三相三线制电能表错误接线分析及电量纠正

合集下载

三相三线电能表错误接线分析

三相三线电能表错误接线分析

U12 U bc
表1 电压、电流相位角
U32
I1
I2
U12 300° 293° 173°
U1
U b
基本判断: 1. 为正相序 2. U1为基准相
U 32 U ac
90°-φ
1201°73°
293° 300°
I1 Ia
φ
U 3 U a
150°-φ φ
240°I2 Ic
U c U 2
U ab Ⅰ
ⅡU cb
U ab
U a
a
b
c
Ia
Ic
Ia
30°φ
U cb
A
Ic φ
B C
U c
U b
二、电能表正确接线
2. 功率表达式
P UabIa cos(30 ) UcbIc cos(30 )
UI(cos30 cos sin 30 sin cos30 cos sin 30 sin)
测量U1、U2、U3对地电 压,对地电压为0V为b
相。
第二步:电压、电流测量
A
测量U12、U32线电压, B
测量I1和I2电流。
C
U12 Ⅰ
1
I1
Ⅱ U32
2
3
I2
三、错误接线检查方法与步骤
第三步:判断电压相 序
测量 U12 与 U32 的相位角,如果为
300°是正相序。 A
若相位角为60°,
B C
则是逆相序。
U12 Ⅰ
1
I1
Ⅱ U32
2
3
I2
三、错误接线检查方法与步骤
假设b相位
置在U1,那么
U1、U2、U3对

三相三线有功电能表常见错误接线解析

三相三线有功电能表常见错误接线解析

三相三线有功电能表常见错误接线解析电能表是电能计量的重要器具,它的准确可靠直接关系到供用双方的利益,是供用双方关注的焦点,同时也是计量工作的重点。

在日常、检测和维护工作中,经常接触到计量高电压、大容量的三相三线有功电能表错误接线。

在这种错误的运行状态下,即使电能表和互感器本身的准确度很高,也达不到准确计量的目的。

错误接线常常会使计量的电能值发生错误甚至无法计量,严重的还可能造成人身伤亡或仪器仪表、设备的损坏,同时也会给企业带来一定的经济损失。

因此判断和分析电能计量装置接线错误类型,并对错误电量进行准确计算,是保证供用电双方利益的关键。

1 三相三线有功电能表正确接线在电力系统和电力用户中,计量装置的错误接线是有可能发生的,若有人为窃电的话,错误的接线更是花样百出。

单相电能表或直接接入式三相表,其接线较为简单,差错少,即使接线有错误也比较容易发现和改正;而高压大工业用户所使用的经互感器接入的三相三线有功电能表,则比较容易发生错误接线。

因为是电流、电压二次回路两者的结合,再加上极性反接和断线等就有很多种可能的接线方式。

1.1 三相三线有功电能表的正确接线图1是三相三线有功电能表经电流互感器和电压互感器计量系统中有功电能表的接线图:在没有中性线的三相三线系统中,IU+IV+IW=0,因此不论负载是否对称,都可以不用其中一相电流就能准确计量三相电能。

不论负载是否对称,三相三线有功电能表计量的功率是元件1和元件2各自计量的功率之和,即电能表计量的功率表达式是P=UUVIU+UWVIW。

1.2 三相三线有功电能表接线的判别方法对于三相三线有功电能表的带电检查,需要经过对相关数据的测量和对各相量的分析,才可以得出错误接线的接线方式。

在这里,我们主要分析的是电能表有计量的情况,在此情况下需要测试的有关数据有各线电压值、电流值、UUV 与IU相量夹角、UWV和IW的相量夹角、UUV与UWV的相量夹角。

具体分析步骤如下:三相三线带电线路检查,相关数据测量。

简析三相电能表错误接线及退补电量计算

简析三相电能表错误接线及退补电量计算

简析三相电能表错误接线及退补电量计算摘要:供电线路运行过程中需要格外的重视电力计量工作针对于电力运行发展起到的重要影响,若是三相电能表发生接线错误,将会使得计量数据出现极为严重的错误,在实际运用相关数据的时候,也会给技术人员造成比较大的影响。

本文重点分析的就是三相电能表错误接线和退补电量计算等相关的问题。

关键词:三相电能表;错误接线;退补电量计算在输电线路实际运行的过程中,电能表还是应该采取相对于合适的接线方式,若是在接线过程中出现错误,将会直接影响到电路的正常运行,这也是确保线路电路电能测量数据更加准确的可靠保障【1】。

在进行电能表的接线设计中,若是出现接线问题,还是难免会产生极大的负面影响,针对于输电线路测量的数据准确度,也无法获取可靠的保障,甚至于引发较大的损失。

为了将这样的问题及时的处理,输电测量技术人员应该保证正确的接线方案,结合现阶段三相电能表接线错误的基本形式落实对应的电力测量研究工作。

一、三相电能表正常接线方式的相关数据三相电能表测量计量装置接线过程中应该慎重的考虑接线方式的准确度,这种准确度的检验可以通过线路的检查以及测量的具体手段及时地分析出来。

若是正确的接线方式,线路三相负荷能够保持在相对于平衡的状态之下,并且在系统之中的电能可以真正地符合对称的基本要求。

当确定了较为正确的接线方式,可以对相关的数据展开分析,同时明确需要落实的退补电量计算,对所运用到模型和公式等起到支撑作用【2】。

二、三相电能表错误接线方式数据分析在进行电路测量的过程中,技术往往需要经过适当的验证,同时结合着测量装置接线错误的实际案例加以探讨,保证将错误的接线方式适当的总结,从而晚完成对应的数据分析。

(一)三相接线中一相电流极性接线错误针对于三相表计量装置的实际情况加以分析,若是一相电流互感器产生了极性接反问题,这种情况需要及时地做出相应的判断,保证将实际的情况做出合理化的分析,明确这种问题就是当前三相电能表接线过程中较为常见的错误。

三相三线电能表错误接线检查与分析

三相三线电能表错误接线检查与分析

则 三 相 三 线 电能 表 测 量 的有 功 功 率 P = P + P 2 , 即 等 于 三 相 三相 二 元 件接 线 . 接线较 为复杂, 也 是 现 场 应 用 最 多 的 一 种 接 有 功 功 率
高监 控 系统抵 御 恶 劣 环 境 的技 术 水 平 , 提高其监控性能。
, J 0 C A R B O N 0 R L D 2 0 1 7 / 5
低碳技术
■一 线 电能表 错 误 接 线检 查 与分 析
马中军 ( 国网四J 1 I 省电 力公司 德阳 供电 公司, 四川德阳6 1 8 0 0 0 )
4 在输电线路上应用视频监控技术的具体指标
4 . 1反外力破坏指标
反 外 力破 坏视 频 监 控 系统 的应 用 , 主要 是 用 来 抵 御 高 压 输 电 线路 遭 受 外 来 因素 的破 坏 。 ① 要发挥其预警功能 , 对 于 人 为偷 盗 电 力设 备 、 造成塔体 变形 . 车辆 撞 击杆 塔 等 外 力破 坏 行 为, 通过红外监测信号进行预警 , 及 时提 示 运 行 维护 人 员 并提
线 路 的 建 设 与 安 全 运 行 也 是 电 力行 业发 展 的 重要 内容 。 随 着 输 电 线路 范 围 、 面积的扩 大, 加 强 对 其 进 行 监 控 与 管理 , 非 常
必 要 。视 频 监 控 技 术 的 应 用 , 显 著 的 降低 了输 电线 路 巡 查 的 难 度, 减 少 了工作 量 , 提 高 了巡 检 、 监控 的 效 率 和 质 量 , 为 促 进 输
是 保 证 准确 计 量 的前 提 之 一 , 但 在 实 际 运行 中 , 计 量 装 置错 误 接 线 的情 况 时有 发 生 , 特 别 是 少数 不 法 分子 为 达 到 窃 电 目的 ,

三相三线错误接线分析及差错电能量计算(续一)

三相三线错误接线分析及差错电能量计算(续一)

三相三线错误接线分析及差错电能量计算(续一)三相三线接线方式是电力系统中常用的一种方式,但是在实际应用中可能出现错误接线的情况。

本文旨在分析三相三线错误接线的原因及差错电能量计算方法。

一、三相三线接线方式介绍三相三线接线方式是指将三个相位以及一个中性线连接起来,以形成一个三相电力系统,中性线通常用于连接电路地线。

三相三线接线方式通常应用于低压配电系统中,包括住宅、商业和工业区域。

在三相三线接线方式中,三相之间的线电压为相邻两相差的电压,即线电压为根号3 倍相电压。

三相之间的相位差为120 度,按照正序排列,即A 相电压与B 相电压为正常相次序,B 相电压与C 相电压为正常相次序,C 相电压与A 相电压为正常相次序。

三相之间的负序电压应为相同的电压值,但是相位依次后移120 度。

二、三相三线错误接线原因三相三线接线方式中,可能会出现错误接线的情况。

常见的错误接线原因包括电源相序错乱、中性线短路、负载相位接错。

1.电源相序错乱电源相序错乱是指三相电源相序连接错误,通常由于安装人员安装电缆或插头时未仔细检查导致。

电源相序错乱会导致三相电压不同,三相负载不平衡,甚至损坏负载设备。

2.中性线短路中性线短路是指中性线与相线之间的短路,通常由于电缆损坏或插头松动导致。

中性线短路会导致额定电压下电流增加,从而加热电缆,甚至引发火灾。

3.负载相位接错负载相位接错是指负载设备的相序连接错误,通常由于负载设备或电缆接线极性标志不清晰导致。

负载相位接错会导致三相负载不平衡,影响设备性能,甚至损坏设备。

三、差错电能量计算方法差错电能量是指由于三相三线错误接线导致的电能损失或多余电能。

计算差错电能量需要考虑错误接线对电路电压、电流、功率、电能的影响。

1.电压、电流计算在三相三线接线方式中,计算差错电能量需要先计算错误接线之后的电路电压、电流。

如果相位多余(如A 相连接了两个设备),则要先计算每个设备的电流,再计算总电流。

电压和电流的计算可以通过模拟软件进行模拟,或利用相关数据记录仪进行实测。

三相三线智能电能表错误接线电量退补的分析计算

三相三线智能电能表错误接线电量退补的分析计算

三相三线智能电能表错误接线电量退补的分析计算作者:蒋东晓来源:《读写算·教研版》2015年第02期摘要:当电能表出现错误接线时就不能正确计量客户发生的电量,需要通过分析计算确定客户实际使用的电量,进行电量的退补,才能保证供电企业按照现行电价制度准确进行电费核算。

本文结合实例详细分析了三相三线智能电能表错误接线情况下电量退补的计算过程。

关键词:三相三线;错误接线;更正系数;实际电量;退补电量中图分类号:G632 文献标识码:B 文章编号:1002-7661(2015)02-013-02随着电子技术的快速发展以及营销系统远方抄表、远程控制等管理的需求,电子式智能电能表得到广泛的应用,已全面取代感应式电能表。

当电子式智能电能表发生接线错误时,如何分析计算更正系数,确定客户实际使用的电能,困扰着电力工作人员。

本文结合实例介绍三相三线电子式智能电能表错误接线情况下更正系数的分析计算及电量退补。

现场案例某10KV专变客户,安装高压电能计量装置,两台电压互感器变10000/100、Vv接线,两台电流互感器变比60/5、分相四线连接,且两台电流互感器为30/5、60/5双变比。

去年4月份县供电公司把该客户的感应式三相三线有功、无功电能表更换成三相三线电子式智能电能表。

今年4月份县供电公司对该客户电能计量装置例行检查中发现表计电流异常,现场用钳形电流表测量A相电流0.3A左右,C相电流0.6A左右。

随即检查计量装置的电流二次回路,发现由于安装人员的过失把C相电流互感器变比错接成30/5。

电能表接线错误期间,表计抄录有功电量为 =830652kWh、无功电量为 =15528kvarh,负荷为对称感性负荷,该客户执行两部制电价。

一、推算有功更正系数多功能电能表将每次采样电压、电流所转换的数字量进行数字相乘法,即可获得有功功率平均值,再将一段时间内的有功功率进行累加,就可以得到该段时间内电路消耗的有功电能。

根据检查情况电能表一元件和二元件电流互感器60/5=12、30/5=6,结合三相三线电能表有功电能的计量方式,电能表接线错误期间计量的有功功率为当三相电路对称时,,可得三相电路对称时,电能表正确接线计量的有功功率为从而可以得到有功更正系数为①式二、推算无功更正系数目前使用的大多数电子式多功能电能表和智能表是将电压取样值移相,相当于电流取样值与延时5ms的电压取样值进行数字相乘,即可获得无功功率平均值,再将一段时间内的无功功率进行累加,就可以得到该段时间内电路的无功电能,如“电压移相相量图”所示。

三相三线错误接线分析及差错电能量计算(续二)

三相三线错误接线分析及差错电能量计算(续二)

农村电工第29卷2021年第6期5.1.2.3绘制错误接线状态下现场更正接线示意图错误接线状态下现场更正接线示意图如图8所示。

结论:(1)电压接入:wvu ;(2)电流接入:I w ,I u ;(3)电流互感器极性接反:u 相。

5.1.2.4写功率表达式、计算更正系数功率表达式为P ′=P 1′+P 2′=U 12I 1cos (330°+φ)+U 32I 2cos (210°+φ)=UI sin φ因为φ=-15°,所以tan φ=-0.2679所以更正系数为K =P P ′=3UI cos φUI sin φ=15.1.2.5计算差错电能量、分析表计运行特点及电能量退补结论例3:接线错误期间抄见电能量示数:起1723.72、止1733.72,电压互感器变压比为10kV/0.1kV ,电流互感器变流比为50A/5A 。

(1)抄见电能量=(电能表止度-电能表起度)×倍率=(1733.72-1723.72)×100×10=10000(kWh )(2)实际用电能量=更正系数×抄见电能量=-6.4651×10000=-64561(kWh )(3)差错电能量=|实际用电能量|-|抄见电能量|=64561-10000=54561(kWh )结论:①表计运行慢,少计量;②在按抄见电能量预收的基础上,用户还应补交54561kWh 电能量对应的电费。

5.1.2.6绘制更正接线示意图更正接线示意图如图9所示。

5.2三相三线电能表电压互感器极性反接错误接线案例当电压互感器二次侧极性反接,电压相量图和二次电压值有不同的表现,接线图和相量图分别如图10和图11所示,比较分析一下,用2只单相电压互感器进行Vv 接线时,极性反接的相量图和线电压。

由此可知:当u 相极性反接时,U uv =100V ,U vw =100V ,U wu =173V ;当w 相极性反接时,U uv =100V ,U vw =100V ,U wu =173V ;当uw 相极性均反接时,U uv =100V ,U vw =100V ,U wu=100V。

三相三线电能表错误接线分析

三相三线电能表错误接线分析
这种错误会导致电能表无法正常工作,因为零线是用于形成电压回路的,没有接 入零线,电能表无法正常工作。在接入零线时,也需要注意零线的接入方式,确 保接入正确。
04
错误接线对计量的影响
计量不准确
电压、电流线圈接反
导致电能表反转,影响计量准确性。
极性错误
电流或电压的极性接反,导致计量值减小或增大。
相序错误
开展跨学科研究,将电能表错误接线分析与其他领域相结合,如电气 工程、计算机科学和数据分析等。
加强国际合作与交流,共同推进电能表错误接线分析领域的进步和发 展。
谢谢观看
情况。
提高工作人员的技能和素质
对工作人员进行定期培训,提 高其对电表接线、故障排查等 方面的技能水平。
加强工作人员的责任心和安全 意识,确保其在工作中能够认 真对待每一个环节,减少人为 失误。
建立完善的考核机制,对工作 人员的工作质量进行评估和监 督和纠 正错误接线情况。
互感器接入式电能表通过电流、电压互感器将线路中的大电流、高电压转化为小电 流、低电压后接入电能表,适用于电流、电压较大的场合。
03
常见错误接线方式分析
电压线接错相
总结词
电压线接错相是指将电能表上的A相电压线接到B相或C相上,或者将B相电压 线接到C相或A相上,或者将C相电压线接到A相或B相上。
详细描述
这种错误会导致电能表无法正确测量各相的电压,从而导致计量不准确。在严 重情况下,电压线的接错相还可能导致电能表损坏。
电流互感器极性接反
总结词
电流互感器极性接反是指将电流互感 器的正极和负极接反。
详细描述
这种错误会导致电能表无法正确测量 各相的电流,从而导致计量不准确。 在严重情况下,电流互感器极性接反 还可能导致电能表损坏。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三相三线制电能表错误接线分析及电量纠正
摘要:在电能表的使用过程中,确保接线不发生错误是实现电能表正确计量的前提条件。

本文对电能表的三种接线方式进行了简要阐述,说明了三相三线制电能表错误接线判断原理,分析了三相三线制电能表的常见接线错误,并对错误接线的电量进行了纠正,供相关工作人员参考借鉴。

关键词:电能表;三相三线制;错误接线;电量纠正
引言
电能表的计量精度主要取决于两个因素,其一是电能表自身的计量偏差,偏差越小则电能表的精度越大,反之亦然;其二是电能表在使用过程中的线路连接是否正确,线路连接正确,则电能表计量正常,反之则会出现较大的数值偏差。

由于技术的不断革新,电能表自身的精度不断提升,计量误差基本可以忽略,目前出现的电能表计量不准确的情况多由错误接线引起。

因此,对于电能表错误接线的分析及电量纠正对电能表的使用至关重要。

1 电能表接线方式概述
电能表的接线具有三种不同的方式,分别是:三相三线制接线方式、三相四线制接线方式以及单相接线方式。

单相结线的操作最为简单,接线中出现的错误比较容易发现;三相四线制的接线方式从原理上看与单项接线方式相同,接线操作也相对简单;三相三线制的接线方式属于二元件电能表接线,在实际测量中应用得最为广泛,但接线方式最为复杂,接线错误不容易发现。

如图一所示为三相三线电能表的接线原理图和相量图[1]。

图一三相三线电能表的接线原理图和相量图
2 三相三线制电能表错误接线判断原理
三相三线制接线的电能表中存在Ua、Ub、Uc三相电,对应着6种不同的接线方式,综合接线时出现的电压互感器极性错误连接的问题,可能出现的电能表线路错接情况有20种以上。

由于接线错误的种类纷繁复杂,给错误接线的判断工作带来了较大的难度[2]。

在出现电能表接线错误时,可以通过测量电压的方式判断PT极性是否出现反接;通过测量电流的方式判断CT极性是否出现反接;通过侧量功率和相角的方式得出电流与电压之间的夹角,并计算出cos的值,确定电压与电流的矢量相别后,分别计算不同元件的电流与电压的矢量相别,判断出现错误接线的原因。

3 三相三线制电能表常见错误接线分析
3.1电流互感器的一相中出现一次侧或二次侧的极性反接
假设某用户处于正常用电状态,且功率因数是95%,采用伏安相位法对各元件的电压相位、电流相位进行测量,通过电能表的表尾接线端子标识得出如下的相位关系:
和的相位差值为230度,与之间的相位差值为350度。

在这种情况下,首先应该测量电压互感器的二次侧,判断相序是否处于正常状态。

假设该电路中电压互感器的二测次相序处于正常状态,在进行PT二次侧向量测量后,可以得到线路中各个元件的向量图。

根据向量图中的准确相位关系可以判断出,接入电路中的电能表相电流为A相负值,则电能表的线路错误连接为电流互感器的A相出现了一次侧极性反接或二次侧的极性反接[3]。

错误接线的功率表达式为:
3.2电能表连接时电压互感器的相序逆排列
依旧假设某用户处于正常用电状态,且功率因数是95%,异常的情况为用户所使用的电能测量表计偏移量较小。

采用伏安相位法对各元件的电压相位、电流相位进行测量,通过电能表的表尾接线端子标识得出如下的相位关系:和的相位差值为230度,和之间的相位差值为50度。

在这种情况下,首先应该进行电压互感器二次相序进行测量,判断相序是否处于正常状态,经测试后得出PT二次的电压相序为bca并确定出相对应的向量图。

根据向量图中的准确相位关系可以判断出,此时电能表接入的第一电力元器件的电流和电压分别是和,则则电能表的线路错误连接为电压互感器的二次侧处于逆向排列,具体的相序排列为bac,其中电压互感器C相电流出现反进情况。

错误接线的功率表达式为:
3.3电能表连接两元件回线正确连接,但C相电流出现反进
在实际的电能表应用过程中,此种错误连接的情况出现的次数最多,在进行这种类别的错误接线分析中,工作人员通常容易被C相电流反进的表象所迷惑,忽略的实际的错接情况[4]。

在三相三线制电能表的实际测量应用中,出于对经济效益的考量常常将A、C两相的电流回线合并通过C相电流端子送出,而出现此种接线错误时,实际上的C相反进电流并非正常情况下C相电流矢量值的负值,而是A、C两相的矢量电流负值的向量和,即为B相矢量电流的负值。

错误接线的功率表达式为:
4 三相三线制电能表错误接线电量纠正
4.1计算错误接线更正系数
通过计算错误接线的更正系数可以从电能表所计量的错误电量中计算出实际的正确电量。

更正系数的计算方式为相同功率因数下,计算电能表正确接线所显示的电量A与电能表错误接线时所显示的错误电量之比,其结果即为该错接线路电能表的更正系数[5]。

更正系数的表达式为:
当线路发生B相断路故障时,线路的更正系数为:
4.2计算电能表的差错电量
在电能表正确连接电量与错误连接电量相比之后,计算出电能表错误测量的更正系数,将此时的更正系数与错误接线时的电量进行乘法运算可以直接得出在电能表正确接线情况下的线路正确电量。

二者的差值即为应当追补的实际电量,当计算出的电量为负值时,则为实际的应追退电量。

具体的公式表达如下:
应当追退的电量为:
当计算数值为正时是应追补电量,计算数值为负时是应退补电量。

5 结束语
随着科技的发展,电气元件的制造技术、制造工艺不断得到改善与提升,电能表自身的测量越来越精确,计量误差基本可以忽略。

但在电能表实际应用于测量中时,由于错误接线引起测量数据出现明显错误的情况时有发生,给供电、用电企业都带来了无法衡量的损失。

因此,在电能表的使用过程中要仔细检查线路连接情况,发现接线错误要及时进行分析和纠正,保障企业运行的效益。

参考文献
[1]崔璇.三相三线有功电能表错误接线的判断方法[J].中国高新科
技,2017,1(08):84-86.
[2]马中军.三相三线电能表错误接线检查与分析[J].低碳世界,2017(15):79-81.
[3]王宇霖,孙杰.含TV极性接反的三相三线电能计量装置错接线分析方法探究[J].电力需求侧管理,2017,19(S1):23-28+33.
[4]梁应才.三相三线有功电能表错误接线的判断方法探究[J].科技创新与应用,2016(35):238.
[5]黄开来.三相三线电能表三种错误接线向量图分析[J].计量与测试技
术,2009,36(02):38-39.。

相关文档
最新文档