新高考数学一轮教师用书:第7章 第6节 立体几何中的向量方法

合集下载

高考数学一轮复习 8-6 立体几何中的向量方法(一)课件 新人教A版

高考数学一轮复习 8-6 立体几何中的向量方法(一)课件 新人教A版
ppt精选
9
课堂总结
以A为坐标原点,建立如右图所示的空间直角坐标系Axyz, 则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0), P(0,0,2),E(0,0,1),F(0,1,1),G(1,2,0).
法一 ∴E→F=(0,1,0),E→G=(1,2,-1),
设平面 EFG 的法向量为 n=(x,y,z), 则nn··EE→→FG==00,,即yx=+02,y-z=0, 令 z=1,则 n=(1,0,1)为平面 EFG 的一个法向量,
6
课堂总结
3.已知A(1,0,0),B(0,1,0),C(0,0,1),则下列向量
是平面ABC法向量的是
()
A.(-1,1,1)
B.(1,-1,1)
C.(-
33,-
33,-
3 3)
D.(
33,
33,-
3 3)
解析 设 n=(x,y,z)为平面 ABC 的法向量,
则nn··AA→→BC==00,,化简得- -xx+ +yz==00,,∴x=y=z.故选 C. 答案 C
A.α∥β
B.α⊥β
C.α,β相交但不垂直
D.以上均不对
解析 ∵n1≠λn2,且n1·n2=2×(-3)+3×1+5×(-4)= -23≠0,∴α,β不平行,也不垂直.故选C.
答案 C
ppt精选
8
课堂总结
考点一 利用空间向量证明平行问题 【例1】 如图所示,平面PAD⊥平面
ABCD,ABCD为正方形,△PAD 是直角三角形,且PA=AD=2, E,F,G分别是线段PA,PD,CD 的中点.求证:PB∥平面EFG. 证明 ∵平面PAD⊥平面ABCD,且 ABCD为正方形, ∴AB,AP,AD两两垂直.

高考数学一轮复习第7讲 立体几何中的向量方法

高考数学一轮复习第7讲 立体几何中的向量方法

第7讲立体几何中的向量方法1.直线的方向向量和平面的法向量(1)直线的方向向量直线l上的向量e或与01共线的向量叫做直线l的方向向量,显然一条直02无数个.(2)平面的法向量如果表示向量n03垂直于平面α,则称这个向量垂直于平面α,记作n⊥α,此时向量n叫做平面α的法向量.04无数个,且它们是05共线向量.(3)设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为u,v,则l∥m06a∥b⇔07a=k b,k∈R;l⊥m08a⊥b⇔09a·b=0;l∥α10a⊥u⇔11a·u=0;l⊥α12a∥u⇔13a=k u,k∈R;α∥β14u∥v⇔15u=k v,k∈R;α⊥β16u⊥v⇔17u·v=0.2.空间向量与空间角的关系(1)两条异面直线所成角的求法设两条异面直线a,b的方向向量分别为a,b,其夹角为θ,则cosφ=|cosθ| 18|a·b||a||b|(其中φ为异面直线a,b所成的角,范围是(0°,90°]).(2)直线与平面所成角的求法如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=19|e ·n ||e ||n |,φ的取值范围是[0°,90°].(3)求二面角的大小如图①,AB ,CD 是二面角α-l -β的两个半平面内与棱l 垂直的直线,则二面角的大小θ=20〈AB→,CD →〉.如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉,取值范围是[0°,180°].确定平面法向量的方法(1)直接法:观察是否有垂直于平面的向量,若有,则此向量就是法向量. (2)待定系数法:取平面内的两个相交向量a ,b ,设平面的法向量为n =(x ,y ,z ),由⎩⎨⎧n ·a =0,n ·b =0,解方程组求得.1.平面α的一个法向量为(1,2,0),平面β的一个法向量为(2,-1,0),则平面α和平面β的位置关系是( )A .平行B .相交但不垂直C .垂直D .重合答案 C解析 由(1,2,0)·(2,-1,0)=1×2+2×(-1)+0×0=0,知两平面的法向量互相垂直,所以两平面互相垂直.2.已知A (1,0,0),B (0,1,0),C (0,0,1),则平面ABC 的一个单位法向量是( )A .⎝ ⎛⎭⎪⎫33,33,-33B .⎝ ⎛⎭⎪⎫33,-33,33C .⎝ ⎛⎭⎪⎫-33,33,33D .⎝ ⎛⎭⎪⎫-33,-33,-33答案 D解析 AB→=(-1,1,0),AC →=(-1,0,1),设平面ABC 的法向量n =(x ,y ,z ),∴⎩⎨⎧-x +y =0,-x +z =0.令x =1,则y =1,z =1,∴n =(1,1,1).单位法向量为±n |n |=±⎝ ⎛⎭⎪⎫33,33,33. 3. 如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是( )A .相交B .平行C .垂直D .MN 在平面BB 1C 1C 内答案 B解析 MN →=MA 1→+A 1A →+AN →=13BA 1→+A 1A →+13AC →=13(B 1A 1→-B 1B →)+B 1B →+13(AB →+AD →)=23B 1B →+13B 1C 1→,∴MN →,B 1B →,B 1C 1→共面.又MN ⊄平面BB 1C 1C ,∴MN ∥平面BB 1C 1C .4. 如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,O 是底面ABCD 的中心,E ,F 分别是CC 1,AD 的中点,那么异面直线OE 与FD 1所成角的余弦值等于( )A .105B .155C .45D .23答案 B解析 建立如图所示的空间直角坐标系,则O (1,1,0),E (0,2,1),F (1,0,0),D 1(0,0,2),∴FD 1→=(-1,0,2),OE →=(-1,1,1).∴cos 〈FD 1→,OE →〉=FD 1→·OE→|FD1→||OE →|=1+0+25×3=155.故选B .5.如图,已知P 为矩形ABCD 所在平面外一点,P A ⊥平面ABCD ,E ,F 分别是AB ,PC 的中点.若∠PDA =45°,则EF 与平面ABCD 所成的角的大小是( )A .90°B .60°C .45°D .30°答案 C解析 设AD =a ,AB =b ,因为∠PDA =45°,P A ⊥平面ABCD ,所以P A ⊥AD ,P A =AD =a .以点A 为坐标原点,AB ,AD ,AP 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),P (0,0,a ),E ⎝ ⎛⎭⎪⎫b 2,0,0,F ⎝ ⎛⎭⎪⎫b 2,a 2,a 2,所以EF→=⎝ ⎛⎭⎪⎫0,a 2,a 2.易知AP →=(0,0,a )是平面ABCD 的一个法向量.设EF 与平面ABCD 所成的角为θ,则sin θ=|cos 〈AP →,EF →〉|=|AP →·EF →||AP →||EF →|=22.所以θ=45°.6. (2020·广东华侨中学高三模拟)如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则点M 的坐标为( )A .(1,1,1)B .⎝ ⎛⎭⎪⎫23,23,1C .⎝ ⎛⎭⎪⎫22,22,1D .⎝ ⎛⎭⎪⎫24,24,1答案 C解析 设AC 与BD 相交于点O ,连接OE ,∵AM ∥平面BDE ,且AM ⊂平面ACEF ,平面ACEF ∩平面BDE =OE ,∴AM ∥EO ,又O 是正方形ABCD 对角线的交点,∴M 为线段EF 的中点.在空间直角坐标系中,E (0,0,1),F (2,2,1).由中点坐标公式,知点M 的坐标为⎝ ⎛⎭⎪⎫22,22,1.考向一 利用空间向量证明平行、垂直例1 如图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠ABC =∠BCD =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 所成的角为30°.求证:(1)CM ∥平面P AD ; (2)平面P AB ⊥平面P AD .证明 以点C 为坐标原点,分别以CB ,CD ,CP 所在的直线为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系Cxyz .∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABCD 所成的角. ∴∠PBC =30°.∵PC =2,∴BC =23,PB =4.∴D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2),M ⎝ ⎛⎭⎪⎫32,0,32,∴DP→=(0,-1,2),DA→=(23,3,0),CM →=⎝ ⎛⎭⎪⎫32,0,32. (1)设n =(x ,y ,z )为平面P AD 的一个法向量,由⎩⎪⎨⎪⎧DP →·n =0,DA →·n =0,得⎩⎨⎧-y +2z =0,23x +3y =0. 令y =2,得n =(-3,2,1).∵n ·CM→=-3×32+2×0+1×32=0,∴n ⊥CM →.又CM ⊄平面P AD ,∴CM ∥平面P AD . (2)如图,取AP 的中点E ,连接BE ,则E (3,2,1),BE →=(-3,2,1).∵PB =AB ,∴BE ⊥P A .又BE →·DA →=(-3,2,1)·(23,3,0)=0, ∴BE→⊥DA →,∴BE ⊥DA . 又P A ∩DA =A ,∴BE ⊥平面P AD . 又BE ⊂平面P AB ,∴平面P AB ⊥平面P AD . 1.用向量法证平行问题的类型及常用方法线线平行证明两直线的方向向量共线线面平行 ①证明该直线的方向向量与平面的某一法向量垂直;②证明该直线的方向向量与平面内某直线的方向向量平行;③证明该直线的方向向量可以用平面内的两个不共线的向量表示面面平行①证明两平面的法向量平行(即为共线向量); ②转化为线面平行、线线平行问题线线垂直 问题证明两直线所在的方向向量互相垂直,即证它们的数量积为零线面垂直 问题 直线的方向向量与平面的法向量共线,或利用线面垂直的判定定理转化为证明线线垂直面面垂直 问题两个平面的法向量垂直,或利用面面垂直的判定定理转化为证明线面垂直1. 如图所示,在直三棱柱ABC -A 1B 1C 1中,侧面AA 1C 1C 和侧面AA 1B 1B 都是正方形且互相垂直,M 为AA 1的中点,N 为BC 1的中点.求证:(1)MN ∥平面A 1B 1C 1; (2)平面MBC 1⊥平面BB 1C 1C .证明 由题意知AA 1,AB ,AC 两两垂直,以A 为坐标原点建立如图所示的空间直角坐标系.不妨设正方形AA 1C 1C 的边长为2,则A (0,0,0),A 1(2,0,0),B (0,2,0),B 1(2,2,0),C (0,0,2),C 1(2,0,2),M (1,0,0),N (1,1,1).(1)因为几何体是直三棱柱, 所以侧棱AA 1⊥底面A 1B 1C 1.因为AA 1→=(2,0,0),MN →=(0,1,1),所以MN →·AA 1→=0,即MN →⊥AA 1→.因为MN ⊄平面A 1B 1C 1,故MN ∥平面A 1B 1C 1.(2)设平面MBC 1与平面BB 1C 1C 的法向量分别为 n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2). 因为MB →=(-1,2,0),MC 1→=(1,0,2),所以⎩⎪⎨⎪⎧n 1·MB →=0,n 1·MC 1→=0,即⎩⎨⎧-x 1+2y 1=0,x 1+2z 1=0, 令x 1=2,则平面MBC 1的一个法向量为n 1=(2,1,-1).同理可得平面BB 1C 1C 的一个法向量为n 2=(0,1,1).因为n 1·n 2=2×0+1×1+(-1)×1=0,所以n 1⊥n 2,所以平面MBC 1⊥平面BB 1C 1C . 多角度探究突破考向二 利用空间向量求空间角 角度1 求异面直线所成的角例2 (1) (2020·汕头模拟)如图,正四棱锥P -ABCD 的侧面P AB 为正三角形,E 为PC 的中点,则异面直线BE 和P A 所成角的余弦值为( )A .33B .32C .22D .12答案 A解析 连接AC ,BD ,交于点O ,连接PO ,以O 为原点,OA 所在直线为x 轴,OB 所在直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,设AB =2,则OA =OB =OP =1,A (1,0,0),B (0,1,0),C (-1,0,0),P (0,0,1),E ⎝ ⎛⎭⎪⎫-12,0,12,BE →=⎝ ⎛⎭⎪⎫-12,-1,12,P A →=(1,0,-1),设异面直线BE 和P A 所成角为θ,则cos θ=|BE →·P A →||BE →||P A →|=132×2=33. ∴异面直线BE 和P A 所成角的余弦值为33.故选A .(2) 如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是CC 1,AD 的中点,那么异面直线D 1E 和A 1F 所成角的余弦值等于________.答案 25解析 如图,以D 为原点建立空间直角坐标系.则A 1(2,0,2),F (1,0,0),D 1(0,0,2),E (0,2,1), 则A 1F →=(-1,0,-2),D 1E →=(0,2,-1), cos 〈D 1E →,A 1F →〉=D 1E →·A 1F →|D 1E →||A 1F →|=25×5=25, ∴异面直线D 1E 和A 1F 所成角的余弦值等于25.(1)求异面直线所成角的思路①选好基底或建立空间直角坐标系; ②求出两直线的方向向量v 1,v 2;③代入公式cos θ=|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解(θ为两异面直线所成角).(2)两异面直线所成角的关注点两异面直线所成角θ的范围是(0°,90°],两向量的夹角α的范围是[0°,180°],当异面直线的方向向量的夹角为锐角或直角时,该角就是异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角.2.(多选)(2020·山东潍坊5月模拟)已知在棱长为1的正方体ABCD -A 1B 1C 1D 1中,点E ,F ,H 分别是AB ,DD 1,BC 1的中点,下列结论中正确的是( )A .D 1C 1∥平面CHDB .AC 1⊥平面BDA 1C .三棱锥D -BA 1C 1的体积为56 D .直线EF 与BC 1所成的角为30° 答案 ABD解析 如图1所示,因为D 1C 1∥DC ,D 1C 1⊄平面CHD ,DC ⊂平面CHD ,所以D 1C 1∥平面CHD ,A 正确;建立空间直角坐标系,如图2所示.由于正方体ABCD -A 1B 1C 1D 1的棱长为1,则AC 1→=(-1,1,1),BD →=(-1,-1,0),DA 1→=(1,0,1),所以AC 1→·BD →=1-1+0=0,AC 1→·DA 1→=-1+0+1=0,所以AC 1→⊥BD →,AC 1→⊥DA 1→,所以AC 1⊥平面BDA 1,B 正确;三棱锥D -BA 1C 1的体积为V 三棱锥D -BA 1C 1=V 正方体ABCD -A 1B 1C 1D 1-4V 三棱锥A 1-ABD =1-4×13×12×1×1×1=13,所以C 错误;E ⎝ ⎛⎭⎪⎫1,12,0,F ⎝ ⎛⎭⎪⎫0,0,12,所以EF →=⎝ ⎛⎭⎪⎫-1,-12,12,BC →1=(-1,0,1),所以cos 〈EF →,BC 1→〉=EF →·BC 1→|EF →||BC 1→|=1+0+1232×2=32,所以直线EF 与BC 1所成的角是30°,D 正确.故选ABD.角度2 求直线与平面所成的角例3 (2020·山东高考) 如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.解 (1)证明:在正方形ABCD 中,AD ∥BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以AD ∥平面PBC ,又因为AD ⊂平面P AD ,平面P AD ∩平面PBC =l , 所以AD ∥l .因为在四棱锥P -ABCD 中,底面ABCD 是正方形, 所以AD ⊥DC ,所以l ⊥DC ,又PD ⊥平面ABCD ,所以AD ⊥PD ,所以l ⊥PD . 因为DC ∩PD =D ,所以l ⊥平面PDC . (2)如图,建立空间直角坐标系Dxyz .因为PD =AD =1,所以D (0,0,0),C (0,1,0),A (1,0,0),P (0,0,1),B (1,1,0), 设Q (m,0,1),则有DC→=(0,1,0),DQ →=(m,0,1),PB →=(1,1,-1).设平面QCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DC →·n =0,DQ →·n =0,即⎩⎨⎧y =0,mx +z =0,令x =1,则z =-m ,所以平面QCD 的一个法向量为n =(1,0,-m ), 则cos 〈n ,PB →〉=n ·PB →|n ||PB →|=1+0+m 3·m 2+1. 根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,知直线PB 与平面QCD 所成角的正弦值等于|cos 〈n ,PB→〉|= |1+m |3·m 2+1=33·1+2m +m 2m 2+1=33·1+2m m 2+1≤33·1+2|m |m 2+1≤33·1+1=63, 当且仅当m =1时取等号,所以直线PB 与平面QCD 所成角的正弦值的最大值为63.利用向量法求线面角的方法 (1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线与平面所成的角.提醒:在求平面的法向量时,若能找出平面的垂线,则在垂线上取两个点可构成一个法向量.3.(2019·浙江高考)如图,已知三棱柱ABC -A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点.(1)证明:EF⊥BC;(2)求直线EF与平面A1BC所成角的余弦值.解解法一:(1)证明:如图1,连接A1E.因为A1A=A1C,E是AC的中点,所以A1E⊥AC.又因为平面A1ACC1⊥平面ABC,A1E⊂平面A1ACC1,平面A1ACC1∩平面ABC=AC,所以A1E⊥平面ABC,则A1E⊥BC.又因为A1F∥AB,∠ABC=90°,故BC⊥A1F.又因为A1E∩A1F=A1,所以BC⊥平面A1EF.因为EF⊂平面A1EF,所以EF⊥BC.(2)如图1,取BC的中点G,连接EG,GF,连接A1G交EF于点O,则四边形EGF A1是平行四边形.由于A1E⊥平面ABC,故A1E⊥EG,所以平行四边形EGF A1为矩形.由(1),得BC⊥平面EGF A1,所以平面A1BC⊥平面EGF A1,所以EF在平面A1BC上的射影在直线A1G上.则∠EOG是直线EF与平面A1BC所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E =23,EG = 3. 由于O 为A 1G 的中点,故EO =OG =A 1G 2=152, 所以cos ∠EOG =EO 2+OG 2-EG 22EO ·OG=35.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 解法二:(1)证明:如图2,连接A 1E .因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又因为平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC .以点E 为坐标原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立如图所示的空间直角坐标系Exyz .不妨设AC =4,则E (0,0,0),A 1(0,0,23),B (3,1,0),B 1(3,3,23),F ⎝ ⎛⎭⎪⎫32,32,23,C (0,2,0). 因此,EF →=⎝ ⎛⎭⎪⎫32,32,23,BC →=(-3,1,0).由EF →·BC→=0,得EF ⊥BC .(2)由(1)可得BC →=(-3,1,0),A 1C →=(0,2,-23). 设平面A 1BC 的法向量为n =(x ,y ,z ).由⎩⎪⎨⎪⎧BC →·n =0,A 1C →·n =0,得⎩⎪⎨⎪⎧-3x +y =0,y -3z =0. 取n =(1, 3,1),设直线EF 与平面A 1BC 所成的角为θ,故sin θ=|cos 〈EF →,n 〉|=|EF →·n ||EF →||n |=45,所以cos θ=35.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 角度3 求二面角例4 (2020·济南一模)如图1,平面四边形ABCD 中,AB =AC =2,AB ⊥AC ,AC ⊥CD ,E 为BC 的中点,将△ACD 沿对角线AC 折起,使CD ⊥BC ,连接BD ,DE ,AE ,得到如图2所示的三棱锥D -ABC .(1)证明:平面ADE ⊥平面BCD ;(2)已知直线DE 与平面ABC 所成的角为π4,求二面角A -BD -C 的余弦值. 解 (1)证明:在三棱锥D -ABC 中,因为CD ⊥BC ,CD ⊥AC ,AC ∩BC =C ,所以CD ⊥平面ABC . 又AE ⊂平面ABC ,所以AE ⊥CD .因为AB =AC ,E 为BC 的中点,所以AE ⊥BC . 又BC ∩CD =C ,所以AE ⊥平面BCD . 又AE ⊂平面ADE ,所以平面ADE ⊥平面BCD .(2)由(1)可知∠DEC 即为直线DE 与平面ABC 所成的角,所以∠DEC =π4. 在Rt △ABC 中,由勾股定理得BC =2,故CD =CE =1.作EF ∥CD 交BD 于点F ,由(1)知EA ,EB ,EF 两两垂直,以E 为原点,EA ,EB ,EF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则E (0,0,0),A (1,0,0),B (0,1,0),D (0,-1,1), 易知平面BCD 的一个法向量为n 1=(1,0,0), 又AB→=(-1,1,0),AD →=(-1,-1,1), 设平面ABD 的一个法向量为n 2=(x ,y ,z ), 则⎩⎪⎨⎪⎧n 2·AB →=-x +y =0,n 2·AD →=-x -y +z =0,令x =1,解得n 2=(1,1,2), cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=66.由图可知,该二面角为锐角, 所以二面角A -BD -C 的余弦值为66.利用向量法确定二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量夹角的大小就是二面角的大小.4. (2020·青岛模拟)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年,在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵(qiàn dǔ);阳马指底面为矩形,一侧棱垂直于底面的四棱锥,鳖臑(biē nào)指四个面均为直角三角形的四面体.如图在堑堵ABC -A 1B 1C 1中,AB ⊥AC .(1)求证:四棱锥B -A 1ACC 1为阳马;(2)若C 1C =BC =2,当鳖臑C 1-ABC 体积最大时,求锐二面角C -A 1B -C 1的余弦值.解 (1)证明:∵A 1A ⊥底面ABC ,AB ⊂面ABC , ∴A 1A ⊥AB .又AB ⊥AC ,A 1A ∩AC =A , ∴AB ⊥面ACC 1A 1. 又四边形ACC 1A 1为矩形, ∴四棱锥B -A 1ACC 1为阳马.(2)∵AB ⊥AC ,BC =2,∴AB 2+AC 2=4. 又C 1C ⊥底面ABC ,∴VC 1-ABC =13·C 1C ·12AB ·AC =13·AB ·AC ≤13·AB 2+AC 22=23,当且仅当AB =AC =2时,=13·AB ·AC 取最大值.∵AB ⊥AC ,A 1A ⊥底面ABC ,∴以A 为原点,建立如图所示的空间直角坐标系,则B (2,0,0),C (0,2,0),A 1(0,0,2),C 1(0,2,2),A 1B →=(2,0,-2),BC →=(-2,2,0),A 1C 1→=(0,2,0).设面A 1BC 的一个法向量为n 1=(x 1,y 1,z 1), 由⎩⎪⎨⎪⎧n 1·A 1B →=0,n 1·BC →=0,得⎩⎪⎨⎪⎧2x 1-2z 1=0,-2x 1+2y 1=0,令z 1=1,得n 1=(2,2,1). 同理得面A 1BC 1的一个法向量为n 2=(2,0,1),cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=155,∴二面角C -A 1B -C 1的余弦值为155.用向量法探究点的位置如图所示,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面P AB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱P A 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.解 (1)证明:因为平面P AD ⊥平面ABCD ,AB ⊥AD ,所以AB ⊥平面P AD ,所以AB ⊥PD .又因为P A ⊥PD ,P A ∩AB =A ,所以PD ⊥平面P AB . (2)如图,取AD 的中点O ,连接PO ,CO .因为P A =PD ,所以PO ⊥AD . 又因为PO ⊂平面P AD , 平面P AD ⊥平面ABCD , 所以PO ⊥平面ABCD . 因为CO ⊂平面ABCD , 所以PO ⊥CO .因为AC =CD ,所以CO ⊥AD . 建立空间直角坐标系Oxyz .由题意得,A (0,1,0),B (1,1,0),C (2,0,0),D (0,-1,0),P (0,0,1),PB →=(1,1,-1),PC→=(2,0,-1),PD →=(0,-1,-1).设平面PCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0. 令z =2,则x =1,y =-2,所以n =(1,-2,2). 又PB→=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n ||PB→|=-33,所以直线PB 与平面PCD 所成角的正弦值为33.(3)假设在棱P A 上存在点M ,使得BM ∥平面PCD ,则存在λ∈[0,1]使得AM →=λAP→.因此点M (0,1-λ,λ),BM →=(-1,-λ,λ). 因为BM ⊄平面PCD ,所以当且仅当BM →·n =0时,BM ∥平面PCD ,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14. 所以在棱P A 上存在点M 使得BM ∥平面PCD ,此时AM AP =14. 答题启示对于点的探究型问题,要善于根据点的位置结合向量的有关定理灵活设出未知量,尽量使未知量个数最少.对点训练(2020·滨州二模) 如图所示,在等腰梯形ABCD 中,AD ∥BC ,∠ADC =60°,直角梯形ADFE 所在的平面垂直于平面ABCD ,且∠EAD =90°,EA =AD =2DF =2CD =2.(1)证明:平面ECD ⊥平面ACE ;(2)点M 在线段EF 上,试确定点M 的位置,使平面MCD 与平面EAB 所成的二面角的余弦值为34.解 (1)证明:因为平面ABCD ⊥平面ADFE ,平面ABCD ∩平面ADFE =AD ,EA ⊥AD ,EA ⊂平面ADFE ,所以EA ⊥平面ABCD ,又CD ⊂平面ABCD ,所以EA ⊥CD , 在△ADC 中,CD =1,AD =2,∠ADC =60°, 由余弦定理得,AC = 1+4-2×1×2cos60°=3, 所以AC 2+CD 2=AD 2,所以CD ⊥AC .又EA ⊥CD ,EA ∩AC =A ,所以CD ⊥平面ACE , 又CD ⊂平面ECD ,所以平面ECD ⊥平面ACE . (2)以C 为坐标原点,以CA ,CD 所在直线分别为x 轴、 y 轴,过点C 且平行于AE 的直线为z 轴,建立如图所示的空间直角坐标系,则C (0,0,0),A (3,0,0),B ⎝ ⎛⎭⎪⎫32,-12,0,D (0,1,0),E (3,0,2),F (0,1,1),AB →=⎝ ⎛⎭⎪⎫-32,-12,0,AE →=(0,0,2),CD→=(0,1,0),FE →=(3,-1,1),CF →=(0,1,1),设FM →=λFE →=(3λ,-λ,λ)(0≤λ≤1),则CM→=CF →+FM →=(3λ,1-λ,1+λ).设平面EAB 的一个法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·AB →=0,m ·AE →=0,即⎩⎨⎧-32x 1-12y 1=0,2z 1=0,取x 1=1,得m =(1,-3,0).设平面MCD 的一个法向量为n =(x 2,y 2,z 2), 由⎩⎪⎨⎪⎧n ·CD →=0,n ·CM →=0,得⎩⎨⎧y 2=0,3λx 2+(1-λ)y 2+(1+λ)z 2=0,令x 2=1+λ,得n =(1+λ,0,-3λ),因为平面MCD 与平面EAB 所成的二面角的余弦值为34,所以|cos 〈m ,n 〉|=|m ·n ||m ||n |=|1+λ|24λ2+2λ+1=34, 整理得8λ2-2λ-1=0,解得λ=12或λ=-14(舍去),所以点M 为线段EF 的中点时,平面MCD 与平面EAB 所成的二面角的余弦值为34.一、单项选择题1.直线l 的方向向量a =(1,-3,5),平面α的法向量n =(-1,3,-5),则有( )A .l ∥αB .l ⊥αC .l 与α斜交D .l ⊂α或l ∥α答案 B解析 因为a =(1,-3,5),n =(-1,3,-5),所以a =-n ,a ∥n .所以l ⊥平面α.选B .2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( )A .45°B .135°C .45°或135°D .90° 答案 C解析 ∵cos 〈m ,n 〉=m ·n |m ||n |=12=22,∴〈m ,n 〉=45°.∴二面角为45°或135°.故选C .3. 如图所示,已知正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是上底面A 1B 1C 1D 1和侧面ADD 1A 1的中心,则EF 和CD 所成的角是( )A .60°B .45°C .30°D .135°答案 B解析 以D 为原点,分别以射线DA ,DC ,DD 1为x 轴、y 轴、z 轴的非负半轴建立如图所示的空间直角坐标系Dxyz ,设正方体的棱长为1,则D (0,0,0),C (0,1,0),E ⎝ ⎛⎭⎪⎫12,12,1,F ⎝ ⎛⎭⎪⎫12,0,12,EF →=⎝ ⎛⎭⎪⎫0,-12,-12,DC →=(0,1,0),∴cos 〈EF →,DC →〉=EF →·DC →|EF →||DC →|=-22,∴〈EF →,DC →〉=135°,∴异面直线EF 和CD 所成的角是45°.故选B .4.如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,BB 1=4,则直线BB 1与平面ACD 1所成角的正弦值为( )A .13B .33C .63D .223答案 A解析 如图所示,建立空间直角坐标系Dxyz .则A (2,0,0),C (0,2,0),D 1(0,0,4),B (2,2,0),B 1(2,2,4),AC →=(-2,2,0),AD 1→=(-2,0,4),BB 1→=(0,0,4). 设平面ACD 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD 1→=0,即⎩⎨⎧-2x +2y =0,-2x +4z =0, 取x =2,则y =2,z =1,故n =(2,2,1)是平面ACD 1的一个法向量,设直线BB 1与平面ACD 1所成的角是θ,则sin θ=|cos 〈n ,BB 1→〉|=|n ·BB 1→||n ||BB 1→|=49×4=13.故选A .5.△ABC 的顶点分别为A (1,-1,2),B (5,-6,2),C (1,3,-1),则AC 边上的高BD 等于( )A .5B .41C .4D .2 5答案 A解析 ∵A (1,-1,2),B (5,-6,2),C (1,3,-1),∴AB→=(4,-5,0),AC →=(0,4,-3).∵点D 在直线AC 上,∴设AD →=λAC →=(0,4λ,-3λ),由此可得BD→=AD →-AB →=(0,4λ,-3λ)-(4,-5,0)=(-4,4λ+5,-3λ).又BD →⊥AC →,∴BD →·AC →=-4×0+(4λ+5)×4+(-3λ)×(-3)=0,解得λ=-45.因此BD →=(-4,4λ+5,-3λ)=⎝ ⎛⎭⎪⎫-4,95,125.可得|BD→|= (-4)2+⎝ ⎛⎭⎪⎫952+⎝ ⎛⎭⎪⎫1252=5.6. (2020·安徽六安一中质检)如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2.若二面角B 1-DC -C 1的大小为60°,则AD 的长为( )A . 2B . 3C .2D .22答案 A解析 分别以CA ,CB ,CC 1所在的直线为x ,y ,z 轴建立空间直角坐标系,则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2),设AD =a ,则点D 坐标为(1,0,a ),CD →=(1,0,a ),CB 1→=(0,2,2),设平面B 1CD 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·CB 1→=0,n ·CD →=0,得⎩⎨⎧2y +2z =0,x +az =0,令z =-1,得n =(a,1,-1),又平面C 1DC 的一个法向量为m =(0,1,0).所以cos60°=m ·n |m ||n |,得1a 2+2=12,解得a =2,故选A .7. (2021·湖南湘潭高三月考)在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,如图,建立空间直角坐标系,则下列向量中是平面P AB 的法向量的是( )A .⎝ ⎛⎭⎪⎫1,1,12 B .(1,2,1)C .(1,1,1)D .(2,-2,1)答案 A解析 P A →=(1,0,-2),AB →=(-1,1,0),设平面P AB 的法向量为n =(x ,y,1),则⎩⎨⎧ x -2=0,-x +y =0.解得⎩⎨⎧x =2,y =2.∴n =(2,2,1).又⎝ ⎛⎭⎪⎫1,1,12=12n ,∴A 正确.8.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A .12 B .23 C .33 D .22答案 B解析 以A 为坐标原点建立如图所示的空间直角坐标系Axyz ,设棱长为1,则A 1(0,0,1),E ⎝ ⎛⎭⎪⎫1,0,12,D (0,1,0),∴A 1D →=(0,1,-1),A 1E →=⎝ ⎛⎭⎪⎫1,0,-12,设平面A 1ED 的一个法向量为n 1=(1,y ,z ),则⎩⎪⎨⎪⎧n 1·A 1D →=0,n 1·A 1E →=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎨⎧y =2,z =2.∴n 1=(1,2,2).又平面ABCD 的一个法向量为n 2=(0,0,1),∴cos 〈n 1,n 2〉=23×1=23.即平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为23.故选B .二、多项选择题9.(2020·海口高考调研) 如图,在直三棱柱ABC -A 1B 1C 1中,AA 1=AC =23AB =2,AB ⊥AC ,点D ,E 分别是线段BC ,B 1C 上的动点(不含端点),且EC B 1C =DCBC .则下列说法正确的是( )A .ED ∥平面ACC 1B .该三棱柱的外接球的表面积为68πC .异面直线B 1C 与AA 1所成角的正切值为32 D .二面角A -EC -D 的余弦值为413 答案 AD解析 在直三棱柱ABC -A 1B 1C 1中,四边形BCC 1B 1是矩形,因为ECB 1C =DC BC ,所以ED ∥BB 1∥CC 1,所以ED ∥平面ACC 1,A 正确;因为AA 1=AC =23AB =2,所以AB =3,因为AB ⊥AC ,所以BC =22+32=13,所以B 1C =13+4=17,易知B 1C 是三棱柱外接球的直径,所以三棱柱外接球的表面积为4π×⎝⎛⎭⎪⎫1722=17π,B 错误;因为AA 1∥BB 1,所以异面直线B 1C 与AA 1所成的角为∠BB 1C .在Rt △B 1BC 中,BB 1=2,BC =13,所以tan ∠BB 1C =BC BB 1=132,C 错误;二面角A -EC -D 即二面角A -B 1C -B ,以A 为坐标原点,以AB →,AC →,AA 1→的方向分别为x ,y ,z 轴的正方向建立空间直角坐标系,可得平面AB 1C 的一个法向量为(2,0,-3),平面BB 1C 的一个法向量为(2,3,0),故二面角A -EC -D 的余弦值为2×213×13=413,D 正确.10. (2020·山东模拟)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,如图,E ,F ,G 分别为BC ,CC 1,BB 1的中点,则下列说法正确的是( )A .直线A 1G 与平面AEF 平行B .直线D 1D 与直线AF 垂直C .平面AEF 截正方体ABCD -A 1B 1C 1D 1所得截面的面积为98 D .点C 与点G 到平面AEF 的距离相等 答案 AC解析 如图,连接AD 1,D 1F ,因为A 1G ∥D 1F ,且A ,E ,F ,D 1在同一平面内,所以A 1G ∥平面AEF ,故A 正确;因为AF 与C 1C 相交且不垂直,D 1D 与C 1C 平行,所以直线D 1D 与直线AF 不垂直,故B 错误;平面AEF 截正方体ABCD -A 1B 1C 1D 1所得截面为等腰梯形AEFD 1,作EH ⊥AD 1,交AD 1于点H ,连接D 1E ,DE ,可得AE =52,AD 1=2,D 1E =1+54=32,所以在△AD 1E中,cos ∠D 1AE =1010,所以sin ∠D 1AE =31010,所以EH =52×31010=324,所以等腰梯形AD 1FE 的面积S =12×⎝ ⎛⎭⎪⎫2+22×324=98,故C 正确;以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,连接AG ,AC ,则可得平面AEF 的一个法向量为n =(2,1,2),AG →=⎝ ⎛⎭⎪⎫0,1,12,AC →=(-1,1,0),所以点G 到平面AEF 的距离d 1=|AG →·n ||n |=23,点C 到平面AEF 的距离d 2=|AC →·n ||n |=13,故D 错误.故选AC .三、填空题11. 如图所示,二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=217,则该二面角的大小为________.答案60°解析∵CD→=CA→+AB→+BD→,∴|CD→|=(CA→+AB→+BD→)2= 36+16+64+2CA→·BD→= 116+2CA→·BD→=217.∴CA→·BD→=|CA→||BD→|cos〈CA→,BD→〉=-24.∴cos〈CA→,BD→〉=-12.又所求二面角与〈CA→,BD→〉互补,∴所求的二面角为60°.12. 正三棱柱(底面是正三角形的直棱柱)ABC-A1B1C1的底面边长为2,侧棱长为22,则AC1与侧面ABB1A1所成的角为________.答案 π6解析 以C 为原点建立如图所示的空间直角坐标系,得下列坐标:A (2,0,0),C 1(0,0,22).点C 1在侧面ABB 1A 1内的射影为点C 2⎝ ⎛⎭⎪⎫32,32,22.所以AC 1→=(-2,0,22),AC 2→=⎝ ⎛⎭⎪⎫-12,32,22,设直线AC 1与平面ABB 1A 1所成的角为θ,则cos θ=AC 1→·AC 2→|AC1→||AC 2→|=1+0+823×3=32.又θ∈⎣⎢⎡⎦⎥⎤0,π2,所以θ=π6.13.(2020·山西大同高三模拟)在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,且A 1M =AN =23a ,则MN 与平面BB 1C 1C 的位置关系是________.答案 平行解析 MN →=MA 1→+A 1A →+AN →=13BA 1→+A 1A →+13AC →=13(BA →+AA 1→)+A 1A →+13(AB →+BC →)=23A 1A →+13BC →=23B 1B →+13BC →.∴MN →与B 1B →,BC →共面.又MN ⊄平面BB 1C 1C ,∴MN ∥平面BB 1C 1C .14.已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的锐二面角的正切值为________.答案23解析 如图,建立空间直角坐标系Dxyz ,设DA =1,由已知条件得A (1,0,0),E ⎝ ⎛⎭⎪⎫1,1,13,F ⎝ ⎛⎭⎪⎫0,1,23,AE →=⎝ ⎛⎭⎪⎫0,1,13,AF →=⎝ ⎛⎭⎪⎫-1,1,23, 设平面AEF 的法向量为n =(x ,y ,z ),平面AEF 与平面ABC 所成的锐二面角为θ,由图知θ为锐角,由⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0,得⎩⎪⎨⎪⎧y +13z =0,-x +y +23z =0.令y =1,则z =-3,x =-1,则n =(-1,1,-3),平面ABC 的一个法向量为m =(0,0,-1),cos θ=|cos 〈n ,m 〉|=31111,tan θ=23.四、解答题15.(2020·山东省模拟考) 如图,四棱锥S -ABCD 中,底面ABCD 为矩形.SA ⊥平面ABCD ,E ,F 分别为AD ,SC 的中点,EF 与平面ABCD 所成的角为45°.(1)证明:EF 为异面直线AD 与SC 的公垂线;(2)若EF =12BC ,求二面角B -SC -D 的余弦值.解 (1)证明:以A 为坐标原点,AB →的方向为x 轴正方向,|AB →|为单位长,建立如图所示的空间直角坐标系Axyz .设D (0,b,0),S (0,0,c ),则C (1,b,0),E ⎝ ⎛⎭⎪⎫0,b 2,0,F ⎝ ⎛⎭⎪⎫12,b 2,c 2,EF →=⎝ ⎛⎭⎪⎫12,0,c 2,AS →=(0,0,c ),AD→=(0,b,0). 因为EF 与平面ABCD 所成的角为45°,所以EF →与平面ABCD 的法向量AS →的夹角为45°.所以AS →·EF →=|AS →||EF →|cos45°, 即c 22=22×c ×14+c 24,解得c =1,故EF →=⎝ ⎛⎭⎪⎫12,0,12,SC →=(1,b ,-1), 从而EF →·SC →=0,EF →·AD →=0,所以EF ⊥SC ,EF ⊥AD .因此EF 为异面直线AD 与SC 的公垂线. (2)由B (1,0,0),BC →=(0,b,0), |EF→|=12|BC →|得b = 2. 于是F ⎝ ⎛⎭⎪⎫12,22,12,C (1,2,0),连接FB ,故FB →=⎝ ⎛⎭⎪⎫12,-22,-12,SC →=(1,2,-1),从而FB →·SC→=0,即FB ⊥SC .取CF 的中点G ,连接GD ,则G ⎝ ⎛⎭⎪⎫34,324,14,GD →=⎝ ⎛⎭⎪⎫-34,24,-14,从而GD →·SC→=0,即GD ⊥SC .因此〈FB→,GD →〉等于二面角B -SC -D 的平面角.cos 〈FB →,GD →〉=FB →·GD →|FB →||GD →|=-33.所以二面角B -SC -D 的余弦值为-33.16. (2020·全国卷Ⅱ)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.解 (1)证明:∵M ,N 分别为BC ,B 1C 1的中点, ∴MN ∥BB 1.又AA 1∥BB 1,∴AA 1∥MN .∵△A 1B 1C 1为等边三角形,N 为B 1C 1的中点, ∴A 1N ⊥B 1C 1.又侧面BB 1C 1C 为矩形,∴B 1C 1⊥BB 1. ∵MN ∥BB 1,∴MN ⊥B 1C 1.又MN ∩A 1N =N ,MN ,A 1N ⊂平面A 1AMN , ∴B 1C 1⊥平面A 1AMN .又B 1C 1⊂平面EB 1C 1F , ∴平面A 1AMN ⊥平面EB 1C 1F .(2)解法一:连接NP ,∵AO ∥平面EB 1C 1F ,平面AONP ∩平面EB 1C 1F =NP , ∴AO ∥NP .∵三棱柱上下底面平行,平面A 1AMN ∩平面ABC =AM ,平面A 1AMN ∩平面A 1B 1C 1=A 1N ,∴ON ∥AP .∴四边形ONP A 是平行四边形. ∴ON =AP ,AO =NP . 设△ABC 边长是6m (m >0), 则NP =AO =AB =6m .∵O 为△A 1B 1C 1的中心,且△A 1B 1C 1的边长为6m , ∴ON =13×6m ×sin60°=3m .∴ON =AP =3m . ∵BC ∥B 1C 1,B 1C 1⊂平面EFC 1B 1, ∴BC ∥平面EFC 1B 1.又BC ⊂平面ABC ,平面ABC ∩平面EFC 1B 1=EF , ∴EF ∥BC ,∴AP AM =EP BM ,∴3m 33m =EP 3m ,解得EP =m .在B 1C 1截取B 1Q =EP =m ,连接PQ ,故QN =2m . ∵B 1Q =EP 且B 1Q ∥EP ,∴四边形B 1QPE 是平行四边形,∴B 1E ∥PQ . 由(1)可知B 1C 1⊥平面A 1AMN ,故∠QPN 为B 1E 与平面A 1AMN 所成角. 在Rt △QPN 中,根据勾股定理可得PQ =QN 2+NP 2=(2m )2+(6m )2=210m , ∴sin ∠QPN =QN PQ =2m 210m=1010.∴直线B 1E 与平面A 1AMN 所成角的正弦值为1010. 解法二:由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC .由已知得AM ⊥BC ,以Q 为坐标原点,QA→的方向为x 轴正方向,QN →的方向为z 轴正方向,|MB →|为单位长,建立如图所示的空间直角坐标系Qxyz ,设QM =a ,则AB =2,AM = 3.连接NP ,则四边形AONP 为平行四边形, ∴NP =AO =AB =2,∴PQ =233-a ,NQ = NP 2-PQ 2= 4-⎝ ⎛⎭⎪⎫233-a2, ∴B 10,1,4-⎝ ⎛⎭⎪⎫233-a 2 ,E ⎝ ⎛⎭⎪⎫233-a ,13,0,故B 1E →=233-a ,-23,-4-⎝ ⎛⎭⎪⎫233-a2,|B 1E →|=2103.又n =(0,-1,0)是平面A 1AMN 的一个法向量, 故sin ⎝ ⎛⎭⎪⎫π2-〈n ,B 1E →〉=cos 〈n ,B 1E →〉=n ·B 1E →|n ||B 1E →|=1010.∴直线B 1E 与平面A 1AMN 所成角的正弦值为1010.17.(2020·泰安三模)在四棱锥P -ABCD 中,△P AB 为等边三角形,四边形ABCD 为矩形,E 为PB 的中点,DE ⊥PB .(1)证明:平面ABCD ⊥平面P AB ;(2)设二面角A -PC -B 的大小为α,求α的取值范围.解 (1)证明:连接AE ,因为△P AB 为等边三角形,所以AE ⊥PB . 又DE ⊥PB ,AE ∩DE =E ,所以PB ⊥平面ADE ,所以PB ⊥AD . 因为四边形ABCD 为矩形,所以AD ⊥AB ,且AB ∩PB =B , 所以AD ⊥平面P AB .因为AD ⊂平面ABCD ,所以平面ABCD ⊥平面P AB .(2)以A 为坐标原点建立如图所示的空间直角坐标系Axyz ,不妨设PB =AB =P A =1,C (0,1,n ),则A (0,0,0),P ⎝ ⎛⎭⎪⎫32,12,0,B (0,1,0),由空间向量的坐标运算可得PC →=⎝ ⎛⎭⎪⎫-32,12,n ,AP →=⎝ ⎛⎭⎪⎫32,12,0,BP →=⎝ ⎛⎭⎪⎫32,-12,0.设平面BPC 的法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·PC →=0,m ·BP →=0,即⎩⎪⎨⎪⎧-32x 1+12y 1+nz 1=0,32x 1-12y 1=0,令x 1=1,则y 1=3,z 1=0,所以m =(1,3,0). 设平面P AC 的法向量为n =(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n ·PC →=0,n ·AP →=0,即⎩⎪⎨⎪⎧-32x 2+12y 2+nz 2=0,32x 2+12y 2=0,令x 2=1,则y 2=-3,z 2=3n ,所以n =⎝ ⎛⎭⎪⎫1,-3,3n .二面角A -PC -B 的大小为α,由图可知,二面角α为锐二面角, 所以cos α=|m ·n ||m ||n |=|1-3|1+3×1+3+3n 2=14+3n 2∈⎝⎛⎭⎪⎫0,12,所以α∈⎝ ⎛⎭⎪⎫π3,π2. 18.(2020·山东平邑一中模拟)请从下面三个条件中任选一个,补充在下面的横线上,并作答.①AB ⊥BC ;②FC 与平面ABCD 所成的角为π6;③∠ABC =π3.如图,在四棱锥P -ABCD 中,底面ABCD 是菱形,P A ⊥平面ABCD ,且P A =AB =2,PD 的中点为F .(1)在线段AB上是否存在一点G,使得AF∥平面PCG?若存在,指出G在AB上的位置并给以证明;若不存在,请说明理由;(2)若________,求二面角F-AC-D的余弦值.解(1)在线段AB上存在中点G,使得AF∥平面PCG.证明如下:如图所示.设PC的中点为H,连接FH,GH,∵FH∥CD,FH=12CD,AG∥CD,AG=12CD,∴FH∥AG,FH=AG,∴四边形AGHF为平行四边形,则AF∥GH,又GH⊂平面PCG,AF⊄平面PCG,∴AF∥平面PCG.(2)选择①AB⊥BC:∵P A⊥平面ABCD,∴P A⊥BC,由题意,知AB,AD,AP两两垂直,以AB,AD,AP所在直线分别为x,y,z轴,建立空间直角坐标系,∵P A=AB=2,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),F(0,1,1),P(0,0,2),∴AF→=(0,1,1),CF→=(-2,-1,1),设平面F AC 的一个法向量为μ=(x ,y ,z ), ∴⎩⎪⎨⎪⎧μ·AF →=y +z =0,μ·CF →=-2x -y +z =0,取y =1,得μ=(-1,1,-1), 平面ACD 的一个法向量为v =(0,0,1), 设二面角F -AC -D 的平面角为θ, 由图可知,二面角θ为锐二面角, 则cos θ=|μ·v ||μ||v |=33,∴二面角F -AC -D 的余弦值为33. 选择②FC 与平面ABCD 所成的角为π6:∵P A ⊥平面ABCD ,取BC 中点E ,连接AE ,取AD 的中点M ,连接FM ,CM ,则FM ∥P A ,且FM =1,∴FM ⊥平面ABCD , FC 与平面ABCD 所成角为∠FCM , ∴∠FCM =π6,在Rt △FCM 中,CM =3,又CM =AE ,∴AE 2+BE 2=AB 2,∴BC ⊥AE , ∴AE ,AD ,AP 两两垂直,以AE ,AD ,AP 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,∵P A =AB =2,∴A (0,0,0),B (3,-1,0),C (3,1,0),D (0,2,0),E (3,0,0),F (0,1,1),P (0,0,2),∴AF→=(0,1,1),CF →=(-3,0,1), 设平面F AC 的一个法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧ m ·AF →=y +z =0,m ·CF →=-3x +z =0,取x =3,得m =(3,-3,3),平面ACD 的一个法向量为n =(0,0,1),设二面角F -AC -D 的平面角为θ,由图可知,二面角θ为锐二面角,则cos θ=|m ·n ||m ||n |=217.∴二面角F -AC -D 的余弦值为217.选择③∠ABC =π3:∵P A ⊥平面ABCD ,∴P A ⊥BC ,取BC 中点E ,连接AE ,∵底面ABCD 是菱形,∠ABC =60°,∴△ABC 是正三角形,∵E 是BC 的中点,∴BC ⊥AE ,∴AE ,AD ,AP 两两垂直,以AE ,AD ,AP 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,∵P A =AB =2,∴A (0,0,0),B (3,-1,0),C (3,1,0),D (0,2,0),E (3,0,0),F (0,1,1),P (0,0,2),∴AF→=(0,1,1),CF →=(-3,0,1), 设平面F AC 的一个法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧ m ·AF →=y +z =0,m ·CF →=-3x +z =0,取x =3,得m =(3,-3,3),平面ACD 的一个法向量为n =(0,0,1), 设二面角F -AC -D 的平面角为θ,由图可知,二面角θ为锐二面角,则cos θ=|m ·n ||m ||n |=217.∴二面角F -AC -D 的余弦值为217.。

(全国通用)高考数学一轮复习第七章立体几何第六节空间直角坐标系、空间向量及其运算习题理【含答案】

(全国通用)高考数学一轮复习第七章立体几何第六节空间直角坐标系、空间向量及其运算习题理【含答案】

第六节空间直角坐标系、空间向量及其运算[基础达标]一、选择题(每小题5分,共25分)1.已知正方体ABCD-A1B1C1D1中,E,F分别是BB1,CD的中点,则DE与D1F的位置关系是()A.平行B.相交且垂直C.异面且垂直D.既不平行也不垂直1.C【解析】建立空间直角坐标系后,求得=0,所以,即DE与D1F垂直且DE与D1F是异面直线.2.两个非零向量a=(x1,y1,z1),b=(x2,y2,z2),则是a∥b的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.A【解析】a∥b且一个坐标为0是不能得到,所以必要性不满足,即是a∥b的充分不必要条件.3.已知空间四边形OABC中,点M在线段OA上,且OM=2MA,点N是BC的中点, =a,=b, =c,则=() A. a+b-c B.- a+b+cC. a-b+cD. a+b-c3.B【解析】∵点M在线段OA上,且OM=2MA,点N为BC的中点, +()++()+)=-,∵=a, =b, =c,∴=-a+b+c.4.已知长方体ABCD-A1B1C1D1,下列向量的数量积一定不为0的是()A.B.C.D.4.D【解析】选项A,当四边形ADD1A1为正方形时,可得AD1⊥A1D,而A1D∥B1C,可得AD1⊥B1C,此时有=0;选项B,当四边形ABCD为正方形时,可得AC⊥BD,可得AC⊥平面BB1D1D,故有AC⊥BD1,此时有=0;选项C,由长方体的性质可得AB⊥平面ADD1A1,可得AB⊥AD1,此时必有=0;选项D,由长方体的性质可得BC⊥平面CDD1C1,可得BC⊥CD1,△BCD1为直角三角形,∠BCD1为直角,故BC与BD1不可能垂直,即≠0.5.在边长为1的正方体ABCD-A1B1C1D1中,E,F分别是D1D,BD的中点,点G在棱CD上,且CG=CD,H是C1G的中点,则||为() A.B.C.D.5.D【解析】如图,以D为原点建立空间直角坐标系,则F,C1(0,1,1),G.因为H是C1G的中点,所以H,所以=-,则||=.二、填空题(每小题5分,共15分)6.已知向量a=(-4,2,4),b=(-6,3,-2),则a·b=;|a|=.6.226【解析】a·b=(-4)×(-6)+2×3+4×(-2)=22,|a|==6.7.已知空间四点A(-2,3,1),B(2,-5,3),C(10,0,10),D(8,4,a),如果四边形ABCD为梯形,则实数a的值为.7.9【解析】因为=(4,-8,2), =(8,5,7), =(2,-4,10-a), =(10,1,a-1),四边形ABCD为梯形,则,解得a=9,此时不平行.8.正方体ABCD-A1B1C1D1中,P为A1B1上任意一点,则DP与BC1始终.8.垂直【解析】因为=()·=()·=0,所以,即DP与BC1始终垂直.三、解答题(共20分)9.(10分)如图,正方体ABCD-A1B1C1D1中,E是棱A1D1的中点,H为平面EDB内一点,=(2m,-2m,-m)(m<0),证明:HC1⊥平面EDB.9.【解析】设正方体的棱长为a,则=(a,a,0),所以=(2m,-2m,-m)·=0,=(2m,-2m,-m)·(a,a,0)=0,所以,又DE∩DB=D,所以HC1⊥平面EDB.10.(10分)如图,在四棱锥P-ABCD中,M,N分别是AB,PC的中点,若ABCD是平行四边形.求证:MN∥平面PAD.10.【解析】取DP的中点E,连接AE,EN,则,所以,所以共面,且MN不在平面PAD上,所以MN∥平面PAD.[高考冲关]1.(5分)一个四面体的顶点在空间直角坐标系Oxyz中的坐标分别是(0,0,0),(0,1,1),(1,0,1),(1,1,0),该四面体的体积为()A.B.C.1 D.21.A【解析】在空间直角坐标系中作出四面体的四个顶点,可知该四面体是棱长为的正四面体,所以体积为.2.(5分)设P(2,3,4)在三个坐标平面上的射影分别为P1,P2,P3,则向量:①(6,-3,-4);②(4,-3,-4);③(0,-3,4);④(2,-6,4).其中与平面P1P2P3平行的向量有().A.1个B.2个C.3个D.4个2.C【解析】由题意可知,P1,P2,P3的坐标分别为(2,3,0),(2,0,4),(0,3,4),可以求得平面P1P2P3的一个法向量为(6,4,3),①不与该法向量垂直,所以不与平面P1P2P3平行,②③④与该法向量垂直,所以与平面P1P2P3平行.3.(5分)在正方体ABCD-A1B1C1D1中,棱长为a,M,N分别为A1B和AC上的点,A1M=AN=a,则MN 与平面BB1C1C的位置关系是() A.在平面上B.相交C.平行D.以上都不正确3.C【解析】建立如图所示的空间直角坐标系,则点M a,,N,所以=-,0,-与平面BB1C1C的法向量=(0,a,0)垂直,且MN不在平面BB1C1C上,所以MN与平面BB1C1C的位置关系是平行.4.(5分)已知空间四边形ABCD中, =a-2c, =5a+6b-8c,对角线AC,BD的中点分别为E,F,则=.4.3a+3b-5c【解析】=3a+3b-5c.5.(5分)已知空间图形A-BCD,E,F,G,H,M,N分别是AB,BC,CD,DA,AC,BD的中点,求证:EG,FH,MN交于一点且互相平分.5.【解析】设P1,P2,P3分别为EG,FH,MN的中点,又设=a, =b, =c,则)=)=(a+b+c).同理可证 (a+b+c),(a+b+c),∴P1,P2,P3三点重合.从而原命题得证.6.(10分)已知正方体ABCD-A1B1C1D1的棱长为1,M是棱AA1的中点,点O是对角线BD1的中点.(1)求证:BD1⊥AC;(2)求证:OM是异面直线AA1与BD1的公垂线.6.【解析】(1)以D为原点,DC,DA,DD1所在的直线分别为x,y,z轴,建立空间直角坐标系,则D(0,0,0),C(1,0,0),B(1,1,0),D1(0,0,1),M,O.∴=(-1,-1,1), =(1,-1,0),∴=(-1)×1+(-1)×(-1)+1×0=0,∴,即BD1⊥AC.(2) =(0,0,1), =(-1,-1,1),∵=0, =0,∴OM⊥AA1,OM⊥BD1,即OM是异面直线AA1与BD1的公垂线.7.(10分)已知正三棱柱ABC-A1B1C1的侧棱长为2,底面边长为1,M是BC的中点.在直线CC1上是否存在一点N,使得MN⊥AB1?若存在,请你求出它的位置;若不存在,请说明理由.7.【解析】假设在直线CC1上存在一点N,使得MN⊥AB1.如图,建立空间直角坐标系,有A(0,0,0),B,M,0,N(0,1,z),B1,∴.∵,∴=-+2z=0,解得z=,N,即CN=时,AB1⊥MN.。

人教版高中总复习一轮数学精品课件 第7章 立体几何 7.6 立体几何中的向量方法

人教版高中总复习一轮数学精品课件 第7章 立体几何 7.6 立体几何中的向量方法
.
||
||
4.空间夹角的向量表示
(1)异面直线所成的角
若异面直线 l1,l2 所成的角为 θ,其方向向量分别是 u,v,
|·|
则 cos θ=|cos<u,v>|=
.
||||
(2)直线与平面所成的角
直线 AB 与平面 α 相交于点 B,设直线 AB 与平面 α 所成的角为 θ,直线 AB
(4)若空间向量a平行于平面α,则a所在直线与平面α平行.( × )
(5)两条直线的方向向量的夹角就是这两条直线所成的角.( × )
2.在正三棱柱ABC-A1B1C1中,AB=AA1,则AC1与平面BB1C1C所成角的正弦
值为( C )
2
A.
2
15
B.
5
6
C.
4
6
D.
3
建立如图所示的空间直角坐标系,设 AB=2,则 C1(√3,1,0),A(0,0,2),
l1∥l2
向量表示
μ1∥μ2⇔∃λ∈R,使得 μ1=λμ2
l1⊥l2
μ1⊥μ2⇔μ1·μ2=0
μ 是直线 l 的方向向量,n 是平面 α l∥α
的法向量
l⊥α
n1,n2 分别是平面 α,β 的法向量
μ⊥n⇔μ·n=0
μ∥n⇔∃λ∈R,使得 μ=λn
α∥β
n1∥n2⇔∃λ∈R,使得 n1=λn2
α⊥β
第二环节
关键能力形成
能力形成点1
利用空间向量证明平行、垂直
例1 如图,在多面体ABC-A1B1C1中,四边形A1ABB1是正方形,AB=AC,
BC=√2AB,B1C1
1
BC ,二面角A1-AB-C是直二面角.

高考数学一轮复习 立体几何中的向量方法(理)课件

高考数学一轮复习 立体几何中的向量方法(理)课件
(4)解方程组,取其中的一个解,即得法向量.
1.已知向量a=(-2,-3,1),b=(2,0,4),c=(-4,-6,2),
则下列结论正确的是
()
A.a∥c,b⊥c
B.a∥b,a⊥c
C.a∥c,a⊥b
D.以上都不对
解析:∵c=(-4,-6,2)=2(-2,-3,1),∴a∥c. 又a·b=-2×2+(-3)×0+1×4=0,∴a⊥b.

(2)设n1,n2分别是二面角α-l-β的两个面α,β的法向量, 则向量n1与n2的夹角(或其补角)的大小就是 二面角的平面 角的大小 (如图②③).
提示:(1)设出平面的法向量为n=(x,y,z); (2)找出(求出)平面内的两个不共线的向量的 坐标a=(a1,b1,c1), b=(a2,b2,c2); (3)根据法向量的定义建立关于x、y、z的方程组
1.设直线l1的方向向量为u1=(a1,b1,c1),直线l2的方向 向量为u2=(a2,b2,c2),则l1∥l2⇔u1∥u2⇔(a1,b1,c1) =k(a2,b2,c2)(k∈R); l1⊥l2⇔u1⊥u2⇔a1a2+b1b2+c1c2=0.
2.设直线l的方向向量为u=(a1,b1,c1),平面α的法向量为 n=(a2,b2,c2),则l∥α⇔u⊥n⇔a1a2+b1b2+c1c2=0; l⊥α⇔u∥n⇔(a1,b1,c1)=k(a2,b2,c2)(k∈R).
【注意】 利用空间向量方法求二面角时,注意结合图形判 断二面角是锐角还是钝角.
(2009·全国卷Ⅰ改编)如图,四棱锥S-ABCD中, 底面ABCD为矩形,SD⊥底面ABCD,AD= DC=SD=2, 点M在侧棱SC上,∠ABM=60°. (1)证明:M是侧棱SC的中点; (2)求二面角S-AM-B的余弦值.

向量法求空间角(高三一轮复习)

向量法求空间角(高三一轮复习)

A→1B·A→E=(A→B-A→A1)·(A→C+λA→A1)=-16λ.
所以cos〈A→1B,A→E〉=
→→ A1B·AE →→

|A1B||AE|
2-+λ2λ2,
因为异面直线A1B与AE所成角的余弦值为3102,所以 2+λ 2λ2=3102,解得λ=34,
所以C1E=1.
数学 N 必备知识 自主学习 关键能力 互动探究
因为AA1⊥平面ABC,故以点O为坐标原点,O→B
,O→C

→ AA1
的方向分别为x,y,
z轴的正方向,建立如图所示的空间直角坐标系,
数学 N 必备知识 自主学习 关键能力 互动探究
则A(0,-2,0),B(2 3,0,0),M(0,0,4),N( 3,-1,4),
则A→M=(0,2,4),B→N=(- 3,-1,4),
— 30 —
则nn··AA→→DB==--xx++z=3y0=,0, 取y= 3,
则n=(3, 3,3),
又因为C(-1,0,0),F0, 43,34,
所以C→F=1, 43,34,所以cos〈n,C→F〉=|nn|·|CC→→FF|=
6 21×
7=4 7 3, 4
数学 N 必备知识 自主学习 关键能力 互动探究
(1)证明:平面BED⊥平面ACD; (2)设AB=BD=2,∠ACB=60°,点F在BD 上,当△AFC的面积最小时,求CF与平面ABD 所成的角的正弦值.
数学 N 必备知识 自主学习 关键能力 互动探究
— 27 —
解 (1)证明:因为AD=CD,E为AC的中点,所以AC⊥DE,在△ABD和△CBD 中,因为AD=CD,∠ADB=∠CDB,DB=DB,所以△ABD≌△CBD,所以AB= CB,又因为E为AC的中点,所以AC⊥BE,又因为DE,BE⊂平面BED,DE∩BE= E,所以AC⊥平面BED,因为AC⊂平面ACD,所以平面BED⊥平面ACD.

人教课标A高考一轮复习精品课件8.7立体几何中的向量方法

§8.7立体几何中的向量方法基础知识自主学习要点梳理1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一___ 向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a,b是平面Q内两不共线向量,n为平面a的法向量,则求法向量的方程组为2 •空间向量与空间角的关系(1)设异面直线I], 12的方向向量分别为rri], m2,贝叫与I2所成的角疗满足____________ ・(2)设直线I的方向向量和平面a齢罢筒翻射%m2 为则直线I与平面a所成角疗满足(3)求二面角的大小①妬囹①卩馳(咤抄是土面角a—1—5的两个面内与棱I垂直的直线,则二面角的大小沪_______个半平面CG &的法向量,则二面角的大小疗满足cos i7= _______________________________cos〈rip nQ 或-cos〈n】,n»八刀第八匚—g/rjy M j r z J3.点面距的求法如图,设AB为平面G的一条斜线段,法向量,贝怕到平面Q的距离d 二n为平面a的______ ・I AB F II n I基础自测1.若直线I】, I?的方向向量分别为a二(2, 4, -4), b= (-6, 9, 6),则()BA.I]〃l2B. I】丄°c・I]与12相交但不垂直 D.以上均不正确解析Ta • b=-12+36-24=0, .・・a丄b,•I I]丄丨2・2•已知平面a 内有一个点M (1, -1, 2),平面a的一个法向量是n 二(6, -3,6),则下列点P 中)B. 鸟(-2, 0, 1)D. P (3, -3, 4)・・・n 丄,在选项A 中, 二(1, 4, 1),.•.n • =0. 在平面a 内的是( A. P (2, 3, 3) C. P (一4, 4, 0)解析 •・・n 二(6, -3, 6)是平面a 的法向量,MP MPMP3•已知两平面的法向量分别为m二(0, 1, 0),n二(0, 1, 1),则两平面所成的二面角为()A. 45°B. 135°C.45° 或135。

高考数学一轮复习第7章立体几何第6节立体几何中的向量方法教学案理含解析北师大版

高考数学一轮复习第7章立体几何第6节立体几何中的向量方法教学案理含解析北师大版第六节 立体几何中的向量方法[考纲传真] 能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用.1.异面直线的夹角设a ,b 分别是两异面直线l 1,l 2的方向向量,则a 与b 的夹角〈a ,b 〉l 1与l 2的夹角θ范围0<〈a ,b 〉<π0<θ≤π2关系cos 〈a ,b 〉=a ·b|a ||b |cos θ=|cos 〈a ,b 〉|=|a ·b ||a ||b |2.直线与平面的夹角设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α的夹角为θ,则sinθ=|cos 〈a ,n 〉|=|a ·n ||a ||n |. 3.二面角(1)如图①,AB ,CD 是二面角α­l ­β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(2)如图②③,n 1,n 2分别是二面角α­l ­β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).[常用结论] 点到平面的距离如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为|BO →|=|AB →·n ||n |.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)两直线的方向向量的夹角就是两条直线的夹角.( ) (2)直线的方向向量和平面的法向量的夹角就是直线与平面所成的角 ( ) (3)两个平面的法向量的夹角是这两个平面所成的二面角.( )(4)两异面直线夹角的范围是⎝ ⎛⎦⎥⎤0,π2,直线与平面所成角的范围是⎣⎢⎡⎦⎥⎤0,π2,二面角的范围是[0,π].( )[答案] (1)× (2)× (3)× (4)√2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( ) A.π4B .34π C.π4或34π D .π2或34πC [∵m =(0,1,0),n =(0,1,1), ∴m ·n =1,|m |=1,|n |=2,∴cos〈m ,n 〉=m ·n |m ||n |=22,∴〈m ,n 〉=π4.∴两平面所成的二面角为π4或34π,故选C.]3.如图所示,在正方体ABCD ­A 1B 1C 1D 1中,已知M ,N 分别是BD 和AD 的中点,则B 1M 与D 1N 夹角的余弦值为( )A.3010 B .3015 C.3030D .1515A [以D 为原点建立空间直角坐标系D ­xyz ,如图, 设AB =2,则N (1,0,0),D 1(0,0,2),M (1,1,0),B 1(2,2,2), ∴B 1M →=(-1,-1,-2), D 1N →=(1,0,-2),∴B 1M →·D 1N →=-1+4=3, |B 1M →|=6,|D 1N →|=5, ∴cos〈B 1M →,D 1N →〉=330=3010>0, ∴B 1M 与D 1N 夹角的余弦值为3010.故选A.] 4.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l 与α的夹角为________.π6 [设l 与α所成的角为θ,则sin θ=|cos 〈m ,n 〉|=12, 又θ∈⎣⎢⎡⎦⎥⎤0,π2,∴θ=π6.]5.过正方形ABCD 的顶点A 作线段PA ⊥平面ABCD ,若AB =PA ,则平面ABP 与平面CDP 所成的锐二面角为________.45° [如图,建立空间直角坐标系,设AB =PA =1,则A (0,0,0),D (0,1,0),P (0,0,1),由题意,AD ⊥平面PAB ,设E 为PD 的中点,连接AE ,则AE ⊥PD ,又CD ⊥平面PAD ,∴CD ⊥AE ,从而AE ⊥平面PCD .∴AD →=(0,1,0),AE →=⎝ ⎛⎭⎪⎫0,12,12分别是平面PAB ,平面PCD 的法向量,且〈AD →,AE →〉=45°.故平面PAB 与平面PCD 所成的锐二面角为45°.]求异面直线的夹角1.已知直三棱柱ABC ­A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1夹角的余弦值为( )A.32 B .155 C.105D .33C [在平面ABC 内过点B 作AB 的垂线,以B 为原点,以该垂线,BA ,BB 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系B ­xyz ,则A (0,2,0),B 1(0,0,1),C ⎝ ⎛⎭⎪⎫32,-12,0,C 1⎝ ⎛⎭⎪⎫32,-12,1,AB 1→=(0,-2,1),BC 1→=⎝ ⎛⎭⎪⎫32,-12,1,cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→|·|BC 1→|=25×2=105,故选C.] 2.如图,在四棱锥P ­ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB =2,∠BAD =60°.(1)求证:BD ⊥平面PAC ;(2)若PA =AB ,求PB 与AC 夹角的余弦值. [解] (1)证明:因为四边形ABCD 是菱形, 所以AC ⊥BD .因为PA ⊥平面ABCD ,所以PA ⊥BD . 又因为AC ∩PA =A ,所以BD ⊥平面PA C. (2)设AC ∩BD =O .因为∠BAD =60°,PA =AB =2, 所以BO =1,AO =CO = 3.如图,以O 为坐标原点,建立空间直角坐标系Oxyz ,则P (0,-3,2),A (0,-3,0),B (1,0,0),C (0,3,0). 所以PB →=(1,3,-2),AC →=(0,23,0). 设PB 与AC 所成角为θ,则 cos θ=⎪⎪⎪⎪⎪⎪PB →·AC →|PB →||AC →|=622×23=64. 即PB 与AC 夹角的余弦值为64. [规律方法] 用向量法求异面直线所成角的一般步骤 (1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线夹角的余弦值等于两向量夹角余弦值的绝对值.求直线与平面的夹角【例1】(2018·合肥一模)如图,在多面体ABCDEF中,四边形ABCD是正方形,BF⊥平面ABCD,DE⊥平面ABCD,BF=DE,M为棱AE的中点.(1)求证:平面BDM∥平面EFC;(2)若DE=2AB,求直线AE与平面BDM夹角的正弦值.[解] (1)连接AC,交BD于点N,连接MN,则N为AC的中点,又M为AE的中点,∴MN∥E C.∵MN平面EFC,EC平面EFC,∴MN∥平面EF C.∵BF,DE都垂直底面ABCD,∴BF∥DE.∵BF=DE,∴四边形BDEF为平行四边形,∴BD∥EF.∵BD平面EFC,EF平面EFC,∴BD∥平面EF C.又MN∩BD=N,∴平面BDM∥平面EF C.(2)∵DE⊥平面ABCD,四边形ABCD是正方形,∴DA,DC,DE两两垂直,如图,建立空间直角坐标系D­xyz.设AB=2,则DE=4,从而D(0,0,0),B(2,2,0),M(1,0,2),A( 2,0,0),E(0,0,4),∴DB→=(2,2,0),DM→=(1,0,2),设平面BDM的法向量为n=(x,y,z),则⎩⎨⎧n·DB→=0,n·DM→=0,得⎩⎪⎨⎪⎧2x+2y=0,x+2z=0.令x=2,则y=-2,z=-1,从而n=(2,-2,-1)为平面BDM的一个法向量.∵AE→=(-2,0,4),设直线AE与平面BDM所成的角为θ,则sin θ=|cos〈n,AE→〉|=⎪⎪⎪⎪⎪⎪n·AE→|n||AE→|=4515,∴直线AE 与平面BDM 夹角的正弦值为4515.[规律方法] 利用向量法求线面角的方法(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.如图,在正三棱柱ABC ­A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1夹角的余弦值; (2)求直线CC 1与平面AQC 1夹角的正弦值.[解] 如图,在正三棱柱ABC ­A 1B 1C 1中,设AC ,A 1C 1的中点分别为O ,O 1,连接OB ,OO 1,则OB ⊥OC ,OO 1⊥OC ,OO 1⊥OB ,如图所示,建立空间直角坐标系O ­xyz .因为AB =AA 1=2,所以A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,-1,2),B 1(3,0,2),C 1(0,1,2).(1)因为P 为A 1B 1的中点,所以P ⎝⎛⎭⎪⎫32,-12,2,从而BP →=⎝ ⎛⎭⎪⎫-32,-12,2,AC 1→=(0,2,2),故|cos 〈BP →,AC 1→〉|=|BP →·AC 1→||BP →||AC 1→|=|-1+4|5×22=31020.因此,异面直线BP 与AC 1夹角的余弦值为31020.(2)因为Q 为BC 的中点,所以Q ⎝⎛⎭⎪⎫32,12,0, 因此AQ →=⎝ ⎛⎭⎪⎫32,32,0,AC 1→=(0,2,2),CC 1→=(0,0,2).设n =(x ,y ,z )为平面AQC 1的法向量,则⎩⎨⎧AQ →·n =0,AC 1→·n =0,即⎩⎪⎨⎪⎧32x +32y =0,2y +2z =0.不妨取n =(3,-1,1).设直线CC 1与平面AQC 1所成角为θ,则sin θ=|cos 〈CC 1→,n 〉|=|CC 1→·n ||CC 1→||n |=25×2=55,所以直线CC 1与平面AQC 1夹角的正弦值为55. 求二面角【例2】 (2018·湖北二模)如图1,等腰直角三角形ABC 的底边AB =2,点D 在线段AC 上,DE ⊥AB 于点E ,现将△ADE 沿DE 折起到△PDE 的位置(如图2).图1 图2 (1)求证:PB ⊥DE ;(2)若PE ⊥BE ,直线PD 与平面PBC 的夹角为30°,求平面PDE 与平面PBC 所成的锐二面角的正弦值.[解] (1)证明:∵DE ⊥PE ,DE ⊥BE ,PE ∩BE =E , ∴DE ⊥平面PBE ,又PB 平面PBE ,∴PB ⊥DE .(2)由题知DE ⊥PE ,DE ⊥EB ,且PE ⊥EB , ∴DE ,BE ,PE 两两互相垂直.分别以ED →,EB →,EP →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系E ­xyz . 设|PE |=a (0<a <1),则B (0,2-a,0),D (a,0,0),C (1,1-a,0),P (0,0,a ), ∴PB →=(0,2-a ,-a ),BC →=(1,-1,0).设平面PBC的法向量为n=(x,y,z),则⎩⎨⎧PB→·n=0,BC→·n=0,∴⎩⎪⎨⎪⎧2-a y-az=0,x-y=0,∴平面PBC的一个法向量为n=(a,a,2-a),∵直线PD与平面PBC的夹角为30°,且PD→=(a,0,-a),∴sin 30°=|a2-a2-a|2a2×a2+a2+2-a2,∴a=2(舍)或a=25.∴平面PBC的一个法向量为n=⎝⎛⎭⎪⎫25,25,85.易知平面PDE的一个法向量为m=(0,1,0),设所求的锐二面角为θ,则cos θ=⎪⎪⎪⎪⎪⎪m·n|m||n|=26,所以sin θ=346,即平面PDE与平面PBC所成的锐二面角的正弦值为346.[规律方法] 利用向量计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐(钝)二面角.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.(2019·南昌重点中学联考)如图,四边形ABCD是矩形,沿对角线AC将△ACD 折起,使得点D在平面ABC内的射影恰好落在边AB上.(1)求证:平面ACD⊥平面BCD;(2)当ABAD=2时,求二面角D­AC­B的余弦值.[解] (1)证明:如图,设点D在平面ABC内的射影为点E,连接DE ,则DE ⊥平面ABC ,所以DE ⊥B C.因为四边形ABCD 是矩形,所以AB ⊥BC ,所以BC ⊥平面ABD ,所以BC ⊥AD . 又AD ⊥CD ,所以AD ⊥平面BCD ,而AD 平面ACD , 所以平面ACD ⊥平面BCD .(2)以点B 为原点,线段BC 所在的直线为x 轴,线段AB 所在的直线为y 轴,建立空间直角坐标系,如图所示.设AD =a ,则AB =2a ,所以A (0,-2a,0),C (-a,0,0). 由(1)知AD ⊥BD ,又AB AD=2,所以∠DBA =30°,∠DAB =60°,所以AE =AD cos∠DAB =12a ,BE =AB -AE =32a ,DE =AD sin∠DAB =32a , 所以D ⎝⎛⎭⎪⎫0,-32a ,32a ,所以AD →=⎝ ⎛⎭⎪⎫0,12a ,32a ,AC →=(-a,2a,0).设平面ACD 的法向量为m =(x ,y ,z ),则⎩⎨⎧m ·AD →=0,m ·AC →=0,即⎩⎪⎨⎪⎧12ay +32az =0,-ax +2ay =0.取y =1,则x =2,z =-33, 所以m =⎝ ⎛⎭⎪⎫2,1,-33. 因为平面ABC 的一个法向量为n =(0,0,1),所以cos 〈m ,n 〉=m ·n|m ||n |=-3322+12+⎝ ⎛⎭⎪⎫-332=-14. 所以二面角D ­AC ­B 的余弦值为14.1.(2018·全国卷Ⅱ)如图所示,在三棱锥P ­ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M ­PA ­C 为30°,求PC与平面PAM 夹角的正弦值.[解] (1)证明:因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3.连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知PO ⊥OB .由OP ⊥OB ,OP ⊥AC ,OB ∩AC =O ,知PO ⊥平面AB C.(2)如图,以O 为坐标原点,OB →的方向为x 轴正方向,建立空间直角坐标系O ­xyz . 由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP →=(0,2,23).取平面PAC 的一个法向量OB →=(2,0,0).设M (a,2-a,0)(0<a ≤2),则AM →=(a,4-a,0). 设平面PAM 的法向量为n =(x ,y ,z ). 由AP →·n =0,AM →·n =0得⎩⎨⎧2y +23z =0,ax +4-a y =0,可取n =(3(a -4),3a ,-a ),所以cos 〈OB →,n 〉=23a -423a -42+3a 2+a 2.由已知可得|cos 〈OB →,n 〉|=32, 所以23|a -4|23a -42+3a 2+a2=32,解得a =-4(舍去)或a =43, 所以n =⎝ ⎛⎭⎪⎫-833,433,-43.又PC →=(0,2,-23),所以cos 〈PC →,n 〉=34. 所以PC 与平面PAM 夹角的正弦值为34. 2.(2016·全国卷Ⅱ)如图所示,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ;(2)求二面角B ­D ′A ­C 的正弦值.[解] (1)证明:由已知得AC ⊥BD ,AD =CD . 又由AE =CF 得AE AD =CF CD ,故AC ∥EF .因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4.由EF ∥AC 得OH DO =AE AD =14. 所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H ,所以D ′H ⊥平面ABCD .(2)如图,以H 为坐标原点,HF →的方向为x 轴正方向,HD →的方向为y 轴正方向,HD ′→的方向为z 轴正方向,建立空间直角坐标系H ­xyz ,则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3). 设m =(x 1,y 1,z 1)是平面ABD ′的法向量,则⎩⎨⎧ m ·AB →=0,m ·AD ′→=0,即⎩⎪⎨⎪⎧ 3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的法向量,则 ⎩⎨⎧ n ·AC →=0,n ·AD ′→=0,即⎩⎪⎨⎪⎧ 6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1).于是cos 〈m ,n 〉=m·n |m||n |=-1450×10=-7525, sin 〈m ,n 〉=29525. 因此二面角B ­D ′A ­C 的正弦值是29525.。

高考数学一轮复习方案 立体几何第六节 立体几何中的向量方法课件


证明 如图所示建立空间直角坐标系 D-xyz,则有 D(0,0,0)、 A(2,0,0)、C(0,2,0)、C1(0,2,2)、E(2,2,1)、F(0,0,1),所以F→C1 = (0,2,1)、 D→A=(2,0,0)、A→E=(0,2,1).
(2)证明线面垂直 ①一种思路是证明这条直线的方向向量与平面的法向量平行, 依据是两条平行直线中的一条垂直于一个平面,另一条也垂直于这 个平面;另一种思路是证明直线所对应的向量与平面内两条相交直 线所对应的向量垂直,依据线面垂直的判定定理. ②证明面面垂直:转化为证明线面垂直.
(3)证明平行与垂直 结论一:设 A、B 是直线 m 上的点,C、D 是直线 n 上的点, 现有 m∥n⇔A→B∥C→D(AB、CD 不重合);m⊥n⇔A→B·C→D=0.利用这 一结论还可以进一步解决直线与平面平行、直线与平面垂直、平面 与平面平行及平面与平面垂直等问题. 结论二:设 n 是平面 α 的一个法向量,直线 a⊄平面 α,若 a⊥n, 则 a∥α. 结论三:设 n 是 α 的一个法向量,若 a∥n,则 a⊥α.
解析 ∵A→B=(2,2,1),A→C=(4,5,3),设 n=(x,y,1). 则由nn··AA→ →CB= =00, ⇒42xx+ +52yy+ +31= =00., ∴ n= (12, -1,1). 于是单位法向量为±|nn|=±23(12,-1,1)=±(13,-23,23).
点评 一般情况下求法向量用待定系数法.由于法向量没规定 长度,仅规定了方向,所以有一个自由度,可以把 n 的某个坐标设 为 1.再求另两个坐标.平面法向量是垂直于平面的向量,故法向量 的相反向量也是法向量,所以本题的单位法向量应有两解.
(2)设向量 n=(x,y,z)是平面 DA1E 的一个法向量,则 n⊥ D→E, n⊥D→A1. 故 2y+z=0,2x+4z=0.

高三数学《师说》系列一轮复习 立体几何中的向量方法课件 理 新人教B版


5. 求有关的角 在立体几何中,涉及的角有异面直线所成的角、直线与平面所 成的角、二面角等.关于角的计算,均可归结为求两个向量的夹角. a· b 对于空间向量 a, b,有 cos〈 a, b〉= .利用这一结论,我 |a||b| 们可以较方便地处理立体几何中的角的问题. 结论一:设 A∈a, B∈a, C∈b, D∈ b 且直线 a 与 b 是异面直 → → 线,则〈AB,CD 〉就是异面直线 a 与 b 所成的角或它的补角.
(2)直线 l 的向量方程 → = ta 由 (1)可知,直线 l 上任一点 P,一定存在实数 t,使AP 解此式可以看作是直线 l 的参数方程. 直线 l 的参数方程还可以作如下表示: 对空间任一确定的点 O(如图所示 ) ①
→ 点 P 在直线 l 上的充要条件是存在唯一的实数 t 满足等式: OP= → OA+ ta ② → → → → → → 如果在 l 上取AB= a, 则上式可化为: OP= OA+ tAB= OA+ t(OB → → → -OA)= (1- t)OA+ tOB. ③ ①或②或③都叫做空间直线的向量参数方程. 1 → 1 → → → t= 时,M 为线段 AB 的中点, OM= (OA+ OB)为线段AB的中 2 2 点的向量形式.
4.利用空间向量证明平行关系与垂直关系 (1)证明线面平行或面面平行 ①证明线面平行:第一种思路是证明这条直线的方向向量与这 个平面的法向量垂直,依据是直线与平面平行的定义——直线与平 面无公共点;第二种思路是证明这条直线的方向向量与这个平面内 某直线的方向向量平行,依据是线面平行的判定定理;第三种思路 是证明直线的方向向量与这个平面共面,依据是共面向量定理. ②证明面面平行:一种思路是证明两个平面的法向量平行,依 据是垂直于同一直线的两个平面平行;另一种思路是证明其中一个 平面的两条相交直线对应的向量与另一个平面内的两条相交直线对 应的向量分别平行,依据是面面平行的判定定理.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

π [如图,以 A 为原点,以A→B,A→E(AE⊥ AB),AA1 所在直线分 6 别为 x 轴、y 轴、 z 轴(如图)建立空间直⻆坐标系,设 D 为 A1B1 的中点, 则 A(0,0,0),C1(1, 3,2 2),D(1,0,2 2),∴AC1=(1, 3,
2 2),A→D=(1,0,2 2). ∠ C1AD 为 AC1 与平面 ABB1A1 所成的⻆,
A. 30 10
B. 30 15
C. 30 30
D. 15 15
A [以 D 为原点建立空间直⻆坐标系 D xyz,如图,
设 AB=2,则 N(1,0,0),D1(0,0,2),M(1,1,0),B1(2, 2,2),
∴B1M=(-1,-1,-2),
D1N=(1,0,-2), ∴B1M·D1N=-1+4=3,
1),
∴E→F=(0,-1,1),BC1=(2,0,2),∴E→F·BC1=2,
∴cos 〈E→F,BC1〉= 2 =1,则 EF 和 BC1 所成的⻆是 60°.] 2×2 2 2
B.3π 4
C.π或3π 44
D.π或3π 24
C [∵ m=(0,1,0),n=(0,1,1),
∴m·n=1,|m|=1,|n|= 2,
∴cos 〈m,n〉= m·n = 2,∴〈m,n〉=π.
|m||n| 2
4
∴两平面所成的二面⻆为π或3π,故选 C.] 44
3.如图所示,在正方体 ABCD A1B1C1D1 中,已知 M,N 分 别是 BD 和 AD 的中点,则 B1M 与 D1N 所成⻆的余弦值为( )
AC1·A→D
cos ∠ C1AD=

|AC1||AD|
=(1, 3,2 2)·(1,0,2 2)= 3,
12× 9
2
又∵ ∠
C1AD∈
0,π 2

∴∠ C1AD=π.] 6
(对应学生用书第 134 ⻚) 考点 1 求异面直骤 (1)选择三条两两垂直的直线建立空间直⻆坐标系. (2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量. (3)利用向量的夹⻆公式求出向量夹⻆的余弦值. (4)两异面直线所成⻆的余弦值等于两向量夹⻆余弦值的绝对值.
y 轴,z 轴建立空间直⻆坐标系 B xyz,则 A(0,2,0),
B1(0,0,1),C
3,-1,0 22

C1
3,-1,1 22
,AB1=(0,-2,1),BC1=
3,-1,1 22

cos
〈AB1,BC1〉=|AABB11|··B|BCC11|=
2 5×
= 2
10,故选 C.] 5
[⺟题探究] 1.本例条件换为:“直三棱柱 ABC A1B1C1 中,AB=BC=AA1, ∠ ABC=90°,点 E,F 分别是棱 AB,BB1 的中点”,则直线 EF 和 BC1 所成的⻆是________. 60° [以 B 为坐标原点,以 BC 为 x 轴,BA 为 y 轴,BB1 为 z 轴,建立空间直⻆坐标系如图所示. 设 AB=BC=AA1=2,则 C1(2,0,2),E(0,1,0),F(0,0,
范围
0<〈a,b〉<π
0<θ≤π 2
关系
cos 〈a,b〉= a·b |a||b|
cos θ=|cos 〈a,b〉|=|a·b| |a||b|
2.直线与平面所成的⻆
设直线 l 的方向向量为 a,平面α的法向量为 n,直线 l 与平面α所成的⻆为θ,
则 sin θ=|cos_〈a,n〉|=|a·n|. |a||n|
(2017·全国卷Ⅱ )已知直三棱柱 ABC A1B1C1 中,∠ ABC=120°,AB= 2,BC=CC1=1,则异面直线 AB1 与 BC1 所成⻆的余弦值为( )
A. 3 2
B. 15 5
C. 10 5
D. 3 3
C [在平面 ABC 内过点 B 作 AB 的垂线,以 B
为原点,以该垂线,BA,BB1 所在直线分别为 x 轴,
|B1M|= 6,|D1N|= 5,
∴cos 〈B1M,D1N〉= 3 = 30>0, 30 10
∴B1M 与 D1N 所成⻆的余弦值为 30.故选 A.] 10
4.如图,正三棱柱(底面是正三⻆形的直棱柱)ABC A1B1C1 的底面
边⻓为 2,侧棱⻓为 2 2,则 AC1 与侧面 ABB1A1 所成的⻆为________.
=-1,则 l 与α所成的⻆为( ) 2 A.30°
B.60°
C.120°
D.150°
A [由于 cos 〈m,n〉=-1,所以〈m,n〉=120°,所以直线 l 与α所成的 2
⻆为 30°.] 2.已知两平面的法向量分别为 m=(0,1,0),n=(0,1,1),则两平面所成的
二面⻆为( )
A.π 4
3.二面⻆ (1)如图①,AB,CD 是二面⻆α l β的两个面内与棱 l 垂直的直线,则二面⻆的
大小θ=〈A→B,C→D〉.
(2)如图②③,n1,n2 分别是二面⻆α l β的两个半平面α,β的法向量,则二面⻆ 的大小θ满足|cos θ|=|cos 〈n1,n2〉|,二面⻆的平面⻆大小是向量 n1 与 n2 的夹⻆(或 其补⻆).
(3)两个平面的法向量所成的⻆是这两个平面所成的⻆.( )
(4)两异面直线夹⻆的范围是
0,π 2
,直线与平面所成⻆的范围是
0,π 2
,二面
⻆的范围是[0,π].( )
[答案] (1)× (2)× (3)× (4)√
二、教材改编
1.已知向量 m,n 分别是直线 l 和平面α的方向向量和法向量,若 cos 〈m,n〉
[常用结论] 点到平面的距离
如图所示,已知 AB 为平面α的一条斜线段,n 为平面α的法向量,则 B 到平面 α的距离为|B→O|=|A→B·n|.
|n|
一、思考辨析(正确的打“√”,错误的打“×”)
(1)两直线的方向向量所成的⻆就是两条直线所成的⻆.( )
(2)直线的方向向量和平面的法向量所成的⻆就是直线与平面所成的⻆.( )
第六节 立体几何中的向量方法
[考点要求] 能用向量方法解决直线与直线、直线与平面、平面与平面的夹 ⻆的计算问题,了解向量方法在研究立体几何问题中的应用.
(对应学生用书第 133 ⻚)
1.异面直线所成的⻆ 设 a,b 分别是两异面直线 l1,l2 的方向向量,则
a 与 b 的夹⻆〈a,b〉
l1 与 l2 所成的⻆θ
相关文档
最新文档