电磁学第四版课后答案详解
电磁场与电磁波(第四版)习题解答

(3)
V/m (4)平均坡印廷矢量
rad/m Hz
第6章习题
习题6.2
解: (1)电场的复数形式 由
A/m
(也可用式求解磁场,结果一样)
将其写成瞬时值表达式 A/m
(2)入射到理想导体会产生全反射,反射波的电场为 与其相伴的反射波磁场为 总的电场 总磁场 (3)理想导体上的电流密度为
处的
和
; (2)求在直角坐标中点
处
与矢量
构成的夹角。 解: (1)由已知条件得到,在点(-3,4,-5)处, 则 (2)其夹角为
习题1.17在由
、
和
围成的圆柱形区域,对矢量
验证散度定理。 证: 在圆柱坐标系中 所以, 又 则
习题1.21求矢量
沿
平面上的一个边长为
的正方形回路的线积分,此正方形的两边分别与
A/m
习题6.4
解:
反射系数为 透射系数为 故反射波的电场振幅为 透射波的电场振幅为
V/m V/m
习题6.7
解:区域,本征阻抗
透射系数为 相位常数 则 电场: V/m 磁场: A/m
习题6.13
解:电场振幅最大值相距1.0m,则,得 因电场振幅第一最大值距离介质表面0.5m,即处,故反射系数。 由 又 可得到
,可见,矢量是磁场矢量。其源分布 (4)在球坐标系中
,可见,矢量是磁场矢量。其源分布
习题2.26
解: (1)由,得 故 (2)由,得 故 (3) 故 (4)
习题2.30
解: (1)在界面上法线方向的分量为 (2) (3)利用磁场边界条件,得 (4)利用磁场边界条件,得
习题3.3
解: (1) 由可得到
《电磁场与电磁波》(第四版)课后习题解答(全)

第一章习题解答【习题1.1解】222222222222222222222222222222222222cos cos cos cos cos cos 1xx x y z yx y z z x y z x y z x y z x y z x y z x y z x y z 矢径r 与轴正向的夹角为,则同理,矢径r 与y 轴正向的夹角为,则矢径r 与z 轴正向的夹角为,则可得从而得证a a b b g g a b g =++=++=++++=++++++++++==++ 【习题1.2解】924331329(243)54(9)(243)236335x y z x y z x y z x y z x y z x y z x y z x y z A B e e e e e e e e e A B e e e e e e e e e A B e e e e e e A B +=--+-+=-+=----+=---∙=--∙-+=+-=⨯()()-()(9)(243)19124331514x y z x y z x y z x y ze e e e e e e e e e e e =--⨯-+=---=--+【习题1.3解】已知,38,x y z x y z A e be ce B e e e =++=-++ (1)要使A B ⊥,则须散度 0A B =所以从 1380A B b c =-++=可得:381b c +=即只要满足3b+8c=1就可以使向量错误!未找到引用源。
和向量错误!未找到引用源。
垂直。
(2)要使A B ,则须旋度 0A B ⨯= 所以从1(83)(8)(3)0138xy zx y z e e e A B b c b c e c e b e ⨯==--+++=-可得 b=-3,c=-8 【习题1.4解】已知129x y z A e e e =++,x y B ae be =+,因为B A ⊥,所以应有0A B ∙= 即()()1291290xy z x y ee e ae be a b ++∙+=+= ⑴又因为 1B =; 所以221=; ⑵由⑴,⑵ 解得 34,55a b =±=【习题1.5解】由矢量积运算规则123233112()()()x y zx y z x x y y z ze e e A Ca a a a z a y e a x a z e a y a x e xyzB e B e B e B =?=-+-+-=++取一线元:x y z dl e dx e dy e dz =++则有xy z xyz e e e dlB B B dx dy dzB ?=则矢量线所满足的微分方程为 x y zd x d y d z B B B == 或写成233112()dx dy dzk a z a y a x a z a y a x==---=常数 求解上面三个微分方程:可以直接求解方程,也可以采用下列方法k xa a y a a z a d z a a x a a y a d y a a z a a x a d =-=-=-323132132231211)()()( (1)k x a y a z zdzz a x a y ydy y a z a x xdx =-=-=-)()()(211332 (2)由(1)(2)式可得)()(31211y a a x a a k x a d -=)()(21322z a a x a a k y a d -= (3))()(32313x a a y a a k z a d -= )(32xy a xz a k xdx -=)(13yz a xy a k ydy -= (4))(21xz a yz a k zdz -=对(3)(4)分别求和0)()()(321=++z a d y a d x a d 0)(321=++z a y a x a d0=++zdz ydy xdx 0)(222=++z y x d所以矢量线方程为1321k z a y a x a =++ 2222k z y x =++【习题1.6解】已知矢量场222()()(2)x y z A axz x e by xy e z z cxz xyz e =++++-+- 若 A 是一个无源场 ,则应有 div A =0即: div A =0y x zA A A A x y z∂∂∂∇⋅=++=∂∂∂ 因为 2x A axz x =+ 2y A by xy =+ 22z A z z cxz xyz =-+- 所以有div A =az+2x+b+2xy+1-2z+cx-2xy =x(2+c)+z(a-2)+b+1=0 得 a=2, b= -1, c= - 2 【习题1.7解】设矢径 r的方向与柱面垂直,并且矢径 r到柱面的距离相等(r =a ) 所以,2sssr ds rds a ds a ah πΦ===⎰⎰⎰=22a h π=【习题1.8解】已知23x y φ=,223y z A x yze xy e =+而 A A A A rot⨯∇+⨯∇=⨯∇=φφφφ)()(2222(6)3203xy zx y ze e e A xy x y e y e xyze x y z x yz xy ∂∂∂∇⨯==--+∂∂∂ 2223[(6)32]x y z A x y xy x y e y e xyze φ∴∇⨯=--+又y x z y x e x e xy ze y e x e 236+=∂∂+∂∂+∂∂=∇φφφφ 232233222630918603xy z x y z e e e A xyx x y e x y e x y ze x yz xy φ∇⨯==-+所以222()3[(6)32]x y z rot A A A x y xy x y e y e xyze φφφ=∇⨯+∇⨯=--+ +z y x e z y x e y x e y x 2332236189+-=]49)9[(3222z y x e xz e y e x x y x+--【习题1.9解】已知 222(2)(2)(22)x y zA y x z e x y z e x z y z e =++-+-+ 所以()()1144(22)0xyzyy x x z z x y z x yzx y z A A A A A A rot A A x y z y z z x x y A A A xz xz y y e e ee e e e e e ∂∂⎛⎫⎛⎫∂∂∂∂∂∂∂⎛⎫=∇⨯==-+-+- ⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭-++-+-=由于场A 的旋度处处等于0,所以矢量场A 为无旋场。
电磁场与电磁波第四版课后答案

答案:① aA =
1 14
(ax
+
2ay
−
3az
)
;②
A−B =
53 ;③ A • B = −11;
④
θ AB = 135.48 ; ⑤
A× C = −(4ax +13ay +10az ) ; ⑥
A •(B × C)=(A • B)× C = −42 ; ⑦
(A× B)× C = 2ax − 40ay + 5az 和
托克斯定理求解此线积分。
∫ ∫ 答案:① A •dl = π a4 ;② (∇ × A) dS = π a4 。
l
4
l
4
1-18 试在直角坐标系下证明: − 1 ∇2 (1 R)=δ(r − r′)。 4π
∫ 1-19 若矢量 A = a(R cos2 ϕ
R3 ),1 ≤ R ≤ 2 ,求
∇• AdV 。
⎡ 2 sinhξ cosη
⎢ ⎢
cosh 2ξ − cos 2η
⎢
答案:[M ] = ⎢−
2 coshξ sinη
⎢ cosh 2ξ − cos 2η
⎢
⎢
0
⎢⎢⎣
2 coshξ sinη cosh 2ξ − cos 2η
2 sinhξ cosη cosh 2ξ − cos 2η
0
⎤ 0⎥
⎥ ⎥ 0⎥ 。 ⎥ ⎥ 1⎥ ⎥⎥⎦
+ ay
y − 2x x2 + y2
。
1-22 已知 A = a a x + b a y + c a z ,写出圆柱坐标系和圆球坐标系下 A 的表达式。
答案: A = (a cosϕ + b sinϕ )ar + (b cosϕ − a sin ϕ )aϕ + caz ;
电磁场与电磁波(第四版)课后答案--谢处方-共138页

电磁场与电磁波(第四版)课后答案第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B g ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C g 和()⨯A B C g ;(8)()⨯⨯A B C 和()⨯⨯A BC 。
解 (1)23A x y z +-===-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11 (4)由cos AB θ===A B A B g,得1cos AB θ-=(135.5=o (5)A 在B 上的分量 B A=A cos AB θ==A B B g (6)⨯=A C 123502xyz-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502xyz-=-e e e 8520x y z ++e e e⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e ()⨯=A B C g (1014)x y z ---e e e g (52)42x z -=-e e(8)()⨯⨯=A B C 1014502xyz---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
电磁场与电磁波(第四版)课后答案__谢处方

电磁场 与电磁波(第四版) 课后答案第一章 习 题 解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e 52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的 分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。
解 (1)23A x y z +-===+-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由c o sAB θ=11238=A B A B ,得1c o s AB θ-=(135.5= (5)A 在B 上的分 量 B A =A c o s AB θ==A B B (6)⨯=A C 123502xyz-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502xyz-=-e e e 8520x y z ++e e e⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)4x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e (8)()⨯⨯=A B C 1014502xyz---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e1.2 三角形的三个顶点 为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
电磁场与电磁波第四版课后思考题答案第四版全-谢处方饶克谨-高等教育出版社

点电荷是电荷分布的一种极限情况,可将它看做一个体积很小而电荷密度很的带电小球的极限。
当带电体的尺寸远小于观察点至带电体的距离时,带电体的形状及其在的电荷分布已无关紧要。
就可将带电体所带电荷看成集中在带电体的中心上。
即将带电体抽离为一个几何点模型,称为点电荷。
2.2 研究宏观电磁场时,常用到哪几种电荷的分布模型?有哪几种电流分布模型?他们是如何定义的?常用的电荷分布模型有体电荷、面电荷、线电荷和点电荷;常用的电流分布模型有体电流模型、面电流模型和线电流模型,他们是根据电荷和电流的密度分布来定义的。
2,3点电荷的电场强度随距离变化的规律是什么?电偶极子的电场强度又如何呢?点电荷的电场强度与距离r 的平方成反比;电偶极子的电场强度与距离r 的立方成反比。
2.4简述 和 所表征的静电场特性表明空间任意一点电场强度的散度与该处的电荷密度有关,静电荷是静电场的通量源。
表明静电场是无旋场。
2.5 表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强度。
高斯定律:通过一个任意闭合曲面的电通量等于该面所包围的所有电量的代数和除以 与闭合面外的电荷无关,即 在电场(电荷)分布具有某些对称性时,可应用高斯定律求解给定电荷分布的电场强度。
表明穿过任意闭合面的磁感应强度的通量等于0,磁力线是无关尾的闭合线,表明恒定磁场是有旋场,恒定电流是产生恒定磁场的漩涡源 2.7表述安培环路定理,并说明在什么条件下可用该定律求解给定的电流分布的磁感应强度。
安培环路定理:磁感应强度沿任何闭合回路的线积分等于穿过这个环路所有电流的代数和 倍,即如果电路分布存在某种对称性,则可用该定理求解给定电流分布的磁感应强度。
2.8简述电场与电介质相互作用后发生的现象。
2.9极化强度的如何定义的?极化电荷密度与极化强度又什么关系?单位体积的点偶极矩的矢量和称为极化强度,P 与极化电荷密度的关系为 极化强度P 与极化电荷面的密度2.10电位移矢量是如何定义的?在国际单位制中它的单位是什么 电位移矢量定义为 其单位是库伦/平方米 (C/m 2)2.11 简述磁场与磁介质相互作用的物理现象? 在磁场与磁介质相互作用时,外磁场使磁介质中的分子磁矩沿外磁场取向,磁介质被磁化,被磁化的介质要产生附加磁场,从而使原来的磁场分布发生变化,磁介质中的磁感应强度B 可看做真空中传导电流产生的磁感应强度B 0 和磁化电流产生的磁感应强度B ’ 的叠加,即2.12 磁化强度是如何定义的?磁化电流密度与磁化强度又什么关系?ερ/=•∇E 0=⨯∇E ερ/=•∇E 0=⨯∇E 1 0=⋅∇B J B 0μ=⨯∇0=⋅∇B J B 0μ=⨯∇0μ P •∇=-p ρn sp e•=P ρE P E D εε=+=0B B B 0'+= MJ M⨯∇=单位体积内分子磁矩的矢量和称为磁化强度;磁化电流体密度与磁化强度: 磁化电流面密度与磁化强度:磁场强度定义为: 国际单位之中,单位是安培/米(A/m)2,14 你理解均匀媒质与非均匀媒质,线性媒质与非线性媒质,各向同性与各向异性媒质的含义么?均匀媒质是指介电常数 或磁介质磁导率 处处相等,不是空间坐标的函数。
(完整版)电磁场与电磁波(第四版)课后答案详解--谢处方
电磁场 与电磁波(第四版) 课后答案第一章 习 题 解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e 52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的 分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。
解 (1)23A x y z +-===e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由cos AB θ=14-==⨯A B AB ,得1cos AB θ-=(135.5= (5)A 在B 上的分 量 B A =A cos AB θ=1117=-A B B (6)⨯=A C 123502x yz-=-e e e 41310x y z ---e e e(7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520xy z -=e e e 554411x y z --e e e1.2 三角形的三个顶点 为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
电磁场和电磁波[第四版]课后问题详解及解析汇报__谢处方,共138页
电磁场与电磁波(第四版)课后答案第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e 52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A BC 。
解 (1)23A x y z+-===e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e(3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由c o sAB θ=111238=A B AB ,得 1cos AB θ-=(135.5= (5)A 在B 上的分量 B A=A cos AB θ==A B B (6)⨯=A C 123502xyz-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502xyz-=-e e e 8520x y z ++e e e⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502xyz---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形; (2)求三角形的面积。
电磁学第四版赵凯华习题解析
电磁学第四版赵凯华习题解析第一章电磁场的基本概念题1.1解析:该题主要考察对电磁场基本概念的理解。
根据定义,电场强度E是单位正电荷所受到的电力,磁场强度B是单位长度为1、电流为1的导线所受到的磁力。
因此,电场强度E与电势差V之间的关系为E=-dV/dx,磁场强度B与安培环路定律有关,即B=μ₀I/2πr。
答案:电场强度E与电势差V之间的关系为E=-dV/dx,磁场强度B与安培环路定律有关,即B=μ₀I/2πr。
题1.2解析:该题考查对电场线和磁场线的基本理解。
电场线从正电荷出发,指向负电荷;磁场线从磁南极指向磁北极。
在非均匀磁场中,电荷的运动轨迹会受到磁场的影响,当电荷的运动速度与磁场垂直时,洛伦兹力提供向心力,使电荷沿磁场线运动。
答案:电场线从正电荷出发,指向负电荷;磁场线从磁南极指向磁北极。
在非均匀磁场中,电荷的运动轨迹会受到磁场的影响,当电荷的运动速度与磁场垂直时,洛伦兹力提供向心力,使电荷沿磁场线运动。
第二章电磁场的基本方程题2.1解析:该题考查对高斯定律的理解。
根据高斯定律,闭合曲面所包围的电荷量与该曲面上的电通量成正比,即∮E·dA=Q/ε₀。
其中,E为电场强度,dA为曲面元素,Q为曲面内的电荷量,ε₀为真空电容率。
答案:根据高斯定律,闭合曲面所包围的电荷量与该曲面上的电通量成正比,即∮E·dA=Q/ε₀。
题2.2解析:该题考查对法拉第电磁感应定律的理解。
根据法拉第电磁感应定律,感应电动势E与磁通量变化率ΔΦ/Δt成正比,即E=ΔΦ/Δt。
其中,E为感应电动势,ΔΦ为磁通量的变化量,Δt为时间变化量。
答案:根据法拉第电磁感应定律,感应电动势E与磁通量变化率ΔΦ/Δt成正比,即E=ΔΦ/Δt。
第三章电磁波的传播题3.1解析:该题考查对电磁波的基本理解。
电磁波是由振荡的电场和磁场组成的横波,其传播速度为光速c,波长λ与频率f之间的关系为c=λf。
电磁波在真空中的传播不受阻碍,但在介质中传播时,其速度会发生变化。
电磁场与电磁波第四版课后思考题答案
点电荷的严格定义是什么点电荷是电荷分布的一种极限情况,可将它看做一个体积很小而电荷密度很的带电小球的极限。
当带电体的尺寸远小于观察点至带电体的距离时,带电体的形状及其在的电荷分布已无关紧要。
就可将带电体所带电荷看成集中在带电体的中心上。
即将带电体抽离为一个几何点模型,称为点电荷。
研究宏观电磁场时,常用到哪几种电荷的分布模型有哪几种电流分布模型他们是如何定义的常用的电荷分布模型有体电荷、面电荷、线电荷和点电荷;常用的电流分布模型有体电流模型、面电流模型和线电流模型,他们是根据电荷和电流的密度分布来定义的。
2,3点电荷的电场强度随距离变化的规律是什么电偶极子的电场强度又如何呢 点电荷的电场强度与距离r 的平方成反比;电偶极子的电场强度与距离r 的立方成反比。
简述和所表征的静电场特性表明静电场是无旋场。
表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强度。
高斯定律:通过一个任意闭合曲面的电通量等于该面所包围的所有电量的代数和除以 与闭合面外的电荷无关,即 在电场(电荷)分布具有某些对称性时,可应用高斯定律求解给定电荷分布的电场强度。
简述和所表征的静电场特性。
表明恒定磁场是有旋场,恒定电流是产生恒定磁场的漩涡源表述安培环路定理,并说明在什么条件下可用该定律求解给定的电流分布的磁感应强度。
安培环路定理:磁感应强度沿任何闭合回路的线积分等于穿过这个环路所有电流的代数和 倍,即 如果电路分布存在某种对称性,则可用该定理求解给定电流分布的磁感应强度。
简述电场与电介质相互作用后发生的现象。
在电场的作用下出现电介质的极化现象,而极化电荷又产生附加电场 极化强度的如何定义的极化电荷密度与极化强度又什么关系ερ/=•∇E=⨯∇E ερ/=•∇E=⨯∇E VSε00=⋅∇B JB0μ=⨯∇0=⋅∇B J B0μ=⨯∇μC单位体积的点偶极矩的矢量和称为极化强度,P 与极化电荷密度的关系为 极化强度P 与极化电荷面的密度电位移矢量是如何定义的在国际单位制中它的单位是什么电位移矢量定义为 其单位是库伦/平方米 (C/m 2)简述磁场与磁介质相互作用的物理现象在磁场与磁介质相互作用时,外磁场使磁介质中的分子磁矩沿外磁中的磁感应强度B 可看做真空中传导电流产生的磁感应强度B 0 和磁化电流产生的磁感应强度B ’ 的叠加,即磁化强度是如何定义的磁化电流密度与磁化强度又什么关系 单位体积内分子磁矩的矢量和称为磁化强度;磁化电流体密度与磁化强度: 磁化电流面密度与磁化强度:磁场强度是如何定义的在国际单位制中它的单位是什么磁场强度定义为: 国际单位之中,单位是安培/米(A/m)2,14 你理解均匀媒质与非均匀媒质,线性媒质与非线性媒质,各向同性与各向异性媒质的含义么 均匀媒质是指介电常数 或磁介质磁导率 处处相等,不是空间坐标的函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.9 分别画出等值同号与等值异号的两无限大均匀带电平面的电场线图。
答案:
1.10 电场线是不
是
电电荷在电场中的运动轨迹?(设此
点电荷除电场外不受其他力)
答案:一般不是。 F = qE ; F = M a ; a = v ;只有在匀强电场中,静止点电荷运动的轨 t
迹才的电力线。
1.11 下列说法是否正确?如不正确,请举一反例加以论述。
+
r
2
)
1 2
=
0
∴ a2 = 2r2
所以该圆的半径为: r = ± 2 a 2
所得到曲线方程为:
y2
+
z2
=
⎛ ⎜⎝
a ⎞2 2 ⎟⎠
……….球面方程
1.3.1 在长为 50cm,相距为 1cm 的两个带电平行板间的电场是均匀电场(场强方向竖直向上), 将一电子从 P 点(与上下板等距离)一初速度 v0=107m/s 水平射入电场(见附图)。若电子恰在下板 由侧离开电场,求该均匀电场的大小。(忽略边缘效应,认为板外场强为零,且略去重力对电子运
(2)式代入(1)式中得:最大高度
y
=
v0
sin
300
×
v0
sin a
300
−
1 2
⎛ a⎜
⎝
v0
sin a
300
⎞2 ⎟ ⎠
=
v02
sin 2
300
(
1 a
−
1 2a
)
=
v02
sin
2
300
(
1 2a
)
=
v02
sin 2
300
1
2 Ee
m
= mv02 8Ee
(2)当回到水平位置时:
y=0
即:
v0
sin
满足什么条件时内球电势为正?满足什么条件时内球电势为零?满足什么条件时内球电势为负?
(参考点选在无远4πε 0 R1
+
q2 4πε0 2R1
∫ ∫ ∫ ∫ 〈或者:U1 =
R2 R1
E1dr
+
∞
R2
E2dr
=
2R1 q1 dr + R1 4πε 0r 2
∞ q1 + q2 dr 〉 2R1 4πε 0r 2
(1)场强点点相等的区域中电势也点点相等。
(2)如果两点电势相等,则她们的场强也相等。
(3)设 A 点场强(大小)大于 B 点场强,则 A 点电势必高于 B 点电势。
(4)场强为零处电势一定为零。
(5)电势为零处场强一定为零。 答案: (1)不正确 。 E = − ∂u n
∂n (2)不正确。
例如匀强电场 。
答案:(a 图) 能 ,叠加法(补偿法); (b 图) 不能
1.7 附图中的 S1、S2、S3 及 S4 都是以闭曲线 L 为边线的曲面(曲面法线方向如图所示)。一直 S1 的 E 通量为 Φ1 ,求曲面 S2、S3、和 S4 的 E 通量 Φ2 、 Φ3 及 Φ4 。
答案:始终在内的点
E=0
不变,始终在外的点 E
1.2.1 真空中有两个点电荷,其中一个的量值是另一个的 4 倍。她们相距 5.0×10-2 m 时相互排斥力
为 1.6N。问: (1)她们的电荷各为多少? (2)她们相距 0.1m 时排斥力的多少?
解:设一个电量为 q1 ,则 q2
=
4q1 ,由公式
F
=
1 4πε 0
q1q2 r2
可以得到:
1.6
=
1 4πε 0
4q12 (5×10−2 )2
解之得: q1 = 0.33×10−6 , q2 = 4q1 =1.33×10−6 ∴当 r=0.1 时,所受排斥力为:
F
=
1 4πε 0
q1q2 (0.1)2
=0.4(N)
1.2.2 两个同性点带电体所带电荷之和为 Q,在两者距离一定的前提下,她们所带电荷各为多少时 相互作用力最大?
= Ub
,等位区。
如果是等位区,即 U=0,则是 E = ∂U = 0 。 ∂n
1.14 试证均匀带电半球面的大圆截面 S(见附图)为等势面。(提示:补上另一半球面,借对称性
论证每个球面在 S 上贡献的场强垂直于 S) 证明: 设 s 面上有场强平行于分量,补上另一半球后球内改点的总场强
应为零,可见 s 面上不能有场强的平行分量,s 面上只有场强垂直分量,故 s 面上应为等势面。
答案:(1)证明: 由对称性可知:O 点的 E=0,则在 O 点放任意电量的点电荷受到的力均为 0。
(2)解:设 O 点放一点电荷 Q,根据右图可知:
∵
f1
=
f2
=
1 4πε 0
qQ a2
( ) f3
=
1 4πε 0
q2
2
2a
∴
F
=
1 4πε 0
⎛ ⎜⎝
1 2
2a
⎞2 ⎟⎠
要使 q 受到的合力为 0,则有:
f
= 2k
qq′ (a2 + r2)
r (a2 + r2 )
=
2kqq′r
(a2
+
r2
)3 2
又∵ df = 0 dr
即:
2kqq′
⎡ ⎢ ⎢ ⎢
(a2
+
r2
)3 2
− r × 3 (a2 2
(a2 + r2 )3
+
r
2
)1 2
i 2r
⎤ ⎥ ⎥ ⎥
=
0
⎣
⎦
∴
(a2
+
r 2 )32
− 3r 2 (a2
∫∫ (3)
s1
(E3
+
E2
)⋅
d
s
=
q2 ε0
∫∫ (4)
s1
(E1
+
E2
)
⋅
d
s
=
(q1 + q2 ) ε0
∫∫ (5)
s2
(E1
+
E2
+
E3 )
⋅
d
s
=
(q3 + q2 ε0
)
∫∫ (6)
s1
(E1
+
E2
+
E3 ) ⋅
d
s
=
(q1
+
q3 ε0
+
q2
)
答案:(1)× ;(2)×; (3)×;(4)×;(5)√;(6)×;
动的影响)
解:电子在电场中受力产生运动加速度:
eE = m0a
由运动学方程得:
y = 1 at2 = d
2
2
x = v0t
(y = d 2
解之得:
E
=
md e
⎛ ⎜⎝
v0 x
⎞2 ⎟⎠
x = L)
1.3.2 用细线悬一在质量为 0.2g 的小球,将其置于两个竖直放置的平行板间(见
附图)设小球所带电荷为 6×10-9 C,欲使悬挂小球的细线与电场夹角为 600,
力为零?
解:设 q′ 距 q 为 r,则 q′ 距 2q 为 (L − r) ,放在相距 r 处,受合力为 0,则有受力平衡条件:
k
qq′ r2
=
k
2qq′ (L − r)2
得到: r = ( 2 −1)L
1.2.4 在直角坐标系的(0m,0.1m)和(0m,-0.1m)的;两个位置上分别放有电荷 q=10-10C 的点 带电体,在(0.2m,0m )的位置上放一电荷为 Q=10-8C 的点带电体,求 Q 所受力的大小和方向。
第一章
静电场的基本规律
1.1 判断下列说法是否正确, 说明理由。 (1)一点的场强方向就是该点的试探点电荷所受电场力的方向。 (2)场强的方向可由 E=F/q 确定,其中 q 可正可负。 (3)在以点电荷为心的球面上,由该点电荷产生的场强处处相等。
答案:(1) ×,正的试探电荷; (2) √ ;(3)× 在无外场是,球面上 E 大小相等。
答案:无外场时,对球外而言是正确的。
1.5 附图中 A 和 B 为两个均匀点电体,S 为与 A 同心的球面,试问: (1)S 面的通量与 B 的位置及电荷是否有关? (2)S 面上某点的电场强度与 B 的位置及电荷是否有关? (3)可否用高斯定理求出 S 面上一点的场强?为什么?
答案:(1)无关 (2) 有关 (3)不能(导体球)、可以(介质球)。 场强叠加原理应用到有导体的问题时,要注意,带电导体单独存在时,有一种电荷分布,它
(1)电子上升的最大高度。 (2)电子回到原来高度时的水平射程。
解:(1)电子受力: f = ma = eE
∵
y
=
v0
sin
300 t
−
1 2
at 2
vy = v0 sin 300 − at
(1)
当在最大高度时: vy = 0
则 0 = v0 sin 300 − at
∴ t = v0 sin 300 (2) a
的半径为1.64 ×10-4 cm,平衡时 E=1.92×105 N/C。求:
(1)一直油的密度为 0.851g/cm3,求油滴代暖和的绝对值。 (2)此值的元电荷 e 的多少倍?
解:(1)略
(2) mg = qE
q = mg = 4π R3ρ g = 8.02×10−19 库仑
E
3E
1.3.5 两个点电荷 q1=4.0uc 和 q2=8.0uc 相距 10cm,求离她们都是 10cm 处的场强 E。