图c所示,并给出以下3个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水,则一定正确的论断是()(a) (b) (c)A.①③B.②③C.③D.①②③16.(2008,重庆)如图所示,在直角梯形ABCD中,DC∥AB,∠A=90°,AB=28cm,DC=24cm,AD=4cm,点M从点D出发,以1cm/s的速度向点C运动,点N从点B同时出发,•以2cm/s的速度向点A运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动,而四边形ADMN的面积y(cm2)与两动点的运动时间t(s)的函数图像大致是()三、解答题17.(2008,河北)如图所示,直线L1的解析表达式为y=-3x+3,且L1与x轴交于点D.直线L2经过点A,B,直线L1,L2交于点C.(1)求点D的坐标;(2)求直线L2的解析表达式;(3)求△ADC的面积;(4)在直线L2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.18.(2008,南京)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为x(h),两车之间的距离为y(km),下图中的折线表示y•与x之间的函数关系.根据图像进行以下探究:信息读取:(1)甲,乙两地之间的距离为_____km;(2)请解释图中点B的实际意义.图像理解:(3)求慢车和快车的速度;(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围.问题解决:(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.•在第一列快车与慢车相遇30min后,第二列快车与慢车相遇,•求第二列快车比第一列快车晚出发多少小时.19.(2005,•黑龙江省)•某企业有甲,•乙两个长方体的蓄水池,将甲池中的水以6m3/h的速度注入乙池,甲,乙两个蓄水池中水的深度y(m)与注水时间x(h)之间的函数图像如图所示,结合图像回答下列问题:(1)分别求出甲,乙两个蓄水池中水的深度y与注水时间x之间的函数关系式;(2)求注水多长时间甲,乙两个蓄水池水的深度相同;(3)求注水多长时间甲,乙两个蓄水池的蓄水池相同.20.(2005,哈尔滨市)甲,乙两名同学进行登山比赛,图5-42所示为甲同学和乙同学沿相同的路线同时从山脚出发到达山顶过程中,•各自行进的路程随时间变化的图象,根据图像中的有关数据回答下列问题:(1)分别求出表示甲,乙两同学登山过程中路程s(km)与时间t(h)的函数解析式;(不要求写出自变量t的取值范围)(2)当甲到达山顶时,乙行进到山路上的某点A处,求A点距山顶的距离;(3)在(2)的条件下,设乙同学从A处继续登山,甲同学到达山顶后休息1h,沿原路下山,在点B 处与乙相遇,此时点B与山顶距离为1.5km,相遇后甲,•乙各自按原来的线路下山和上山,求乙到达山顶时,甲离山脚的距离是多少千米?21.(2005,长春市)如图a所示,矩形ABCD的两条边在坐标轴上,点D与原点重合,对角线BD所在直线的函数关系式为y=34x,AD=8.矩形ABCD沿DB方向以每秒1•单位长度运动,同时点P从点A出发做匀速运动,沿矩形ABCD的边经过点B到达点C,用了14s.(1)求矩形ABCD的周长.(2)如图b所示,图形运动到第5s时,求点P的坐标;(3)设矩形运动的时间为t.当0≤t≤6时,点P所经过的路线是一条线段,•请求出线段所在直线的函数关系式;(4)当点P在线段AB或BC上运动时,过点P作x轴,y轴的垂线,垂足分别为E,F,则矩形PEOF 是否能与矩形ABCD相似(或位似)?若能,求出t的值;若不能,说明理由.22.(2006,绍兴)某校部分住校学生,放学后到学校锅炉房打水,每人接水2L,•他们先同时打开两个放水龙头,后来故故障关闭一个放水龙头,假设前后两个接水间隔时间忽略不计,且不发生泼洒,锅炉内的余水量y(L)与接水时间x(min)的函数图像如图所示.请结合图像,回答下列问题:(1)根据图中信息,请你写出一个结论;(2)问前15位同学接水结束共需要几分钟?(3)小敏说:“今天我们寝室的8位同学去锅炉房连续接完水恰好用了3min”.•你说可能吗?请说明理由.答案:1.25 2.y=-12x+3 3.52≤a<3 4.y=3x+1(答案不唯一)5.±346.1 7.n-128.(0,0)(0,34)(0,-3)9.C 10.B 11.B 12.D 13.C 14.A 15.D 16.D 17.(1)由y=-3x+3知,令y=0,得-3x+3=0,∴x=1.∴D(1,0).(2)设直线L2的解析式表达式为y=kx+b,由图像知:直线L2过点A(4,0)和点B(3,-32),∴40,332k bk b+=⎧⎪⎨+=-⎪⎩,∴3,26.kb⎧=⎪⎨⎪=-⎩∴直线L的解析表达式为y=32x-6.(3)由33,36.2y xy x=-+⎧⎪⎨=-⎪⎩解得2,3.xy=⎧⎨=-⎩∴C(2,-3).∵AD=3,∴S△=12³3³│-3│=92.(4)P(6,3).18.(1)900.(2)图中点B的实际意义是:当慢车行驶4h时,慢车和快车相遇.(3)由图像可知,慢车12h行驶的路程为900km,所以慢车的速度为90012km/h=75km/h ; 当慢车行驶4h 时,慢车和快车相遇, 两车行驶的路程之和为900km , 所以慢车和快车行驶的速度之和为9004km/h=225km/h . 所以快车的速度为150km/h .(4)根据题意,快车行驶900km 到达乙地, 所以快车行驶900150h=6h 到达乙地. 此时两车之间的距离为6³75km=450km , 所以点C 的坐标为(6,450).设线段BC 所表示的y 与x 之间的函数关系式为y=kx+b , 把(4,0),(6,450)代入得 04,4506,k b k b =+⎧⎨=+⎩解得225,900.k b =⎧⎨=-⎩所以,线段BC 所表示的y 与x 之间的函数关系式为y=225x -900,自变量x •的取值范围是4≤x ≤6. (5)慢车与第一列快车相遇30min 后与第二列快车相遇,此时,慢车的行驶时间是4.5h . 把x=4.5代入y=225x -900.得y=112.5.此时慢车与第一列快车之间的距离等于两列快车之间的距离,是112.5km . 所以两列快车出发的间隔时间是 112.5÷150h=0.75h .即第二列快车比第一列快车晚出发0.75h .19.(1)设y 甲=k 1x+b 1,把(0,2)和(3,0)代入,解得k 1=-23,b 1=2. ∴y 甲=-23x+2. 设y 乙=k 2x+b 2,把(0,1)和(3,4)代入. 解得k 2=1,b 2=1, ∴y 乙=x+1.(2)根据题意,得2231x y x y +=-+⎧=⎪⎨⎪⎩ 解得x=35.所以注水35h 甲,乙两个蓄水池中水的深度相同.(3)设甲蓄水池的底面积为S1,乙蓄水池的底面积为S2,th甲,乙两个蓄水池的蓄水量相同,根据题意,得2S1=3³6,S1=9(4-1)S2=3³6=,S2=6S1(-23t+2)=S2(t+1)解得t=1.∴注水1h甲,乙两个蓄水池的蓄水量相同.20.(1)设甲,乙两同学登山过程中,路程s(km)与时间t(h)•的函数解析式分别为s甲=k1t,s乙=k2t,由题意,得6=2k1,6=3k2.∴k1=3,k2=2∴解析式分别为s甲=3t,s乙=2t.(2)甲到在山顶时,由图像可知,当s甲=12(km),代入s甲=3t,得:t=4(h).∴s乙=2³4=8(km)∴12-8=4(km)答:当甲到达山顶时,乙距山顶的距离为4km.(3)由图像可知:甲到达山顶并休息1h后点D的坐标为(5,12)由题意,得:点B的纵坐标为12-32=212,代入s乙=2t,解得:t=214,∴点B(214,212)设过B,D两点直线解析式为s=kx+b.由题意,得212124125t bt b⎧=+⎪⎨⎪=+⎩解得642kb=-⎧⎨=⎩∴直线BD的解析式为s=-6t+42∴当乙达到山顶时,s乙=12,得t=6,把t代入s=-6t+42得s=6(km)答:当乙达到山顶时,甲距山脚6km.21.(1)AD=8,B点在y=34x上,则y=6,B点坐标为(8,6),AB=6,矩形的周长为28.(2)由(1)可知AB+BC=14,P点走过AB,BC的时间为14s,因此点P的速度为每秒1•个单位.∵矩形沿DB方向以每秒1个单位长运动,出发5s后,OD=5,此时D点坐标为(4,3)同时,点P沿AB方向运动了5个单位,则点P坐标为(12,8).(3)点P运动前的位置为(8,0),5s后运动到(12,8)已知它运动路线是一条线段,•设线段所在直线为y=kx+b.∴80,128.k bk b+=⎧⎨+=⎩解得216.kb=⎧⎨=-⎩直线解析式为y=2x-16.(4)方法一:①当点P在AB边运动时,即0≤t≤6.点D的坐标为(45t,35t).∴点P的坐标为(8+45t,85t).若PE BAOE DA=,则85485tt+=68,解得t=6.当t=6时,点P与点B重合,此时△PEO与△BAD相形.若PE DAOE BA=,则85485tt+=86,解得t=20.因为20>6,所以此时点P不在AB边上,舍去.②当点P在BC边运动时,即6≤t≤14.点D的坐标为(45t,35t).∴点P的坐标为(14-15t,35t+6).若PE BAOE DA=,则3651145tt+-=68,解得t=6.此情况①已讨论.若PE DAOE BA=,则3651145tt+-=86,解得t=19013.因为19013>14,此时点P 不在BC 边上,舍去. 综上,当t=6时,点P 到达点B 时,此时△PEO 与△BAD 相形. 方法二:当点P 在AB 上没有到达点B 时,P E B E O E O E <=34,PEOE更不能等于43.则点P 在AB 上没到达点B 时,两个三角形不能构成相似形. 当点P 到达点B 时,△PEO 与△BAD 相似,此时t=6. 当点P 越过点B 在BC 上时,PE OE >34. 若PE OE =43时,由点P 在BC 上时,坐标为(14-15t ,35t+6),(6≤t ≤14). 3651145t t+-=43,解得t=19013,但19013>14.因此当P 在BC 上(不包括点B )时,△PEO 与△BAD 不相似. 综上所述,当t=6时,点P 到达点B ,△PEO 与△BAD 是相似形. 22.(1)锅炉内原有水96L ,接水2min 后锅炉内的余水量为80L ,等. (2)当0≤x ≤2时,y=-8x+96 当x>2时,y=-4x+88∵前15位同学接完水时余水量为 (96-15³2L )=66L ∴66=-4x+88 x=5.5min(3)小敏说法是可能的,即从第1min 开始8位同学连接接完水恰好用了3min .一次函数◆知识讲解1.正比例函数的定义一般地,形如y=kx (k 是常数,k ≠0)的函数,叫做正比例函数,其中k 叫做比例系数. 2.正比例函数的图像正比例函数y=kx (k 是常数且k ≠0)的图像是一条经过原点(0,0)和点(1,k )•的直线,我们称它为直线y=kx;当k>0时,直线y=kx经过第一,三象限,y随着x的增大而增大,当k<0时,直线y=kx 经过第二,四象限,y随着x的增大而减少.3.一次函数的定义如果y=kx+b(k,b为常数,且k≠0),那么y叫做x的一次函数.一次函数的标准形式为y=kx+b,是关于x的一次二项式,其中一次项系数k必须是不为零的常数,b可以为任何常数.当b=0而k≠0时,它是正比例函数,由此可知正比例函数是一次函数的特殊情况.当k=0而b≠0时,它不是一次函数.4.一次函数的图像一次函数y=kx+b(k≠0)的图像是一条直线,通常也称直线y=kx+b,由于两点确定一条直线,故画一次函数的图像时,只要先描出两点,再连成直线就可以了,为了方便,通常取图像与坐标轴的两个交点(0,b),(-bk,0)就行了.5.一次函数的图像与性质直线y=kx+b(k≠0)中,k和b决定着直线的位置及增减性,当k>0时,y随x的增大而增大,此时若b>0,则直线y=kx+b经过第一,二,三象限;若b<0,则直线y=kx+b经过第一,三,四象限,当k<0时,y随x的增大而减小,此时当b>0时,直线y=kx+b经过第一,二,四象限;当b<0时,直线y=kx+b 经过第二,三,四象限.6.一次函数图像的平移与图像和坐标轴围成的三角形的面积一次函数y=kx+b沿着y轴向上(“+”)、下(“-”)平移m(m>0)•个单位得到一次函数y=kx+b ±m;一次函数y=kx+b沿着x轴向左(“+”)、•右(“-”)平移n(n>0)个单位得到一次函数y=k (x±n)+b;一次函数沿着y轴平移与沿着x轴平移往往是同步进行的.只不过是一种情况,两种表示罢了;直线y=kx+b与x轴交点为(-bk,0),与y轴交点为(0,b),且这两个交点与坐标原点构成的三角形面积为S△=12²│-bk│²│b│.◆例题解析例1 (2006,江西省)已知直线L1经过点A(-1,0)与点B(2,3),另一条直线L2经过点B,且与x轴相交于点P(m,0).(1)求直线L1的解析式;(2)若△APB的面积为3,求m的值.【分析】函数图像上的两点坐标也即是x,y的两组对应值,•可用待定系数法求解,求函数与坐标轴所围成的三角形面积关键是求出函数解析式的k,b的值.【解答】(1)设直线L的解析式为y=kx+b,由题意得0,2 3.k b k b -+=⎧⎨+=⎩解得1,1.k b =⎧⎨=⎩所以,直线L 1的解析式为y=x+1.(2)当点P 在点A 的右侧时,AP=m -(-1)=m+1,有S △APC =12³(m+1)³3=3. 解得m=1,此时点P 的坐标为(1,0);当点P 在点A 的左侧时,AP=-1-m ,有S=³(-m -1)³3=3,解得m=-3,此时,点P 的坐标为(-3,0).综上所述,m 的值为1或-3.【点评】先设一次函数的解析式,再代入点的坐标,利用方程组求解,其步骤是:设、代,求、答. 例2 (2004,黑龙江省)下图表示甲,乙两名选手在一次自行车越野赛中,路程y (km )随时间x (min )的变化的图像(全程),根据图像回答下列问题: (1)求比赛开始多少分钟时,两人第一次相遇? (2)求这次比赛全程是多少千米?(3)求比赛开始多少分钟时,两人第二次相遇.【分析】观察图像知,甲选手的路程y 随时间x 变化是一个分段函数,第一次相遇时是在AB 段,故求出15≤x ≤33时的函数关系式;欲求出比赛全程,则需知乙的速度,这可由第一次相遇时的路程与时间的关系求得,要求第二次相遇时间,•即先求甲在BC 段的函数关系式,再求出BC 和OD 的交点坐标即可.【解答】(1)当15≤x ≤33时,设y AB =k 1x+b 1,将(15,5)与(33,7)代入得:1111515733k b k b =+⎧⎨=+⎩解得1119103k b ⎧=⎪⎪⎨⎪=⎪⎩∴y AB =19x+103当y=6时,有:6=19x+103,解得x=24. ∴比赛进行到24min 时,两人第一次相遇. (2)设y OD =kx ,将(24,6)代入得:6=24k, ∴k=14∴y OD =14x 当x=48时,y OD =14³48=12 ∴比赛全程为12km .(3)当33≤x ≤43时,设y BC =k 2x+b 2,将(33,7)和(43,12)代入得:22227331243k b k b =+⎧⎨=+⎩解得2212192k b ⎧=⎪⎪⎨⎪=-⎪⎩∴y BC =12x -192∴1192214x y x y -=⎧=⎪⎪⎨⎪⎪⎩解得19238x y =⎧⎪⎨=⎪⎩∴比赛进行到38min 时,两人第二次相遇.【点评】解答图像应用题的要领是从图像的形状特点、变化趋势、相关位置、相关数据出发,充分发掘图像所蕴含的信息,利用函数、方程(组)、不等式等知识去分析图像以解决问题.例3 (2006,贵州铜仁)铜仁某水果销售公司准备从外地购买西瓜31t ,柚子12t ,现计划租甲,乙两种货车共10辆,将这批水果运到铜仁,已知甲种货车可装西瓜4t 和柚子1t ,乙种货车可装西瓜,柚子各2t .(1)该公司安排甲,乙两种货车时有几种方案?(2)若甲种货车每辆要付运输费1800元,乙种货车每辆要付运输费1200元,•则该公司选择哪种方案运费最少?最少运费是多少元?【解答】(1)设安排甲种货车x 辆,则安排乙种货车为(10-x )辆,依题意,得42(10)312(10)12x x x x +-≥⎧⎨+-≥⎩解这个不等式组,得5.5≤x ≤8.∵x是整数,∴x可取6,7,8.即安排甲,乙两种货车有三种方案:①甲种货车6辆,乙种货车4辆②甲种货车7辆,乙种货车3辆③甲种货车8辆,乙种货车2辆(2)设运费为y元,则y=1800x+1200(10-x)=600x+12000.∴当x取6时,运费最少,最少运费是:15600元.【点评】本例需要考生构建一元一次不等式和一次函数来解决实际问题,以考查学生运用综合知识,分析、解决问题的能力.◆强化训练一、填空题1.(2006,绍兴)如图所示,一次函数y=x+5的图像经过点P(a,b),Q(c,d),•则a(c-d)-b(c-d)的值为______.2.(2005,重庆市)直线y=-43x+8与x轴,y轴分别交于点A和点B,M是OB上的一点,•若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的解析式为______.3.(2006,白云区)关于x的一次函数y=(a-3)x+2a-5的图像与y轴的交点不在x•轴的下方,且y 随x的增大而减小,则a的取值范围是______.4.已知一次函数y=kx+b(k≠0)的图像经过点(0,1),且y随x的增大而增大,•请你写出一个符合上述条件的函数关系式_______.5.(2005,黑龙江省)一次函数y=kx+3•的图像与坐标轴的两个交点之间的距离为5,则k 的值为________.6.(2005,包头市)若一次函数y=ax+1-a中,y随x的增大而增大,且它的图像与y轴交于正半轴,则│a-1│.7.(2005,四川省)如果记y=221xx+=f(x),并且f(1)表示当x=1时y的值,即f(1)=22111+=12;f(12)表示当x=12时y的值,即f(12)=22()112(1)2+=15;如果f(1)+f(2)+f(12)+f(3)+f(13)+…+f(n)+f(1n)=______.(结果用含n的代数式表示,n为正整数).8.如图所示,点M是直线y=2x+3上的动点,过点M作MN垂直x轴于点N,y轴上是否存在点P,使以M,N,P为顶点的三角形为等腰直角三角形.小明发现:当动点M运动到(-1,1)时,y轴上存在点P(0,1),此时有MN=MP,能使△NMP为等腰直角三角形.在y轴和直线上还存在符合条件的点P和点M.请你写出其他符合条件的点P的坐标_______.二、选择题9.(2006,南安)如图所示,一个蓄水桶,60min可匀速将一满桶水放干.其中,水位h(cm)随着放水时间t(min)的变化而变化.h与t的函数的大致图像为()10.(2005,杭州市)已知一次函数y=kx-k,若y随x的增大而减小,则该函数的图像经过()A.第一,二,三象限B.第一,二,四象限C.第二,三,四象限D.第一,三,四象限11.(2008,济南)济南市某储运部紧急调拨一批物资,调进物资共用4h,调进物资2h后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(t)•与时间t(h)之间的函数关系如图5-35所示,•这批物资从开始调进到全部调出所需要的时间是()A.4h B.4.4h C.4.8h D.5h12.(2006,泉州)小明所在学校离家距离为2km,某天他放学后骑自行车回家,行驶了5min后,因故停留10min,继续骑了5min到家,下面哪一个图像能大致描述他回家过程中离家的距离s(km)与所用时间t(min)之间的关系()13.(2006,黄冈)如图所示,在光明中学学生体力测试比赛中,甲,•乙两学生测试的路程s(m)与时间t(s)之间的函数关系图像分别为折线OABC和线段OD,•下列说法正确的()A.乙比甲先到达终点B.乙测试的速度随时间增加而增大C.比赛进行到29.7s时,两人出发后第一次相遇D.比赛全程甲的测试速度始终比乙的测试速度快14.(2005,黄冈市)有一个装有进,出水管的容器,单位时间内进,•出的水量都是一定的.已知容器的容积为600L,又知单开进水管10min可把空容器注满.若同时打开进,出水管,20min可把满容器的水放完.现已知水池内有水200L,先打开进水管5min,再打开出水管,两管同时开放,直至把容器中的水放完,则能正确反映这一过程中容器的水量Q(L)随时间t(min)变化的图像是下图中的()15.(2005,重庆市)为了增强抗旱能力,保证今年夏粮丰收,某村新修建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同),一个进水管和一个出水管的进出水速度如图a,b所示,某天0点到6点(•至少打开一个水管),该蓄水池的蓄水量如图c所示,并给出以下3个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水,则一定正确的论断是()(a) (b) (c)A.①③B.②③C.③D.①②③16.(2008,重庆)如图所示,在直角梯形ABCD中,DC∥AB,∠A=90°,AB=28cm,DC=24cm,AD=4cm,点M从点D出发,以1cm/s的速度向点C运动,点N从点B同时出发,•以2cm/s的速度向点A运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动,而四边形ADMN的面积y(cm2)与两动点的运动时间t(s)的函数图像大致是()。

中考数学复习教材回归知识讲解 例题解析 强化训练(二次函数与方程(组)或不等式)

2009年中考数学复习教材回归知识讲解+例题解读+强化训练二次函数与方程(组)或不等式◆知识讲解(1)最大值或最小值的求法第一步确定a 的符号:a>0有最小值,a<0有最大值;第二步求顶点,•顶点的纵坐标即为对应的最大值或最小值.(2)y 轴与抛物线y=ax 2+bx+c 的交点为(0,c ).(3)与y 轴平行的直线x=h 与抛物线y=ax 2+bx+c 有且只有一个交点(h ,ah 2+bh+c ).(4)抛物线与x 轴的交点.二次函数y=ax 2+bx+c 的图像与x 轴的两个交点的横坐标x 1,x 2是对应的一元二次方程ax 2+bx+c=0的两个实数根.抛物线与x •轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔△>0⇔抛物线与x 轴相交.②有一个交点(顶点在x 轴上)⇔△=0⇔抛物线与x 轴相切;③没有交点⇔△<0⇔抛物线与x 轴相离.(5)平行于x 轴的直线与抛物线的交点.同(4)一样可能有0个交点,1个交点,2个交点.当有2个交点时,•两交点的纵坐标相等,设纵坐标为k ,则横坐标是ax 2+bx+c=k 的两个实数根.(6)一次函数y=kx+n (k≠0)的图像L 与二次函数y=ax 2+bx+c (a≠0)的图像G 的交点,由方程组2y kx n y ax bx c=+⎧⎨=++⎩的解的数目确定:①当方程组有两组不同的解时⇔L 与G 有两个交点;②方程组只有一组解时⇔L 与G 只有一个交点;③方程组无解时⇔L 与G 没有交点.(7)利用函数图像求不等式的解集,先观察图像,找出抛物线与x 轴的交点,•再根据交点坐标写出不等式的解集.注意:观察图像时不要看漏了其中的部分.◆例题解读例1 如图所示,已知抛物线y=-12x 2+(5x+m -3与x 轴有两个交点A ,B ,点A •在x 轴的正半轴上,点B 在x 轴的负半轴上,且OA=OB .(1)求m 的值;(2)求抛物线的解读式,并写出抛物线的对称轴和顶点C 的坐标;(3)问在抛物线上是否存在一点M ,△MAC ≌△OAC ,若存在,求出点M 的坐标;若不存在,请说明理由.【分析】抛物线与x 轴交于A ,B 两点,OA=OB ,故A ,B 两点关于y 轴对称,就可求得m 的值,由抛物线交y 轴的正半轴,得m 的确定值.【解答】(1)∵抛物线与y 轴交于正半轴,且OA=OB .∴3050m a ->⎧⎪⎨=⎪⎩ 由②得m=±5,由①m>3,故m=-5应舍去.∴m=5.(2)抛物线的解读式为y=-12x 2+2,对称轴是y 轴,顶点C 的坐标为C (0,2). (3)令y=0得 -12x 2+2=0,∴x=±2. ∴A (2,0),B (-2,0),C (0,2),△OAC 是等腰直角三角形.若存在一点M ,使△MAC ≌△OAC ,∵AC 为公共边,OA=OC ,∴点M 与O 关于直线AC 对称,∴M 点的坐标为(2,2).当x=2时,-12x 2+2=0≠2. ∴M (2,2)不在抛物线上,即不存在一点M ,使△MAC ≌△OAC .【点评】存在性问题,通常是先假定存在,若能找出具备某种条件或性质的对象,就说明存在,其叙述过程就是理由;若不存在,就需要进一步说明理由.例2 已知二次函数y=x 2-(2m+4)x+m 2-4(x 为自变量)的图像与y 轴的交点在原点下方,与x 轴交于A ,B 两点,点A 在点B 的左边,且A ,B 两点到原点的距离AO ,OB •满足3(•OB -AO )=2AO·OB ,直线y=kx+k 与这个二次函数图像的一个交点为P ,且锐角∠POB •的正切值4.(1)求m 的取值范围;(2)求这个二次函数的解读式;(3)确定直线y=kx+k 的解读式.【分析】利用抛物线与x 轴的交点A ,B 的位置及与y 轴交点的位置和A ,B 两点到原点的距离可以求出m 的值,再利用一元二次方程根与系数的关系可以求解.【解答】(1)设点A ,B 的坐标分别为A (x 1,0),B (x 2,0)(x 1<x 2),依题意,方程x 2-(2m+4)x+m 2-4=0有两个不相等的实数根.∴△=[-(2m+4)] 2-4(m 2-4)>0.解得m>-2.①又∵函数的图像与y轴的交点在原点下方,∴m2-4<0,∴-2<m<2.②(2)∵图像交y轴于负半轴,与x轴交于A,B两点,且x1<x2,∴x1<0,x2>0.由3(OB-AO)=2AO·OB可得3[x2-(-x1)]=2(-x1)·x2即3(x1+x2)=-2x1x2由于x1,x2是方程x2-(2m+4)x+m2-4=0的两个根,所以x1+x2=2m+4,x1·x2=m2-4.∴3(2m+4)=-2(m2-4)整理,得m2+3m+2=0.∴m=-1或m=-2(舍去).∴二次函数的解读式为y=x2-2x-3.(3)由y=x2-2x-3,得A(-1,0),B(3,0).∵直线y=kx+k与抛物线相交,∴由223,,y x xy kx k⎧=-+⎨=+⎩解得121, 0.x y =-⎧⎨=⎩或2223,4.x ky k k=+⎧⎨=+⎩∵∠POB为锐角.∴点P在y轴右侧,∴点P坐标为(k+3,k2+4k),且k+3>0.∵tan∠POB=4,∴2|4|3k kk++=4.如图所示,当点P在x轴上方时.243k k k ++=4.解得k 1k 2=-经检验,k 1k 2=-k 2+3<0.∴k 2=-∴直线的解读式为当点P 在x 轴下方时,243k k k ++=-4, 解得k 3=-2,k 4=-6.经检验,k 3=-2,k 4=-6是方程的解,但k 4+3<0.∴k 4=-6舍去.∴y=-2x -2.∴所求直线的解读式为y=-2x -2.【点评】本题以求解读式为目标,综合了函数,一元二次方程根与系数的关系,三角函数等知识,综合性强,灵活性大,解题关键是认真审题,认真分析纷繁复杂的条件,从中找到解题的突破口,易错点是在第(3)小题中忽视分类讨论而失解.◆强化训练一、填空题1.与抛物线y=2x 2-2x -4关于x 轴对称的图像表示的函数关系式是_______.2.已知二次函数y=(a -1)x 2+2ax+3a -2的图像最低点在x 轴上,那么a=______,此时函数的解读式为_______.3.(2006,湖北襄樊)某涵洞的截面是抛物线型,如图1所示,在图中建立的直角坐标系中,抛物线的解读式为y=-14x 2,当涵洞水面宽AB 为12m 时,水面到桥拱顶点O •的距离为_______m .图1 图24.(2006,山西)甲,乙两人进行羽毛球比赛,甲发出一颗十分关键的球,出手点为P ,羽毛球飞行的水平距离s (m )与其距地面高度h (m )之间的关系式为h=-112s 2+23s+32.如图2,已知球网AB 距原点5m ,乙(用线段CD 表示)扣球的最大高度为94m ,•设乙的起跳点C 的横坐标为m ,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接球失败,则m 的取值范围是_______.5.若抛物线y=12x 2与直线y=x+m 只有一个公共点,则m 的值为_____. 6.设抛物线y=x 2+(2a+1)x+2a+54的图像与x •轴只有一个交点,•则a 18+•323a -6•的值为_______.7.已知直线y=-2x+3与抛物线y=x 2相交于A ,B 两点,O 为坐标原点,那么△OAB •的面积等于______.8.(2008,安徽)图3为二次函数y=ax 2+bx+c 的图像,在下列说法中:①ab<0;②方程ax 2+bx+c=0的根是x 1=-1,x 2=3;③a+b+c>0;④当x>1时,y 随着x •的增大而增大.正确的说法有_______.(请写出所有正确说法的序号)图3 图4 图5二、选择题9.(2006,绍兴)小敏在某次投篮球中,球的运动路线是抛物线y=-15x2+3.5的一部分(图4),若命中篮圈中心,则他与篮底的距离是()A.3.5m B.4m C.4.5m D.4.6m10.当m的最小值是()A.0 B.5 C..911.二次函数y=ax2+bx+c的图像如图5所示,则下列结论:①a>0,②c>0, ③b2-4ac>0,其中正确的个数是()A.0个 B.1个 C.2个 D.3个12.抛物线y=x2+(2m-1)x+m2与x轴有两个交点,则m的取值范围是()A.m>14B.m>-14C.m<14D.m<-1413.根据下列表格中二次函数y=ax2+bx+c的自变量x与函数y的对应值,•判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是()A.6<x<6.17 B.6.17<x<6.18 C.6.18<x<6.19 D.6.19<x<6.2014.若二次函数y=ax2+bx+c(a≠0)的图像的顶点在第一象限且经过点(0,1)和(•-1,0),则S=a+b+c的值的变化范围是()A.0<S<2 B.0<S<1 C.1<S<2 D.-1<S<115.二次函数y=ax2+bx+c(a≠0)的最大值是零,那么代数式│a│+244ac ba-的化简结果是()A.aB.-a C. D.016.(2006,甘肃兰州)已知y=2x2的图像是抛物线,若抛物线不动,把x轴,y•轴分别向上,向右平移2个单位,那么在新坐标系下抛物线的解读式是()A.y=2(x-2)2+2 B.y=2(x+2)2-2C.y=2(x-2)2-2 D.y=2(x+2)2+2三、解答题17.(2006,吉林省)如图,三孔桥横截面的三个孔都呈抛物线形,•两小孔形状,大小都相同.正常水位时,大孔水面宽度AB=20m ,顶点M 距水面6m (即MO=6m ),•小孔顶点N 距水面4.5m (即NC=4.5m ).当水位上涨刚好淹没小孔时,借助图中的直角坐标系,求此时大孔的水面宽度EF .18.(2008,安徽)杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线y=-35x 2+3x+1的一部分,如图所示. (1)求演员弹跳离地面的最大高度;(2)已知人梯高BC=3.4m ,在一次表演中,人梯到起跳点A 的水平距离是4m ,问这次表演是否成功?请说明理由.19.(2006,沈阳市)某企业信息部进行市场调研发现:信息一:如果单独投资A 种产品,则所获利润y A (万元)与投资金额x (万元)•之间存在正比例函数关系:y A =kx ,并且当投资5万元时,可获利润2万元;信息二:如果单独投资B 种产品,则所获利润y B (万元)与投资金额x (万元)•之间存在二次函数关系:y B =ax 2+bx ,并且当投资2万元时,可获利润2.4万元;当投资4万元时,•可获得3.2万元.(1)请分别求出上述的正比例函数表达式与二次函数表达式;(2)如果企业同时对A ,B 两种产品共投资10万元.•请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少.20.(2008,烟台)如图所示,抛物线L1:y=-x2-2x+3交x轴于A,B两点,交y•轴于M点.抛物线L1向右平移2个单位后得到抛物线L2,L2交x轴于C,D两点.(1)求抛物线L2对应的函数表达式;(2)抛物线L1或L2在x轴下方的部分是否存在点N,使以A,C,M,N•为顶点的四边形是平行四边形.若存在,求出点N的坐标;若不存在,请说明理由;(3)若点P是抛物线L1上的一个动点(P不与点A,B重合),那么点P•关于原点的对称点Q是否在抛物线L2上,请说明理由.21.已知:二次函数y=ax2+bx+c的图像经过点A(0,4),顶点在x轴上,•且对称轴在y 轴的右侧.设直线y=x与二次函数图像自左向右分别交于P(x1,y1),Q(x2,y2)两点,•且OP:PQ=1:3.(1)求二次函数的解读式;(2)求△PAQ的面积;(3)在线段PQ上是否存在一点D,使△APD≌△QPA,若存在,求出点D坐标,•若不存在,说明理由.22.(2005,武汉市)已知二次函数y=ax2-ax+m的图像交x轴于A(x1,0),B(x2,0)两点,x1<x2,交y轴的负半轴于C点,且AB=3,tan∠BAC-tan∠ABC=1.(1)求此二次函数的解读式;(2)在第一象限,抛物线上是否存在点P,使S△PAC=6?若存在,请你求出点P的坐标;•若不存在,请你说明理由.答案:1.y=-2x2+2x+4 2.2;y=x2+4x+4 3.9 4.5.-126.5796 7.6 8.①②④ 9.B 10.B 11.C12.C 13.C 14.A 15.B 16.B 17.设抛物线解读式为y=ax2+6,依题意得,B(10,0).∴a×102+6=0,解得a=-0.06.即y=-0.06x2+6,当y=4.5时,-0.06x2+6=4.5,解得x=±5,∴DF=5,EF=10,即水面宽度为10m.18.(1)y=-35x2+3x+1=-35(x-52)2+194.∵-35<0,∴函数的最大值是194.答:演员弹跳离地面的最大高度是194m.(2)当x=4时,y=-35×42+3×4+1=3.4=BC,所以这次表演成功.19.(1)当x=5时,y A=2,2=5k,k=0.4.∴y A=0.4x,当x=2时,y B=2.4;当x=4时,y B=3.2.∴2.442,3.2164.a ba b=+⎧⎨=+⎩解得0.2,1.6.ab=-⎧⎨=⎩∴y B=-0.2x2+1.6x.(2)设投资B种商品x万元,则投资A种商品(10-x)万元,获得利润W万元,根据题意可得W=-0.2x2+1.6x+0.4(10-x)=-0.2x2+1.2x+4.∴W=-0.2(x-3)2+5.8.当投资B种商品3万元时,可以获得最大利润5.8万元.所以投资A种商品7万元,B种商品3万元,这样投资可以获得最大利润5.8万元.20.(1)令y=0时,得-x2-2x+3=0,∴x1=-3,x2=1,∴A(-3,0),B(1,0).∵抛物线L1向右平移2个单位长度得抛物线L2,∴C(-1,0),D(3,0).∴抛物线L2为y=-(x+1)(x-3).即y=-x2+2x+3.(2)存在.如图所示.令x=0,得y=3,∴M (0,3).∵抛物线L 2是L 1向右平移2个单位长度得到的,∴点N (2,3)在L 2上,且MN=2,MN ∥AC .又∵AC=2,∴MN=AC .∴四边形ACNM 为平行四边形.同理,L 1上的点N′(-2,3)满足N′M ∥AC ,N′M=AC ,∴四边形ACMN′是平行四边形.∴N (2,3),N′(-2,3)即为所求.(3)设P (x 1,y 1)是L 1上任意一点(y 1≠0),则点P 关于原点的对称点Q (-x 1,-y 1),且y 1=-x 12-2x 1+3,将点Q 的横坐标代入L 2,得y Q =-x 12-2x 1+3=y 1≠-y 1.∴点Q 不在抛物线L 2上.21.(1)抛物线过(0,4)点.∴c=4,∴y=ax 2+bx+4又OP :PQ=1:3,∴x 1:x 2=1:4由24y xy ax bx =⎧⎨=++⎩得ax 2+(b -1)x+4=0,∵x 1,x 2是该方程的两个根,∴x 1+x 2=-1b a -,x 1·x 2=4a. 消去x 1得25a=(b -1)2.∵抛物线的对称轴在y 轴右侧∴-2b a >0, ∴b a<0,又抛物线的顶点在x 轴上,∴b 2=16a 得a=1,b=-4(b=49舍去). ∴y=x 2-4x+4.(2)如图所示,S △PAQ =S △AQO -S △APO=12×4×x 2-12×4×x 1=2(x 2-x 1). (3)存在点D ,设D (m ,n )易得P (1,1),Q (4,4),由△APD ∽△QPA 得PA 2=PQ·PD ,运用勾股定理得│m -1│=53,得m=83或23. ∵1<m<4,∴D (83,83). 22.(1)∵AB=3,x 1<x 2,∵x 2-x 1=3.由根与系数的关系有x 1+x 2=1,∴x 1=-1,x 2=2.∴OA=1,OB=2,x 1·x 2=m a=-2. ∵tan ∠BAC -tan ∠ABC=1,∴=1,∴OC=2∴m=-2,a=1.∴此二次函数的解读式为y=x 2-x -2.(2)在第一象限,抛物线上存在一点P 使S △APC =6.解法一:过点P 作直线MN ∥AC 交x 轴于点M ,交y 轴于点N ,连接PA ,PC ,MC ,NA ,如图所示.∵MN ∥AC ,∴S △MAC =S △NAC =S △PAC =6.由(1)有OA=1,OC=2∴12×AM×2=12×CN×1=6, ∴AM=6,CN=12.∴M (5,0),N (0,10).∴直线MN 的解读式为y=-2x+10.由2210,2.y x y x x =-+⎧⎨=--⎩ 得12123,4,4.18.x x y y ==-⎧⎧⎨⎨==⎩⎩(舍去). ∴在第一象限,抛物线上存在点P (3,4),使S △PAC =6. 解法二:设AP 与y (0,n )(n>0).∴直线AP 的解读式为y=nx+n .22,.y x x y nx n ⎧=--⎨=+⎩ ∴x 2-(n+1)x -n -2=0,∴x A +x P =n+1,∴x P =n+2.又S △PAC =S △ADC +S △PDC =12CD·AO+12CD·x p =12CD (AO+x p ). ∴12(n+2)(1+n+2)=6,n 2+5n -6=0. ∴n=-6(舍去)或n=1.∴在第一象限,抛物线上存在点P (3,4),使S △PAC =6.。

2009年中考数学复习教材回归知识讲解例题解析强化训.

2009年中考数学复习教材回归知识讲解+例题解析+强化训练方差与频率分布♦知识讲解1方差的定义在一组数据xl, x2,…,xn中,各数据与它们的平均数x的差的平方的平均数,?叫做这组数据的方差•通常用“S2”示,即S2=2. 方差的计算(1)基本公式S2=1 [ (x1-x) 2+ (x2-x) 2+-+ (xn-x) 2]. n1 [ (x1 -x) 2+ (x2 —x) 2+・・・+ (xn —x) 2] n11 [ (x12+x22+ …+xn2)- nx2],也可写成S2= (x12+x22+ …+xn2)- x2,此公式nn (2)简化计算公式(I) S2=的记忆方法是:方差等于原数据平方的平均数减去平均数的平方.(3)简化计算公式(US2=1 [ (x'12+x'22+ …+x'n2 —nxx'2]. n当一组数据中的数据较大时,可以依照简化平均数的计算方法,将每个数据同时减去一个与它们的平均数接近的常数a,得到一组数据x'仁x1 —a,x'2=x2 —a,…x'n=xn-a,?那么S2=11 [ (x'12+x'22+ …+x'n2 —nx'2],也可写成S2=(x'12+x'22+…+x'n2) —x'2 .记忆方nn法是:?方差等于新数据平方的平均数减去新数据平均数的平方.3. 标准差的定义和计算方差的算术平方根叫做这组数据的标准差,用“ S”示,即+ (壬-X)24■[匸-xy4. 方差和标准差的意义方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小,我们所研究的权是这两组数据的个数相等、平均数相等或比较接近时的情况.方差较大的数据波动较大,方差较小的数据波动较小.5. 频率分布的意义作为样本进行分析,绘制了如图所示的频率分布直方图( ?每组含最低值,不含最高值).已知图中从左到右每个小长方形的高比依次为2:4:6:?5: 3,其中1.80〜2.00这一小组的频数为8,请根据有关信息解答下列问题:(1)_________________________ 这次调查的样本容量为 _____________ ,2.40〜2.60这一小组的频率为______.(2)请指出样本成绩的中位数落在哪一小组内,并说明理由;(3)样本中男生立定跳远的人均成绩不低于多少米?(4)请估计该校初三男生立定跳远成绩在2.00m以上(包括2.00m)?的约有多少人?【分析】样本容量是样本数据,不带单位,确定中位数时,首先将样本数据按大小排序后再求出,然后分析落在哪个小组.【解答】(1)由于1.80〜2.00小组的频数为8,占总份数中的4份,总份数是20?分,故样本容量为:4=40. 2.40〜2.60这个小组的频率为3吃0=0.15. 20(2)由于样本容量是40,则中位数是第20人和第21人成绩的平均数,而第20? 人和第21人的成绩均在2.00〜2.20这个小组,则中位数落在 2.00〜2.20这个小组. (3)因为第一组到第五组人数依次为4人,8人,12人,10人,6人,?则可求得样本中男生立定跳远的人均成绩不低于 2.03m.(4)初中男生立定跳远成绩在 2.00m以上的约有25>500=350 (人).40【点评】频率分布直方图中各小组频率之和为1,掌握它是解题的关键.♦强化训练(1)____________________________________________ 根据表1可得,被调查的消费者平均年收入为_________________________________ 元;被调查的消费者年收入的中位数是_______ 元;在平均数,中位数这两个数中,更能反映出被调查的消费者年收入的一般水平;(2)___________________________________________________ 根据表2可得,打算购买100.5〜120.5m2房子的人数是 __________________________ ;打算购买住房面积不超过100m2的消费者的人数占被调查人数的百分数是______ ;(3)在下图中补全这个频率分布直方图.4•青少年视力水平的下降已经引起全社会的关注,某校为了了解初中毕业年级500名学生的视力情况,从中抽查了一部分学生视力,通过数据处理,得到如下频率分布表和频率分布直方图.分组频数频率3.95-4.25AO44.25^4.5560.124,55-4.85254.85-5.150.045J5-5.452LOO(2)____________________________ 在这个问题中,总体是样本容量是•(3)在频率分布直方图中,梯形ABCD的面积是_______ .(4)请你用样本估计总体,可以得到哪些信息(写一条即可):________ .系是_______ .6•已知:一组数据—1, x, 1, 2, 0?的平均数是0, ?这组数据的方差是____ • 7•若样本数据1, 2, 3, 2的平均数是a,中位数是b,众数是c,则数据a, b, c 的标准差是__________________ .8•若已知一组数据:x1, x2,…,xn的平均数为x,方差为S2,那么另一组数据:3x1 —2, ?3x2- 2,…,3xn —2的平均数为_________________ ,方差为 ______ .二、选择题9. 在一次射击练习中,甲,乙两人前5次射击的成绩分别为(单位:环)甲:10 8 10 10 7 乙:7 10 9 9 10则这次练习中,甲,乙两人方差的大小是()A . S甲2>S乙2 B. S甲2<S乙2 C. S甲2=S乙2 D .无法确定10. 已知甲,乙两组数据的平均数相等,?若甲组数据的方差S甲2=0.055,乙组数据的方差S乙2=0.105,贝9()A •甲组数据比乙组数据波动大B.乙组数据比甲组数据波动大C.甲组数据与乙组数据的波动一样大D•甲,乙两组数据的波动大小不能比较11. (2005,宜昌市)衡量样本和总体的波动大小的特征数是()A •平均数B .众数C .标准差D.中位数12•某少年军校准备从甲,乙,丙三位同学中选拔一人参加全市射击比赛,他们在选拔比赛中,射靶十次的平均环数是x甲=x乙=x丙=8.3,方差分别是S甲2=1.5,S乙2=2.8,S丙2=3.2.那么,根据以上提供的信息,?你认为应该推荐参加全市射击比赛的同学是()A .甲B .乙C.丙D .不能确定13. (2005,广州市)甲,乙两人在相同情况下,各射靶10次,?两人命中环数的平均数是x甲=x乙=7,方差S甲2=1.0, S乙2=1.2,则射击成绩较稳定的是()A.甲B.乙C .一样D .不能确定14. 为参加电脑汉字输入比赛,甲和乙两位同学进行了6次测试,成绩如表所是()A .甲的方差大于乙的方差,所以甲的成绩比较稳定B .甲的方差小于乙的方差,所以甲的成绩比较稳定C.乙的方差小于甲的方差,所以乙的成绩比较稳定D .乙的方差大于甲的方差,所以乙的成绩比较稳定15. 在一次科技知识竞赛中,两组学生成绩统计如下表,通过计算可知两组的方差为S 甲2=172, S乙2=256.下列说法:①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数>乙组成绩的众数;虐两组成绩的中位数均为80,但成绩》80勺人数甲组比乙组多,从中位数来看,甲组成绩总体比乙组好;⑤成绩高于或19. (2008,金华)九(3)班学生参加学校组织的绿色奥运”知识竞赛活动,?老师将对学生的成绩按10分的组距分段,统计每个分数段出现的频数,填入频数分布表,并绘制频数的分布直方图.九(3)班绿色奥运”知识竞赛成绩频数分布表介级段/分49.5-59,559.5-69.569.5-79.579.5-89.589.5-99.5组屮值/分54.564.574+584.5X5a910145频率0.0500.2250.2500350b(1)___________________ 频数分布表中a= ,b= ;(2)把频数分布直方图补充完整;(3)学校设定成绩在69. 5分以上的学生将获得一等奖或二等奖,一等奖奖励作业本15本及奖金50元,二等奖奖励作业本10本及奖金30元.已知这部分学生共获得作业本335本,请你求出他们共获得的奖金.示.(1)请填写下表:平均数方差中位数命中宕环以上次数甲7 1.21乙 5.4Ill(2)请从下列四个不同的角度对这次测试结果进行分析.①从平均数和方差相结合看;②从平均数和中位数相结合看(分析谁的成绩好些);③从平均数和命中9环以上的次数相结合看(分析谁的成绩好些);④从折线图上两人射击命中环数的走势看(分析谁更有潜力).21.在“3 15”肖费者权益日的活动中,对甲、?乙两家商场售后服务的满意度进行了抽查.如图反映了被抽查用户对两家商场售后服务的满意程度(以下称:用户满意度),分为很不满意,不满意,较满意,很满意四个等级,并依次为1分,2分,3分,4分.(2)分别求出甲、乙两商场的用户满意度分数的平均分•(精确到0.01)(3)请你根据所学统计知识,判断哪家商场的用户满意度较高,并简要说明理由.参考答案1. 32.乙23. ( 1) 2.39; 1.8;中位数(2) 240; 52% (3)略4. ( 1)第二列从上至下两空分别填15, 50;第三列从上至下两空分别填0.5, 0.3 ?(2) 500名学生的视力情况;50 (3) 0.8 (4)该校初中毕业年级学生视力在4.55〜4.85的人数最多,约250人;或该校初中毕业年级学生视力在 5.15以上的与视力在4.25以下的人数基本相等,各有20人左右5. S 乙2<S 甲26. 27. 08. 3x—2 9S29. A 10. B 11. C 12. A 13. A 14 . C 15. D 16. C17. ( 1)从平均数,众数和中位数角度分析;(2)平均分,众数均相同,但三(1)班的成绩中位数高,表示三(1)班成绩比三(2) ?班好,但三(2)班标准差比三(1)班小,表示三(2)班学生成绩较整齐.18. ( 1)本次活动共有120篇文章参评。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009年中考数学复习教材回归知识讲解+例题解析+强化训练二次函数与方程(组)或不等式◆知识讲解(1)最大值或最小值的求法第一步确定a 的符号:a>0有最小值,a<0有最大值;第二步求顶点,•顶点的纵坐标即为对应的最大值或最小值.(2)y 轴与抛物线y=ax 2+bx+c 的交点为(0,c ).(3)与y 轴平行的直线x=h 与抛物线y=ax 2+bx+c 有且只有一个交点(h ,ah 2+bh+c ). (4)抛物线与x 轴的交点.二次函数y=ax 2+bx+c 的图像与x 轴的两个交点的横坐标x 1,x 2是对应的一元二次方程ax 2+bx+c=0的两个实数根.抛物线与x •轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔△>0⇔抛物线与x 轴相交.②有一个交点(顶点在x 轴上)⇔△=0⇔抛物线与x 轴相切; ③没有交点⇔△<0⇔抛物线与x 轴相离. (5)平行于x 轴的直线与抛物线的交点.同(4)一样可能有0个交点,1个交点,2个交点.当有2个交点时,•两交点的纵坐标相等,设纵坐标为k ,则横坐标是ax 2+bx+c=k 的两个实数根.(6)一次函数y=kx+n (k≠0)的图像L 与二次函数y=ax 2+bx+c (a≠0)的图像G 的交点,由方程组2y kx n y ax bx c=+⎧⎨=++⎩的解的数目确定:①当方程组有两组不同的解时⇔L 与G 有两个交点;②方程组只有一组解时⇔L 与G 只有一个交点;③方程组无解时⇔L 与G 没有交点.(7)利用函数图像求不等式的解集,先观察图像,找出抛物线与x 轴的交点,•再根据交点坐标写出不等式的解集.注意:观察图像时不要看漏了其中的部分.◆例题解析例1 如图所示,已知抛物线y=-12x 2+(5)x+m -3与x 轴有两个交点A ,B ,点A •在x 轴的正半轴上,点B 在x 轴的负半轴上,且OA=OB .(1)求m 的值;(2)求抛物线的解析式,并写出抛物线的对称轴和顶点C 的坐标;(3)问在抛物线上是否存在一点M ,△MAC ≌△OAC ,若存在,求出点M 的坐标;若不存在,请说明理由.【分析】抛物线与x 轴交于A ,B 两点,OA=OB ,故A ,B 两点关于y 轴对称,就可求得m 的值,由抛物线交y 轴的正半轴,得m 的确定值. 【解答】(1)∵抛物线与y 轴交于正半轴,且OA=OB .∴3050m a ->⎧⎪⎨-=⎪⎩由②得m=±5,由①m>3,故m=-5应舍去.∴m=5. (2)抛物线的解析式为y=-12x 2+2,对称轴是y 轴,顶点C 的坐标为C (0,2). (3)令y=0得 -12x 2+2=0,∴x=±2. ∴A (2,0),B (-2,0),C (0,2),△OAC 是等腰直角三角形. 若存在一点M ,使△MAC ≌△OAC ,∵AC 为公共边,OA=OC , ∴点M 与O 关于直线AC 对称,∴M 点的坐标为(2,2). 当x=2时,-12x 2+2=0≠2. ∴M (2,2)不在抛物线上,即不存在一点M ,使△MAC ≌△OAC .【点评】存在性问题,通常是先假定存在,若能找出具备某种条件或性质的对象,就说明存在,其叙述过程就是理由;若不存在,就需要进一步说明理由.例2 已知二次函数y=x 2-(2m+4)x+m 2-4(x 为自变量)的图像与y 轴的交点在原点下方,与x 轴交于A ,B 两点,点A 在点B 的左边,且A ,B 两点到原点的距离AO ,OB •满足3(•OB -AO )=2AO·OB ,直线y=kx+k 与这个二次函数图像的一个交点为P ,且锐角∠POB •的正切值4. (1)求m 的取值范围; (2)求这个二次函数的解析式; (3)确定直线y=kx+k 的解析式.【分析】利用抛物线与x 轴的交点A ,B 的位置及与y 轴交点的位置和A ,B 两点到原点的距离可以求出m 的值,再利用一元二次方程根与系数的关系可以求解.【解答】(1)设点A ,B 的坐标分别为A (x 1,0),B (x 2,0)(x 1<x 2),依题意,方程x 2-(2m+4)x+m 2-4=0有两个不相等的实数根. ∴△=[-(2m+4)] 2-4(m 2-4)>0.解得m>-2. ①又∵函数的图像与y 轴的交点在原点下方, ∴m 2-4<0,∴-2<m<2. ②(2)∵图像交y 轴于负半轴,与x 轴交于A ,B 两点,且x 1<x 2, ∴x 1<0,x 2>0.由3(OB -AO )=2AO·OB 可得 3[x 2-(-x 1)]=2(-x 1)·x 2 即3(x 1+x 2)=-2x 1x 2由于x 1,x 2是方程x 2-(2m+4)x+m 2-4=0的两个根,所以x 1+x 2=2m+4,x 1·x 2=m 2-4. ∴3(2m+4)=-2(m 2-4) 整理,得m 2+3m+2=0. ∴m=-1或m=-2(舍去). ∴二次函数的解析式为y=x 2-2x -3.(3)由y=x 2-2x -3,得A (-1,0),B (3,0). ∵直线y=kx+k 与抛物线相交,∴由223,,y x x y kx k ⎧=-+⎨=+⎩解得121,0.x y =-⎧⎨=⎩ 或2223,4.x k y k k =+⎧⎨=+⎩ ∵∠POB 为锐角. ∴点P 在y 轴右侧,∴点P 坐标为(k+3,k 2+4k ),且k+3>0. ∵tan ∠POB=4,∴2|4|3k k k ++=4.如图所示,当点P 在x 轴上方时.243k k k ++=4.解得k 1k 2=-经检验,k 1k 2=-k 2+3<0.∴k 2=-∴直线的解析式为当点P 在x 轴下方时,243k k k ++=-4,解得k 3=-2,k 4=-6.经检验,k 3=-2,k 4=-6是方程的解,但k 4+3<0. ∴k 4=-6舍去. ∴y=-2x -2.∴所求直线的解析式为y=-2x -2.【点评】本题以求解析式为目标,综合了函数,一元二次方程根与系数的关系,三角函数等知识,综合性强,灵活性大,解题关键是认真审题,认真分析纷繁复杂的条件,从中找到解题的突破口,易错点是在第(3)小题中忽视分类讨论而失解.◆强化训练 一、填空题1.与抛物线y=2x 2-2x -4关于x 轴对称的图像表示的函数关系式是_______.2.已知二次函数y=(a -1)x 2+2ax+3a -2的图像最低点在x 轴上,那么a=______,此时函数的解析式为_______.3.(2006,湖北襄樊)某涵洞的截面是抛物线型,如图1所示,在图中建立的直角坐标系中,抛物线的解析式为y=-14x 2,当涵洞水面宽AB 为12m 时,水面到桥拱顶点O •的距离为_______m .图1 图24.(2006,山西)甲,乙两人进行羽毛球比赛,甲发出一颗十分关键的球,出手点为P ,羽毛球飞行的水平距离s (m )与其距地面高度h (m )之间的关系式为h=-112s 2+23s+32.如图2,已知球网AB 距原点5m ,乙(用线段CD 表示)扣球的最大高度为94m ,•设乙的起跳点C 的横坐标为m ,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接球失败,则m 的取值范围是_______.5.若抛物线y=12x 2与直线y=x+m 只有一个公共点,则m 的值为_____. 6.设抛物线y=x 2+(2a+1)x+2a+54的图像与x •轴只有一个交点,•则a 18+•323a -6•的值为_______.7.已知直线y=-2x+3与抛物线y=x 2相交于A ,B 两点,O 为坐标原点,那么△OAB •的面积等于______.8.(2008,安徽)图3为二次函数y=ax 2+bx+c 的图像,在下列说法中:①ab<0;②方程ax 2+bx+c=0的根是x 1=-1,x 2=3;③a+b+c>0;④当x>1时,y 随着x •的增大而增大.正确的说法有_______.(请写出所有正确说法的序号)图3 图4 图5二、选择题9.(2006,绍兴)小敏在某次投篮球中,球的运动路线是抛物线y=-15x2+3.5的一部分(图4),若命中篮圈中心,则他与篮底的距离是()A.3.5m B.4m C.4.5m D.4.6m10.当m)A.0 B.5 C.D.911.二次函数y=ax2+bx+c的图像如图5所示,则下列结论:①a>0,②c>0, ③b2-4ac>0,其中正确的个数是()A.0个B.1个C.2个D.3个12.抛物线y=x2+(2m-1)x+m2与x轴有两个交点,则m的取值范围是()A.m>14B.m>-14C.m<14D.m<-1413.根据下列表格中二次函数y=ax2+bx+c的自变量x与函数y的对应值,•判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是()A.6<x<6.17 B.6.17<x<6.18 C.6.18<x<6.19 D.6.19<x<6.2014.若二次函数y=ax2+bx+c(a≠0)的图像的顶点在第一象限且经过点(0,1)和(•-1,0),则S=a+b+c的值的变化范围是()A.0<S<2 B.0<S<1 C.1<S<2 D.-1<S<115.二次函数y=ax2+bx+c(a≠0)的最大值是零,那么代数式│a│+244ac ba-的化简结果是()A.a B.-a C.D.016.(2006,甘肃兰州)已知y=2x2的图像是抛物线,若抛物线不动,把x轴,y•轴分别向上,向右平移2个单位,那么在新坐标系下抛物线的解析式是()A.y=2(x-2)2+2 B.y=2(x+2)2-2C.y=2(x-2)2-2 D.y=2(x+2)2+2三、解答题17.(2006,吉林省)如图,三孔桥横截面的三个孔都呈抛物线形,•两小孔形状,大小都相同.正常水位时,大孔水面宽度AB=20m ,顶点M 距水面6m (即MO=6m ),•小孔顶点N 距水面4.5m (即NC=4.5m ).当水位上涨刚好淹没小孔时,借助图中的直角坐标系,求此时大孔的水面宽度EF .18.(2008,安徽)杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线y=-35x 2+3x+1的一部分,如图所示. (1)求演员弹跳离地面的最大高度;(2)已知人梯高BC=3.4m ,在一次表演中,人梯到起跳点A 的水平距离是4m ,问这次表演是否成功?请说明理由.19.(2006,沈阳市)某企业信息部进行市场调研发现:信息一:如果单独投资A 种产品,则所获利润y A (万元)与投资金额x (万元)•之间存在正比例函数关系:y A =kx ,并且当投资5万元时,可获利润2万元;信息二:如果单独投资B 种产品,则所获利润y B (万元)与投资金额x (万元)•之间存在二次函数关系:y B =ax 2+bx ,并且当投资2万元时,可获利润2.4万元;当投资4万元时,•可获得3.2万元.(1)请分别求出上述的正比例函数表达式与二次函数表达式;(2)如果企业同时对A ,B 两种产品共投资10万元.•请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少.20.(2008,烟台)如图所示,抛物线L1:y=-x2-2x+3交x轴于A,B两点,交y•轴于M点.抛物线L1向右平移2个单位后得到抛物线L2,L2交x轴于C,D两点.(1)求抛物线L2对应的函数表达式;(2)抛物线L1或L2在x轴下方的部分是否存在点N,使以A,C,M,N•为顶点的四边形是平行四边形.若存在,求出点N的坐标;若不存在,请说明理由;(3)若点P是抛物线L1上的一个动点(P不与点A,B重合),那么点P•关于原点的对称点Q是否在抛物线L2上,请说明理由.21.已知:二次函数y=ax2+bx+c的图像经过点A(0,4),顶点在x轴上,•且对称轴在y 轴的右侧.设直线y=x与二次函数图像自左向右分别交于P(x1,y1),Q(x2,y2)两点,•且OP:PQ=1:3.(1)求二次函数的解析式;(2)求△PAQ的面积;(3)在线段PQ上是否存在一点D,使△APD≌△QPA,若存在,求出点D坐标,•若不存在,说明理由.22.(2005,武汉市)已知二次函数y=ax2-ax+m的图像交x轴于A(x1,0),B(x2,0)两点,x1<x2,交y轴的负半轴于C点,且AB=3,tan∠BAC-tan∠ABC=1.(1)求此二次函数的解析式;(2)在第一象限,抛物线上是否存在点P,使S△PAC=6?若存在,请你求出点P的坐标;•若不存在,请你说明理由.答案:1.y=-2x2+2x+4 2.2;y=x2+4x+4 3.9 4.5.-126.5796 7.6 8.①②④9.B 10.B 11.C12.C 13.C 14.A 15.B 16.B 17.设抛物线解析式为y=ax2+6,依题意得,B(10,0).∴a×102+6=0,解得a=-0.06.即y=-0.06x2+6,当y=4.5时,-0.06x2+6=4.5,解得x=±5,∴DF=5,EF=10,即水面宽度为10m.18.(1)y=-35x2+3x+1=-35(x-52)2+194.∵-35<0,∴函数的最大值是194.答:演员弹跳离地面的最大高度是194m.(2)当x=4时,y=-35×42+3×4+1=3.4=BC,所以这次表演成功.19.(1)当x=5时,y A=2,2=5k,k=0.4.∴y A=0.4x,当x=2时,y B=2.4;当x=4时,y B=3.2.∴2.442,3.2164.a ba b=+⎧⎨=+⎩解得0.2,1.6.ab=-⎧⎨=⎩∴y B=-0.2x2+1.6x.(2)设投资B种商品x万元,则投资A种商品(10-x)万元,获得利润W万元,根据题意可得W=-0.2x2+1.6x+0.4(10-x)=-0.2x2+1.2x+4.∴W=-0.2(x-3)2+5.8.当投资B种商品3万元时,可以获得最大利润5.8万元.所以投资A种商品7万元,B种商品3万元,这样投资可以获得最大利润5.8万元.20.(1)令y=0时,得-x2-2x+3=0,∴x1=-3,x2=1,∴A(-3,0),B(1,0).∵抛物线L1向右平移2个单位长度得抛物线L2,∴C(-1,0),D(3,0).∴抛物线L2为y=-(x+1)(x-3).即y=-x2+2x+3.(2)存在.如图所示.令x=0,得y=3,∴M (0,3).∵抛物线L 2是L 1向右平移2个单位长度得到的,∴点N (2,3)在L 2上,且MN=2,MN ∥AC .又∵AC=2,∴MN=AC .∴四边形ACNM 为平行四边形.同理,L 1上的点N′(-2,3)满足N′M ∥AC ,N′M=AC ,∴四边形ACMN′是平行四边形.∴N (2,3),N′(-2,3)即为所求.(3)设P (x 1,y 1)是L 1上任意一点(y 1≠0),则点P 关于原点的对称点Q (-x 1,-y 1),且y 1=-x 12-2x 1+3,将点Q 的横坐标代入L 2,得y Q =-x 12-2x 1+3=y 1≠-y 1.∴点Q 不在抛物线L 2上.21.(1)抛物线过(0,4)点.∴c=4,∴y=ax 2+bx+4又OP :PQ=1:3,∴x 1:x 2=1:4由24y xy ax bx =⎧⎨=++⎩得ax 2+(b -1)x+4=0,∵x 1,x 2是该方程的两个根,∴x 1+x 2=-1b a -,x 1·x 2=4a. 消去x 1得25a=(b -1)2.∵抛物线的对称轴在y 轴右侧∴-2b a>0, ∴b a <0,又抛物线的顶点在x 轴上,∴b 2=16a 得a=1,b=-4(b=49舍去). ∴y=x 2-4x+4.(2)如图所示,S △PAQ =S △AQO -S △APO=12×4×x 2-12×4×x 1=2(x 2-x 1). (3)存在点D ,设D (m ,n )易得P (1,1),Q (4,4),由△APD ∽△QPA 得PA 2=PQ·PD ,运用勾股定理得│m -1│=53,得m=83或23. ∵1<m<4,∴D (83,83). 22.(1)∵AB=3,x 1<x 2,∵x 2-x 1=3.由根与系数的关系有x 1+x 2=1,∴x 1=-1,x 2=2.∴OA=1,OB=2,x 1·x 2=m a=-2. ∵tan ∠BAC -tan ∠ABC=1,∴=1,∴OC=2∴m=-2,a=1.∴此二次函数的解析式为y=x 2-x -2.(2)在第一象限,抛物线上存在一点P 使S △APC =6.解法一:过点P 作直线MN ∥AC 交x 轴于点M ,交y 轴于点N ,连接PA ,PC ,MC ,NA ,如图所示.∵MN ∥AC ,∴S △MAC =S △NAC =S △PAC =6.由(1)有OA=1,OC=2∴12×AM×2=12×CN×1=6, ∴AM=6,CN=12.∴M (5,0),N (0,10).∴直线MN 的解析式为y=-2x+10.由2210,2.y x y x x =-+⎧⎨=--⎩ 得12123,4,4.18.x x y y ==-⎧⎧⎨⎨==⎩⎩(舍去). ∴在第一象限,抛物线上存在点P (3,4),使S △PAC =6. 解法二:设AP 与y (0,n )(n>0).∴直线AP 的解析式为y=nx+n .22,.y x x y nx n ⎧=--⎨=+⎩ ∴x 2-(n+1)x -n -2=0,∴x A +x P =n+1,∴x P =n+2.又S △PAC =S △ADC +S △PDC =12CD·AO+12CD·x p =12CD (AO+x p ). ∴12(n+2)(1+n+2)=6,n 2+5n -6=0. ∴n=-6(舍去)或n=1.∴在第一象限,抛物线上存在点P (3,4),使S △PAC =6.。

相关文档
最新文档