陶瓷电容器的特性及选用
陶瓷电容器特性范文

陶瓷电容器特性范文首先,陶瓷电容器具有小尺寸的特点。
由于陶瓷材料具有高度的绝缘性能,所以在相对较小的尺寸下,可以实现较大的电容值。
这使得陶瓷电容器在电子设备中的应用非常广泛。
其次,陶瓷电容器具有较大的容量。
容量是指电容器存储电荷的能力,是衡量电容器性能的重要指标之一、陶瓷电容器的容量通常在皮法律(pF)的量级,可以满足不同应用的需求。
另外,陶瓷电容器具有良好的稳定性。
稳定性是指电容器随时间和环境变化而变化的程度。
陶瓷电容器通常具有较低的温度系数,即在不同温度下,容量变化较小。
同时,在相对湿度、振动等环境变化下,陶瓷电容器的容量变化也较小。
这使得陶瓷电容器在各种恶劣环境下都能够稳定工作。
此外,陶瓷电容器具有快速充放电能力。
由于陶瓷材料的导电性较好,陶瓷电容器的充放电速度较快,可以迅速储存和释放电荷。
这使得陶瓷电容器在需要高速响应的电路中得到广泛应用,如通信设备、计算机等。
还有,陶瓷电容器具有较低的损耗。
损耗是指电容器在工作过程中由于内部电阻引起的能量损失。
陶瓷电容器的内部电阻较低,因此在传输和储存电荷时能够减少能量损失。
此外,陶瓷电容器还具有较高的工作温度范围。
由于陶瓷材料具有良好的热稳定性,陶瓷电容器可以在较高的工作温度下长时间稳定工作。
这使得陶瓷电容器在高温环境中得到广泛应用,如汽车电子、工业控制等领域。
此外,陶瓷电容器具有较高的电压承受能力。
电压承受能力是指电容器能够承受的最大电压。
陶瓷电容器具有较高的绝缘性能和较小的内部电阻,因此能够承受较高的电压。
这使得陶瓷电容器在高压电路中得到广泛应用,如电源、放大器等领域。
最后,陶瓷电容器具有较长的使用寿命。
陶瓷材料具有良好的耐久性和化学稳定性,因此陶瓷电容器的使用寿命较长。
这减少了更换元件的频率,提高了电子设备的可靠性和稳定性。
总之,陶瓷电容器具有小尺寸、大容量、稳定性、快速充放电能力、低损耗、高工作温度范围、高电压承受能力和长使用寿命等特性。
这使得陶瓷电容器在各种电子设备中得到广泛应用,如通信设备、计算机、汽车电子等领域。
电容选用资料(2)瓷介电容器(公布)

三、瓷介电容器(一)概述1、电容器用陶瓷的分类方法:适合做电容器的陶瓷很多,为了生产和使用上的规范,将电容器用陶瓷材料按照其性能特点进行分类,分类的主要依据是介电常数ε、损耗角正切tgδ、频率特性、温度特性、电压特性等综合考虑,我国已有完整的电容器用陶瓷材料分类标准,将电容器瓷分成三类(1、2、3类),由此也将陶瓷电容器分成1、2、3类瓷介电容器。
通常将1类瓷称做高频瓷(顺电体陶瓷),2类瓷称为低频瓷(铁电体陶瓷),3类瓷称为半导体瓷。
2、电容器瓷的介电常数并非一个恒定值,是一个与温度有关的电参数,为了描述介电常数这种温度特性,对1类瓷用温度系数TC(也用α表示,单位10-6/℃)来表达,对2、3类瓷用介电常数ε随温度的变化率△ε/ε(%)来表达。
温度特性是各类陶瓷电容器瓷分组的主要依据。
3、陶瓷电容可以有引线,也可以无引线(比如MLCC:贴片陶瓷电容);其包封材料可以是酚醛树脂(液体涂封)、环氧树脂(粉末涂装,兰色、红色、绿色各种颜色)、釉膜涂装(烧结涂装)。
4、相关词语解释:1)结构类似元件:用相同的工艺和材料制造的电容器,即使它们的外形尺寸和数值可能不同,也可以认为是结构类似的电容器。
2)初始制造阶段:单层电容器的初始制造阶段是形成电极的介质金属化(即被银瓷片生产)。
多层电容器的初始制造阶段是介质-电极叠压后的第一次共同烧结。
3)1类瓷介固定电容器:专门设计并用在低损耗、电容量稳定性高或要求温度系数有明确规定的谐振电路中的一种电容器。
例如,在电路中做温度补偿之用。
该类陶瓷介质是以标称温度系数来确定的。
4)2类瓷介固定电容器:适用于作旁路、耦合或对损耗和电容量稳定性要求不高的电路中的具有高介电常数的一种电容器。
该类陶瓷介质是以在类别温度范围内电容量非线性变化来确定的。
5)3类瓷介固定电容器:是一种具有半导体特征的瓷介电容器。
该类电容器适于作旁路、耦合之用。
该类陶瓷介质是以在类别温度范围内电容量非线性变化来确定的。
10uf陶瓷电容

10uf陶瓷电容10μF陶瓷电容器是一种常用的电子元器件,它在电子电路中有着重要的作用。
本文将从以下几个方面进行详细介绍,包括10μF陶瓷电容器的基本特性、工作原理、应用领域以及注意事项等。
首先,我们来了解一下10μF陶瓷电容器的基本特性。
10μF表示其电容值为10微法。
陶瓷电容器是一种以陶瓷材料作为介质的电容器,它具有体积小、重量轻、可靠性好等特点。
陶瓷材料常用的有二氧化铝和云母。
此外,陶瓷电容器还具有高频特性好,能够适应高频信号的传输要求。
接下来,我们了解一下10μF陶瓷电容器的工作原理。
陶瓷电容器的原理与其他电容器相同,即根据电场的储存能量原理进行工作。
当两极板之间有电压施加时,形成电场,电场中会储存能量。
而陶瓷电容器的介质是陶瓷材料,具有高绝缘性能,能够有效地储存电能。
然后,我们来看一下10μF陶瓷电容器的应用领域。
陶瓷电容器广泛应用于电子电路中的各种场景,包括通信、电源供应、高频电路、功率电子等。
在通信领域,陶瓷电容器常用于滤波、耦合和终端电源等电路中。
在电源供应领域,陶瓷电容器可用于稳压、滤波和功率电子的开关电路中。
在高频电路中,陶瓷电容器常用于射频模块、调制解调器和无线电收发器等电路中。
此外,陶瓷电容器还经常应用于计算机、手机、汽车等电子产品中。
最后,我们需要注意一些使用10μF陶瓷电容器的事项。
首先,注意正负极的连接。
10μF陶瓷电容器有正负极之分,应正确连接,否则会导致电路无法正常工作或损坏电容器。
其次,注意陶瓷电容器的额定电压。
不同的陶瓷电容器具有不同的额定电压,应根据实际使用需求选择合适的额定电压。
最后,注意陶瓷电容器的尺寸和工作温度。
由于陶瓷电容器尺寸较小,安装时需要小心操作,避免损坏。
此外,陶瓷电容器的工作温度范围有限,应避免超出其额定工作温度范围,以免降低电容器的性能或损坏。
综上所述,10μF陶瓷电容器是一种常用的电子元器件,具有体积小、重量轻、可靠性好等特点。
它的工作原理基于电场的储存能量原理,可以在电子电路中广泛应用于通信、电源供应、高频电路等领域。
104陶瓷电容

104陶瓷电容是电子电路中常见的一种电容器,其全称为104兆皮法(104 pF)陶瓷电容器。
在此,我们将详细介绍104陶瓷电容的特性、参数以及应用。
一、特性参数1. 容量与误差:104陶瓷电容的实际电容量为100000皮法(pF),即0.1微法(μF)。
其容量误差通常为J级5%,K级10%,M级20%。
这意味着在实际使用过程中,104陶瓷电容的容量可能会在一定范围内波动。
2. 额定工作电压:104陶瓷电容在电路中能够长期稳定、可靠工作,所承受的最大直流电压称为耐压。
对于结构、介质、容量相同的器件,耐压越高,体积越大。
3. 温度系数:在一定温度范围内,温度每变化1°C,电容量的相对变化值。
104陶瓷电容的温度系数越小越好,这有助于保持电容的稳定性。
4. 绝缘电阻:绝缘电阻用来表明漏电大小。
一般而言,小容量的电容,绝缘电阻很大,在几百兆欧姆或几千兆欧姆。
而电解电容的绝缘电阻一般较小。
相对而言,绝缘电阻越大越好,漏电也小。
二、应用104陶瓷电容广泛应用于各种电子电路中,如滤波、耦合、振荡、延时等。
其优点包括高频性能好、电容稳定性好、工作温度范围广等。
然而,钽电容的价格较高,容易出现烧毁现象,因此在一些应用场合,104陶瓷电容可以替代钽电容。
三、测试要测试104陶瓷电容的耐压值,可以使用绝缘电阻表与直流电压表配合的方法进行测量。
具体操作如下:将直流电压表和被测电容器并联到绝缘电阻表的两个端钮上,接好后缓慢加速摇动绝缘电阻表手柄,察看电压表指示值,如指针不再上升或上升又降低,此时测出的即是该电容器的最高耐压值,也是它的临界击空值。
陶瓷电容的材料

陶瓷电容的材料全文共四篇示例,供读者参考第一篇示例:陶瓷电容是一种常见的电子元件,用于在电路中储存和放出电荷。
它由陶瓷材料制成,具有高介电常数和低介电损耗,因此在高频电路和电源稳压器等领域有着广泛的应用。
下面我们将详细介绍陶瓷电容的材料及其特点。
一、陶瓷电容的材料种类1. 氧化铝陶瓷电容:氧化铝是一种硬质的陶瓷材料,具有优异的绝缘性能和高介电常数,因此被广泛应用于陶瓷电容中。
氧化铝陶瓷电容具有较高的电容密度和稳定性,可用于高频电路和高温环境下的应用。
2. 钛酸钡陶瓷电容:钛酸钡是一种具有极高介电常数和低介电损耗的陶瓷材料,被广泛用于陶瓷电容的制造。
钛酸钡陶瓷电容具有优异的频率特性和稳定性,适用于高频电路和天线等领域。
3. 陶瓷电容:除了氧化铝和钛酸钡外,还有其他种类的陶瓷材料被用于制造陶瓷电容,如氮化硅陶瓷、钛酸锶陶瓷等。
这些材料具有不同的介电性能和应用范围,可以根据具体的电路设计需求来选择适合的陶瓷材料。
二、陶瓷电容的特点1. 高介电常数:陶瓷材料具有相对较高的介电常数,使得陶瓷电容具有较大的电容密度,适合用于储存和放出电荷。
2. 低介电损耗:陶瓷电容具有较低的介电损耗,能够保持较高的电容稳定性和频率特性,适合用于高频电路和微波设备。
3. 耐高温性能:由于陶瓷材料具有较高的热稳定性,陶瓷电容具有良好的耐高温性能,可以在高温环境下长期稳定工作。
4. 耐湿气性能:陶瓷电容具有较高的绝缘性能和耐湿气性能,能够保持电容器的稳定性和可靠性,适合在潮湿环境中的应用。
5. 尺寸小巧:陶瓷电容的尺寸通常较小,便于在电路板上进行布置和安装,节省空间。
三、陶瓷电容的应用领域1. 通信设备:陶瓷电容广泛应用于通信设备中,用于天线匹配、滤波器和功率放大器等部件。
2. 电源稳压器:陶瓷电容在电源稳压器中起着重要作用,用于滤波器和去耦电容等功能。
3. 无线传感器:陶瓷电容也被广泛用于无线传感器中,用于信号调理和射频天线的匹配。
陶瓷电容耐压临界

陶瓷电容耐压临界
【原创实用版】
目录
1.陶瓷电容的耐压值
2.陶瓷电容的标识方法
3.陶瓷电容的测试方法
4.陶瓷电容的选用原则
正文
一、陶瓷电容的耐压值
陶瓷电容是一种常见的电容器类型,其耐压值是指电容器能够承受的最高电压。
一般来说,陶瓷电容的耐压值在几十到几百伏特之间。
例如,用在 220V 交变电源输入端的抗高频干扰的瓷介电容耐压值通常是 400V 左右。
二、陶瓷电容的标识方法
陶瓷电容的标识方法主要有直标法、色码表示法等。
直标法就是直接标出电容的容量和耐压值,例如,如果数字是 0.001,那它代表的是
0.001uf(1nf),如果是 10n,那么就是 10nf,同样 100p 就是 100pf。
色码表示法是通过电容引线方向上的不同颜色来表示电容量,如 350 为350pf,3 为 3pf,0.5 为 0.5pf。
三、陶瓷电容的测试方法
测试陶瓷电容的耐压值,可以使用一个带显示电压的电压调节器和一个测电流的器械。
接通后,把电压调节器从零逐渐调大,直到电容损坏,这样就可以测试出电容可以承受的最高电压。
为了提高测试结果的可靠性,可以进行多次测试。
四、陶瓷电容的选用原则
在选择陶瓷电容时,需要根据电路设计的需求来确定电容的容值、耐压值等参数。
例如,在每芯片的供电电源上,我们通常会并联一个 0.1uf 的电容,几个芯片的供电电源上并联一个 10uf 的电容,以保证芯片的可持续供电和滤掉高频杂波得到平滑的电源。
陶瓷高频电容

陶瓷高频电容高频电容是指能够在高频电磁场下工作的电容器。
陶瓷高频电容是其中一种常见的高频电容器,在无线通信、射频电路以及电子设备中起着重要的作用。
本文将详细介绍陶瓷高频电容的特性、应用领域以及制造工艺。
1.1 优异的高频特性陶瓷高频电容具有独特的高频特性,能够在高频电磁场中稳定工作。
它的介质常采用高介电常数的陶瓷材料,如二氧化铬、二氧化钛等。
这样的材料具有较低的电阻和电容值,能够满足高频信号传输的要求。
1.2 低损耗陶瓷高频电容的损耗因数(D)较低,能够降低电路的功耗。
其内部电阻小,电容值相对稳定,减少了信号传输过程中能量的损失。
1.3 高温稳定性陶瓷高频电容在高温环境下依然能够保持稳定的性能。
这主要得益于陶瓷材料具有良好的热稳定性和耐高温特性。
因此,在一些高温应用场景下,陶瓷高频电容能够发挥出更好的性能。
二、应用领域2.1 无线通信陶瓷高频电容在无线通信领域中应用广泛。
它可以被用于各种无线通信设备中,如手机、无线路由器、通信基站等。
其高频特性和低损耗能够提高无线信号的传输质量,保证通信的稳定性和可靠性。
2.2 射频电路射频电路中需要使用大量的高频电容,用于滤波、耦合、变容等功能。
陶瓷高频电容因其独特的特性而成为射频电路设计中的理想选择。
它能够满足高频信号处理的要求,提高电路的性能和稳定性。
2.3 电子设备电子设备中的各种电路和模块都需要使用到高频电容。
陶瓷高频电容由于其性能优越,被广泛应用于电源管理、功率放大、计算机硬件等领域。
它能够提高电路的工作效率和稳定性,保证设备的正常运行。
三、制造工艺陶瓷高频电容制造工艺主要包括材料选择、成型、烧结以及封装等环节。
首先,根据电容的工作频率需求选择合适的陶瓷材料。
然后,采用成型工艺将陶瓷材料成型为所需形状,如片状、圆柱状等。
接下来,通过烧结过程将成型后的材料加热,使其结合成坚固的电容体。
最后,将电容体封装成标准的电容外壳,以保护电容体不受外界环境的干扰。
片式多层陶瓷电容器简介介绍

应用领域
通信设备
用于信号处理、滤波、去耦等电路中,提高 信号质量。
汽车电子
用于汽车发动机控制、安全气囊等汽车电子 系统中。
消费电子
广泛用于智能手机、平板电脑、数码相机等 电子产品中。
工业控制
用于工业自动化设备、电机驱动控制等电路 中。
02
片式多层陶瓷电容器的制造工 艺
片式多层陶瓷电容器的制造工艺
智能化与自动化
随着智能化和自动化技术的不断 发展,片式多层陶瓷电容器的生 产工艺也在不断改进,提高生产 效率和产品质量。
技术挑战与解决方案
技术挑战
片式多层陶瓷电容器的技术挑战主要 包括提高性能、减小体积、降低成本 等方面。
解决方案
针对这些挑战,企业可以通过研发新 材料、优化生产工艺、提高生产效率 等方式来应对。同时,加强与高校、 科研机构的合作也是解决技术难题的 重要途径。
它利用陶瓷介质的高介电常数特性,实现小型化、高容量的电容器。
特性
高容值
由于采用多层叠加结构,片式 多层陶瓷电容器的容值较高。
小型化
体积小巧,有利于电子设备的 小型化和集成化。
高频特性好
具有较低的等效串联电阻(ESR )和等效串联电感(ESL),适 用于高频电路。
可靠性高
经过严格的质量控制和可靠性 测试,具有较长的使用寿命。
• 片式多层陶瓷电容器(MLCC)是一种电子元件,广泛应用于各类电子设备中,具有小型化、高性能、高可靠性的特点。 MLCC由多层陶瓷介质和金属电极叠合而成,具有高介电常数、低损耗、温度稳定性好等优点。
03
片式多层陶瓷电容器的性能参 数
片式多层陶瓷电容器的性能参数
• 片式多层陶瓷电容器(MLCC)是一种电子元件,广泛应 用于各类电子设备中,作为微型、高精度、高可靠性的电 容元件。它由多层陶瓷介质和金属电极叠加而成,具有体 积小、容量大、成本低、一致性好等优点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陶瓷电容器的特性及选用
陶瓷电容器是目前电子设备中使用最广泛的一种电容器,占整个电容器使用数量的50%左右,但由于许多人对其特性了解不足导致在使用上缺乏应有的重视。
为达到部品使用的规范化和标准化要求,下面对陶瓷电容器的特性及我司使用中需要注意的事项做一概况说明:
一、陶瓷电容器特性分类:
陶瓷电容器具有耐热性能好,绝缘性能优良,结构简单,价格低廉等优点,但不同陶瓷材料其特性有非常大的差异,必须根据使用要求正确选用。
陶瓷电容按频率特性分有高频瓷介电容器(1类瓷)和低频瓷介电容器(2类瓷);按耐压区分有高压瓷介电容器(1KV DC以上)和低压瓷介电容器(500V DC以下),现分述如下:
1.高频瓷介电容器(亦称1类瓷介电容器)
该类瓷介电容器的损耗在很宽的范围内随频率的变化很小,并且高频损耗值很小,(tanδ≤0.15%,f=1MHz),最高使用频率可达1000MHz以上。
同时该类瓷介电容器温度特性优良,适用于高频谐振、滤波和温度补偿等对容量和稳定度要求较高的电路。
其国标型号为CC1(低压)和CC81(高压),目前我司常用的温度特性组别有CH(NP0)和SL 组,其常规容量范围对应如下:
表中温度系数α
C =1/C(C
2
-C
1
/t
2
-t
1
)X106(PPM/°C),是指在允许温度范围内,温度每变
化1°C,电容量的相对变化率。
由上表看出,1类瓷介电容器的温度系数很小,尤其是CH特性,因此也常把1类瓷介电容器中CH电容称为温度补偿电容器。
但由于该类陶瓷材
料的介电常数较小,因此其容量值难以做高。
因此当需要更高容量值的电容时,则只能在下面介绍的2类瓷介电容中寻找。
2、低频瓷介电容器(亦称2类瓷介电容器)
该类瓷介电容的陶瓷材料介电常数较大,因而制成的电容器体积小,容量范围宽,但频率特性和温度特性较差,因此只适合于对容量、损耗和温度特性要求不高的低频电路做旁路、耦合、滤波等电路使用。
国标型号为CT1(低压)和CT81(高压),其常用温度特性组别和常规容量范围对应如下:
中2R组为低损耗电容,由于其自身温升小,频率特性较好,因而可以用于频率较高的场合。
对低压瓷介电容,当容量大于47000pF时,则只能选择3类瓷介电容器(亦称半导体瓷介电容器),例如:我司大量使用的26-ABC104-ZFX,但该类电容温度特性更差,绝缘电阻较低,只是因高介电材料,体积可以做得很小。
因此只适用要求较低的工作电路。
如选用较大容量电容,而对容量和温度特性又有较高使用要求,则应选用27类有机薄膜电容器。
3、交流瓷介电容器
根据交流电源的安全性使用要求,在2类瓷介电容器中专门设计生产了一种绝缘特性和抗电强度很高的交流瓷介电容器,亦称Y电容,按绝缘等级划分为Y1、Y2、Y3三大系列,其用途和特性分类如下:
为26-APKXXX-KBX/MEX。
Y2类电容适用于跨接电源(X电路)和消火花电路等有安全特性要求的场合。
Y3类电容适用于无安全特性要求的普通交流电路中做滤波、旁路等位置使用。
例如:我公司使用物料26-AQK472-ZFX。
Y电容的绝缘电阻等级标记均在电容本体上有打印标识,请在使用时注意识别。
二、陶瓷电容器的封装和外形尺寸说明。
陶瓷电容器虽有上述很多优点,但因陶瓷材料本身机械强度低、易破碎这一缺陷,使其圆片的几何尺寸受到限制,这也是不同温度特性有不同容量范围的主要原因。
通常标准上对低压圆片电容的允许直径D≤12mm,高压电容的圆片允许直径D≤16mm。
如超过这一尺寸,生产加工难度和废品率就会有很大增加,并且在瓷片本体上产生的微小裂纹都将对电容器的可靠性产生很大隐患。
因不同厂家在材料研制和工艺制造方面的水平不同,其外形尺寸标准也有差异,故其容量标称范围也有部分区别。
因此上述容量划分表只是一个行业平均水平汇总的结果,今后随着材料工艺的进一步提高,陶瓷电容的尺寸会进一步缩小,其容量范围就会进一步扩大。
圆片式瓷介电容器的包封形式通常按电压区分,500V DC以下的低压产品CC1、CT1系列均采用酚醛树脂包封,该树脂绝缘强度和耐湿性较差,但成本较低。
为改善耐湿性,此类包封外层均浸用一层薄蜡。
1KV DC以下和交流电容系列,均采用绝缘强度和耐湿特性优良的阻燃环氧树脂包封。
除圆片式瓷介电容器外,目前还广泛使用的有轴向引线色环陶瓷电容和贴片式陶瓷电容,其内部结构为叠层方式,因而体积很小,但容量可以达到1μF以上,非常利于装配,但由于其结构限制,绝缘电阻和耐压无法做得很高,因而目前只限于低压(50V以内)产品,其损耗和温度特性与圆片电容相同。
三、陶瓷电容的选用及注意事宜
1.保证物料选用的通用性和标准化:
因不同的温度特性对应不同的容量范围和精度标准,因此在选用时必须符合系列标准,且容值的选取必须符合E24(或E96)系列值。
目前我司有许多违返反述标准的P/N
存在,如26-ABC472-JZX,28-AB0XXX-JBX等,此类问题主要是因为部分设计师对陶瓷电容的温度特性缺乏必要了解造成的。
2.应根据线路使用工作状态和环境条件,选择合适的型号,其主要参数应满足线路使用要求。
1)于高频谐振电路,除要求电容器损耗小外,还要求容量有良好的温度稳定性,通常选用1类瓷介电容,其中CH特性亦称为零温度系数产品,其容量基本不随温度而变化,但其容量仅在几PF~几百PF之间。
2)对于做低频耦合、旁路、滤波的电容器,往住考滤小型化及低本成是主要的,而对损耗和容量的温度稳定性要求不高,一般可选用2类瓷介电容器,其容量选择范围较宽。
3)陶瓷电容器虽然耐压余量较薄膜电容器和电解电容器要大,但也不允许在超过其额定电压的条件下使用,否则由于电极中的金属离子在强电场作用下在陶瓷介质中的迁移速度加快而导致电容器绝缘电阻下降而影响整机长期工作的可靠性。
4)对于高温和高压条件下工作的电容器,应注意选用绝缘电阻较高的产品,以防因漏电增大产生恶性循环导致电容器失效。
通常绝缘电阻IR≥10000MΩ。
例如:在CRT加速极滤波位置应选用2KV耐压低损耗产品,以降低温升并保证有足够的绝缘电阻;对于行逆程电路,因对容量的稳定性和损耗要求较高,只能选用1类高压瓷介电容器(P/N:26-AMKXXX-JZX),做为聚丙烯电容的容量补偿电容使用,否则会造成严重质量隐患。
综上所述,陶瓷电容与其它电容相比,不同之处主要是陶瓷电容器根据材料不同存在许多不同的温度组别,其特性和容量范围即有很大差异。
如果我司工程技术人员对此有充分的了解,系统内就会减少很多不符合陶瓷电容特性的部品编码,同时也可避免因选型不当造成的质量隐患。
以上意见仅是本人对陶瓷电容器特性的粗略的理解,欢迎各位技术人员批评指正,共同交流。
谢谢!
部品部穆亚平
2003年3月14日。