无穷级数的概念与性质
高等数学无穷级数知识点总结

高等数学无穷级数知识点总结
无穷级数是高等数学中的一个重要内容,它涉及到很多重要的概念和定理。
以下是一些高等数学无穷级数的知识点总结:
1. 无穷级数的基本概念:无穷级数是指一个数列的项按一定规律相加而成的数列。
其中,无穷级数的定义域可以是实数集或复数集。
2. 无穷级数的分类:无穷级数可以分为数项级数和函数项级数两大类。
数项级数是指以常数项级数的形式表示的无穷级数,而函数项级数则是以函数项的形式表示的无穷级数。
3. 无穷级数的敛散性:无穷级数的敛散性是指级数是否收敛或发散。
如果一个无穷级数收敛,则称其为收敛级数,反之则称为发散级数。
4. 无穷级数的判别法:无穷级数的判别法是指判断一个无穷级数是否收敛的方法。
常用的判别法包括比较判别法、比值判别法、根值判别法和莱布尼兹判别法等。
5. 无穷级数的和应用:无穷级数在数学中有着广泛的应用,例如求和、积分、微积分等。
在实际应用中,无穷级数往往被用来求解各种问题。
6. 无穷级数的和函数:无穷级数的和函数是指级数的每一项相加得到的总和。
无穷级数的和函数具有很多重要的性质,例如连续性、可导性等。
7. 无穷级数的广义性质:无穷级数的广义性质是指关于无穷级数的一些扩展概念和定理。
例如,无穷级数的前 n 项和的广义性质、
无穷级数的广义收敛性等。
以上是高等数学无穷级数的一些重要知识点总结。
希望能对读者有所帮助。
无穷级数的概念与性质(课堂PPT)

无穷级数
14
收敛的必要条件
级数
un
n 1
收敛
lim
n
un
0.
证明 设
un s
n1
则
un sn sn1 ,
lim
n
un
lim
n
sn
lim
n
sn1
s
s
0.
逆否命题成立:
lim
n
un
0
级数 un 发散 n 1
无穷级数
15
例:判断级数(1)n n 的敛散性。 2n 1
解:lim (1)n n
12 23 34
n n1
1 1 n 1
lim
n
S
n
1 lim (1 )
n n 1
1
(无穷小与无穷大的互逆 关系)
上级数收敛
无穷级数
8
例:判断级数ln 2 ln 3 ln 4 ... ln n 1 ...是否收敛
123
n
解:上述数列的通项可用公式ln A ln A ln B化简 B
n 1 an ln n ln(n 1) ln n
解:部分和 Sn
n(n 1) 2
(等差数列求和公式 )
lim
n
Sn
lim n2 n n 2
上级数发散
无穷级数
7
例:判断级数 1 1 1 ... 1 ...是否收敛
1 2 23 3 4
n (n 1)
解:上述数列的通项有规律可循
an
1 n(n 1)
1 n
1 n 1
部分和Sn
(1 1) (1 1) (1 1) ... (1 1 )
若级数 un 的每一项 un 均为常数 , n1
无穷级数的概念与性质

无穷级数的概念与性质无穷级数(Infinite series)是数学中一个非常重要的概念,它是由无限多个数相加或相减得到的数列。
在数学中,我们经常会遇到各种各样的无穷级数,它们具有丰富的性质和应用。
本文将介绍无穷级数的基本概念,并探讨其性质及应用。
一、无穷级数的概念无穷级数指的是无限多个数按照一定的规律连加(或连减)得到的数列。
一般可以表示为下面的形式:S = a₁ + a₂ + a₃ + ...其中,a₁、a₂、a₃是无穷级数的通项,S是无穷级数的和。
无穷级数的和并不一定存在,它可能是一个有限数值,也可能是无穷大或不存在。
二、常见的无穷级数1.等差数列等差数列是最简单的无穷级数之一。
它的通项公式为:aₙ = a₁ + (n-1)d其中,a₁是首项,d是公差,n表示项数。
等差数列的无穷级数可以通过求和公式来计算:S = a₁ + (a₁+d) + (a₁+2d) + ...通过对等差数列求和,我们可以得到如下公式:S = (a₁ + aₙ) * n / 22.等比数列等比数列也是常见的无穷级数之一,它的通项公式为:aₙ = a₁ * q^(n-1)其中,a₁为首项,q为公比,n表示项数。
等比数列的无穷级数可以通过求和公式来计算:S = a₁ / (1-q)其中,当0<q<1时,S存在且为有限值,当q≥1时,S不存在。
3.调和级数调和级数是指无穷级数的通项是倒数的情况,它的通项公式为:aₙ = 1/n调和级数可以表示为:S = 1/1 + 1/2 + 1/3 + ...调和级数是一个特殊的无穷级数,它的和可以无限增大。
例如,前n项和可以表示为:Sₙ = 1/1 + 1/2 + ... + 1/n当n趋向于无穷大时,Sₙ趋向于无穷大。
三、无穷级数的性质1.收敛与发散无穷级数的和可能是有限的,也可能是无穷大,也有可能不存在。
如果一个无穷级数的和存在并且有限,我们称该级数是收敛的;反之,如果一个无穷级数的和不存在或者无穷大,我们称该级数是发散的。
第七章-无穷级数

11
(1 ) ( ) L ( )
2 23
n n1
1
lim
n
Sn
lim(1
n
n
) 1
1
1 1 n1
故级数收敛,其和为1. (例2解法称为连锁相销法)
例3 讨论几何级数(等比级数)
aqn1 a aq aq2 L aqn1 L
n1
的敛散性.若收敛,则求出其和.u(n 参 aq见n1书P272例1)
其中的一种各项正负相间的特殊情形 ——交错级数,
它是一种常见而有实用价值的特殊级数.
(二) 交错级数的莱布尼兹判别法
设un>0,(n=1,2,…),则称
(1)n1 un u1 u2 u3 u4 L
n1
为交错级数。例如
(1)n1 1
n1
n
等等。
(7.7)
对于交错级数,判定其敛散性,有如下使用方便的莱
a n n
a0 1
.
由上面的性质5,级数
un
发散。
n1
例2 若级数 un 收敛,则下列级数不收敛的是( B ) 1
A. 2un 1
B. (un 2) 1
C. 2 un
1
D. un nk
分析与解:注意到已知
un
收敛,由性质2知
1
2un
是收敛的;
1
由性质3 知,C、D 所示级数也是收敛的;
n1
aun收敛到aS ;若级数 un 发散,则 aun
n1
n1
n1
也发散。
性质3. 将级数 un 的前面加上(或去掉)有限项, n1
级数的敛散性不变。(当然,收敛时,和一般要变)
性质4. 收敛级数加括号后得到的级数仍收敛,且和不 变。
高数课件28无穷级数

任意项级数审敛法总结
绝对收敛判别法
对于任意项级数,首先尝试判断其是否绝对收敛。若绝对收敛,则原级数一定收敛。
交错级数审敛法
对于交错级数,可以利用交错级数审敛法进行判断。若满足条件,则交错级数收敛。
其他审敛法
除了绝对收敛和交错级数审敛法外,还有其他一些审敛法可用于判断任意项级数的敛散性 ,如比较审敛法、比值审敛法等。在实际应用中,可以根据级数的具体形式选择合适的审 敛法进行判断。
泰勒级数是用无限项连加式——级数来表示一个函数,这些相加的项由函数在某一点的导数求得。
原理介绍
泰勒级数的基本思想是将复杂的函数用多项式来逼近,通过逐次求导并代入展开点的值,得到各阶导 数在该点的值,进而构造出相应的多项式。
常见函数泰勒展开式举例
要点一
常见函数泰勒展开式
如$e^x$、$sin x$、$cos x$、$ln(1+x)$等函数的泰勒展 开式。
电力系统
在电力系统中,傅里叶级数被用于 分析周期性电气信号的谐波成分, 为电力系统的稳定运行提供支持。
傅里叶变换与离散时间信号处理关系
傅里叶变换与傅里叶级数关系
傅里叶变换是傅里叶级数的推广,可以将非周期函数表 示为连续频谱的形式。
离散时间信号处理中的傅里叶变 换
在离散时间信号处理中,傅里叶变换被广泛应用于频域分 析和滤波器设计等方面,为数字信号处理提供了重要工具。 同时,离散傅里叶变换(DFT)及其快速算法(FFT)也在 实际应用中发挥着重要作用。
判断原级数的收敛性。
适用范围
02
适用于通项可以表示为某个函数的级数,且该函数在相应区间
内单调、可积。
应用举例
03
如对于形如$sum_{n=1}^{infty}frac{1}{n^p}$的$p$级数,可
12无穷级数的概念与性质

将s2n写成两种形式:
s2n (u1 u2 ) (u3 u4 )
(u2n1 u2n )
(1)
s2n u1 (u2 u3) (u4 u5 )
(u2n2 u2n1) u2n (2)
由定理的第一个条件:un un1,
由<1>式可知{s2n}是单调增加的;
由<2>式可知s2n<u1.
n1 n(n 1)
证明
n(n 1) (n 1)2
1
1
n(n 1) (n 1)2
1 1 n(n 1) n 1
而级数
1
1 1
1
是发散的;
n1n 1 2 3
n 1
由比较判别法可知,所给级数也发散.
三、正项级数收敛的比值判别法
定理4<达朗贝尔比值判别法> 设 u n为正项级
n 1
数,如果 lim un1 l
其中第n项un叫作级数的一般项或通项.
级数(1)的前n项相加得到它的前n项和,记作
Sn.即: n Snu 1u2u3 un uk k 1
例如 级数 1 1 1 的 1 2 23 3 4
一般项
un
1 n(n 1)
它的前n项和
Sn
1 1 2
1 23
1 34
1 n(n 1)
1 1 1
n(n 1) n n 1
调和级数
1是发散的
;
n1n
p 级数n1n1p也发散 .
(2)当p 1时,
n1n1p
1
(
1 2p
1 3p
)
(41p
1 5p
1 6p
1 7p
)
1
( 8
无穷级数的概念和性质

例1
试判定级数
un
1 11
1
的收敛性.
n1
i1
解 所给级数的前n项和
n
n
Sn ui 1 11 1 n,
i1
i1
lim
n
Sn
lim n
n
,
因此所给级数 1 11 1 发散.
n1
例2 判定级数 r n1 1 r r 2 r n1 的收敛性.
解
注意到
n1
1 2n1
与
n13n51
皆为几何级数,
其公比分别为r 1与r 1 , 23
由例4可知 n121n1 与 n13n51 皆收敛,且
n1
1 2n1
1 1 1
2,
2
n13n51
5 1 1
15, 2
3
由性质8.2可知
n1
n1
因此应有
lim
n
Sn
S
.
又设
n ku1 ku2 kun
k(u1 u2 un ) kSn ,
由极限的性质可知
lim
n
n
lim
n
kSn
k
lim
n
Sn
kS ,
即 kun 收敛,且其和为kS.
n1
(2)用反证法.若 un收敛,k 0,
性质2 若 u收n 敛,其和为S; v收n 敛,其和σ,则
院校资料无穷级数.pptx

sn
,
这时级数发散.
若q 1,这时sn na (n ),因此级数发散. 若q 1,这时级数成为a a a a 此级数发散。
第12页/共122页
综上所述,几何级数
aqn a aq aq2 aqn
当|q|<1时级数收敛,且收敛于 n0,当|q|≥1时级a数发散.
1 q
第13页/共122页
对于无穷级数 un u1 u2 un
n1
记S1 u1,
S2 u,1 u2,
Sn u1 u2 un ,
称Sn为级数的部分和, 称 { Sn} 为级数的部分和数列.
考察下列级数的部分和: 1
1 2
1 22
1 23
1 2n1
1 23 n
第4页/共122页
对于 1 1 1 1 1
p 1 时, p 1 时,
收敛 发散
注意
几何级数
n1
1 pn
当 当
p p
1 时, 1 时,
收敛 发散
1 收敛 3
n1 n 2
1 发散
n1 n
1 收敛
n1 n n
1 收敛
n1 2n
第30页/共122页
例5 判别级数
解
因为
的敛1散性.
n1 n 1 n
1
1
1
1
n 1
n2
n1 2
2n 2
第22页/共122页
定理1 正项级数 它的部分和数列{sn}有上界.
u 收敛的充要条件是: n n1
证 必要性:
若
{Sn} 有界
un 收敛
n1
lim
n
Sn
存在
{Sn} 有上界.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
, 故 lim Sn 不存在.
n
a 综上所述: 当公比 | r | < 1 时, 等比级数收敛;S 。 1 q 当公比 | r | 1 时, 等比级数发散.
该结论需要记忆,用于判定各种等比数列是否 收敛
基本性质
性质 1 若级数
un 收敛,其和为 s,则 n 1
级数 kun 亦收敛,且其和为 ks.
如果部分和数列 sn 有极限 s , 即 lim sn s 则
n
称无穷级 数
un 收敛,这时极限 s 叫做级数 n 1
un 的和,并记作 s un n 1 n 1
如果sn 没有极限,则称无穷级数
u
n 1
n 发散.
即 常数项级数收敛(发散) lim sn 存在(不存在)
ln(n 1) ln1 ln(n 1)
lim S n lim ln( n 1)
n n
上级数发散
例
aqn 1 的敛散性. 讨论等比级数
n 1
解
等比级数的部分和为:
a(1 q n ) S n aqk 1 1 q k 1
n
a a (1 q n ) , 当公比 | r | < 1 时, nlim S n nlim 1 r q 1 q
收敛的必要条件
级数
u 收敛 lim un 0. n
n 1 n
证明 设
n
n1
un s 则 un sn sn1 ,
n n
lim un lim sn lim sn1 s s 0.
逆否命题成立:
lim un 0
上级数收敛
例:判断级数 2 3 ... n ...是否收敛 1
n( n 1) (等差数列求和公式 ) 解:部分和 n S 2
n n lim S n lim n n 2
2
上级数发散
1 1 1 1 例:判断级数 ... ...是否收敛 1 2 2 3 3 4 n (n 1)
上述级数发散
解:上述数列的通项有 规律可循
1 1 1 an n(n 1) n n 1
1 1 1 1 1 1 1 1 部分和 S n ( ) ( ) ( ) ... ( ) 1 1 1 2 2 3 3 4 n n 1 n 1
1 关系 lim S n lim(1 ) 1 (无穷小与无穷大的互逆 ) n n n 1
上级数收敛
2 3 4 n 1 例:判断级数 ln ln ln ... ln ...是否收敛 1 2 3 n A 解:上述数列的通项可 用公式 ln ln A ln B化简 B
n 1 an ln ln( n 1) ln n n
部分和Sn (ln 2 ln1) (ln 3 ln 2) (ln 4 ln 3) ... (ln(n 1) ln n)
n 1
性质 2 设两收敛级数 s
un , vn ,则级数 n 1 n 1
(un vn )收敛,其和为 s . n 1
2 (1) 例:判断级数 3n n 1
n 1
是否收敛
2 (1) n1 解:上述级数可以分为 两个部分 n 和 3 n1 3n n 1 2 1 3n 是公比为3 的等比数列; n 1
n 1 2 n ; n 1
cos n cos1 cos 2 cos n . n 1
例
sin x sin 2 x sin 3x ... sin nx ... 通项是收敛与发散:
(1) n1 1 3n 是公比为 3 的等比数列; n 1
1 1 5 3 3 上级数收敛 和为 1 1 4 11 - (- ) 3 3
性质: 在一个级数的前面加上或者去掉有限项后,
所得到的新的级数与原级数的敛散性相同.
性质: 对收敛的级数加括号后所得到的新级数仍
然收敛, 且其和不变.
a 。 此时等比级数收敛, 其和为: S 1 q
a (1 q n ) . 当公比 | r | > 1 时, nlim Sn nlim 1 q
当公比 r =1时,
n
lim Sn lim na .
n
当公比 r = 1时, S = n
a, n为奇数 0, n为偶数
9.1 级数的概念与性质
级数的基本概念 级数的收敛和发散 级数的基本性质 收敛的必要条件
无穷级数的定义
设有数列 {un}: 则称表达式
u1 , u2 , …, un , …
un u1 u2 un n 1
简称为级数.
为一个无穷级数,
称
un 为级数的一般项或通项.
n
级数
u 发散
n 1 n
n 例:判断级数 (1) 的敛散性。 2n 1 1 2 , n 2k n n 0 解: (1) lim n 2n 1 1 , n 2k 1 2
n
由 lim un 0
n
级数
u 发散
n 1 n
n
1 1 1 例:判断级数 1 ... n ...是否收敛 2 4 2
分析:判断收敛即指是 否有和
1 n 1[1 ( ) ] 1 n 2 解:S n 2[1 ( ) ] 1 2 1 2 1 上式中n lim S n lim 2 n 1 ) 2 ( n n 2
注:和以前学习的数列区别在于项数。
若级数 un 的每一项un 均为常数,
n 1
则称该级数为常数项级 . 数
若级数的每一项均为同 一个变量的 函数 : un un ( x), 则称级数 un ( x) 为函
n 1
数项级数.
例
下列各式均为常数项级数
1 1 1 1 2n 2 4 2n ; n 1