吴赣昌版线性代数第三章课后习题答案

合集下载

线性代数习题答案第三章

线性代数习题答案第三章
所以当10时 方程组无解. 要使方程组有无穷多解 必须R(A)R(B)3 即必须 (1)(10)0且(1)(4)0
所以当1时 方程组有无穷多解此时,增广矩阵为
B~ 方程组的解为
或 (k1 k2为任意常数) 18 证明R(A)1的充分必要条件是存在非零列向量a及非零行向量bT
使T 证明 必要性 由R(A)1知A的标准形为
3 试利用矩阵的初等变换 求下列方阵的逆矩阵
(1) 解~ ~~ ~ 故逆矩阵为 (2)
解 ~ ~ ~ ~ ~
故逆矩阵为 4 (1)设 求X使AXB 解 因为
所以 (2)设 求X使XAB 解 考虑ATXTBT 因为
所以 从而
5 设 AX 2XA 求X 解 原方程化为(A2E)X A 因为
所以 6 在秩是r 的矩阵中,有没有等于0的r1阶子式? 有没有等于0的r阶子式? 解 在秩是r的矩阵中 可能存在等于0的r1阶子式 也可能存在等于0的r
第三章 矩阵的初等变换与线性方程组
1 把下列矩阵化为行最简形矩阵 (1) 解 (下一步 r2(2)r1 r3(3)r1 )
~(下一步 r2(1) r3(2) ) ~(下一步 r3r2 ) ~(下一步 r33 ) ~(下一步 r23r3 ) ~(下一步 r1(2)r2 r1r3 ) ~ (2) 解 (下一步 r22(3)r1 r3(2)r1 ) ~(下一步 r3r2 r13r2 ) ~(下一步 r12 ) ~ (3) 解 (下一步 r23r1 r32r1 r43r1 ) ~(下一步 r2(4) r3(3) r4(5) ) ~(下一步 r13r2 r3r2 r4r2 ) ~ (4) 解 (下一步 r12r2 r33r2 r42r2 ) ~(下一步 r22r1 r38r1 r47r1 ) ~(下一步 r1r2 r2(1) r4r3 ) ~(下一步 r2r3 ) ~ 2 设 求A 解 是初等矩阵E(1 2) 其逆矩阵就是其本身 是初等矩阵E(1 2(1)) 其逆矩阵是 E(1 2(1))

线性代数课本第三章习题详细答案

线性代数课本第三章习题详细答案
(2) 利用反证法可证得,即假设1,2 ,, s 线性无关,再由(1)得 1, 2 ,, s 线性无 关,与 1, 2 ,, s 线性相关矛盾.
9. 证明:1 2 ,2 3,3 1 线性无关的充分必要条件是1,2 ,3 线性无关.
1 0 1 证:方法 1,(1 2 ,2 3,3 1 )=(1,2 ,3 ) 1 1 0
(k1 k3 )1 (k1 k2 ) 2 (k2 k3 ) 3 0
因为1,2 ,3 线性无关,所以
kk11
k3 k2
0 0
,可解得 k1
k2
k3
0 ,所以1
2 , 2
3 ,3
1 线性无关.
k2 k3 0
必要性,(方法 1)设1 2 ,2 3,3 1 线性无关,证明1,2 ,3 线性无关,
所以
5 4
1
1 4
2
1 4
3
1 44Βιβλιοθήκη .设存在 k1, k2 , k3 , k4 使得 k11 k2 2 k3 3 k4 4 ,整理得
k1 2k2 k3 0 , k1 k2 k3 k4 0 ,
3k2 k4 0 , k1 k2 k4 1 .
解得 k1 1, k2 0, k3 1, k4 0. 所以 1 3 .
0 1 1 101 因为 1,2,3 线性无关,且 1 1 0 2 0 ,可得 1 2,2 3,3 1的秩为 3 011 所以1 2 ,2 3,3 1 线性无关.线性无关;反之也成立.
方法 2,充分性,设1,2 ,3 线性无关,证明1 2 ,2 3,3 1 线性无关.
设存在 k1, k2 , k3 使得 k1 (1 2 ) k2 ( 2 3 ) k3 ( 3 1 ) 0 ,整理得,

线性代数课后习题解答第三章习题解答

线性代数课后习题解答第三章习题解答

第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2) ⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020********* )2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫ ⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫ ⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---000000000022********(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~r r r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r rr --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。

线代第3章习题答案

线代第3章习题答案

第3章1. 34(30,10,20,16)γαβ=-=---.2. (1) 能,唯一一种表示:12323βααα=--. (2) 不能.(3) 能,很多种表示:123(21)(35)c c c βααα=-+-++,c 为任意常数. 3. 证明略,唯一表达式为:12123234344()()()b b b b b b b βαααα=-+-+-+. 4. (1) 线性无关. (2) 线性相关.(3) 线性相关,因为4个向量,每个向量维数3维. (4) 若a ,b ,c 均不相等,线性无关,否则线性相关. 5. (1) 线性无关 (2) 线性无关 (3) 线性相关.6. 解:设112223334441()()()()0k k k k αααααααα+++++++=,整理可得141122233344()()()()0k k k k k k k k αααα+++++++=,因为已知1234,,,αααα是线性无关的,故有 141223340,0,0,0,k k k k k k k k +=⎧⎪+=⎪⎨+=⎪⎪+=⎩系数矩阵1001100111000101011000110011000A ⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,则()3r A =. 故12233441,,,αααααααα++++是线性相关的.7. 证:因为任意1n +个n 维向量必线性相关,故12,,,,n αααβ 线性相关,存在 不全为零的1n +个数121,,,n k k k + ,使得112210n n n k k k k αααβ+++++= . 若10n k +=,12,,,n ααα 线性相关,矛盾.所以10n k +≠,β可由12,,,n ααα 线 性表出.下证表达式唯一,类似于定理3.5的证明.8. 证:(反证法即得).假设1234,,,k k k k 不全为零,其中某个为零,其他的不为零.不妨假设10k =,则2233440k k k ααα++=,其中234,,k k k 均不为零,则可推出 234,,ααα是线性相关的,这与已知任意三个向量都线性无关矛盾,故假设不成 立.由假设的任意性可知112233440k k k k αααα+++=,其中1234,,,k k k k 全不为 零.9. 证:设前一向量组的秩为r ,则显然r s ≤,又后一组的秩也为r ,则有1r s s ≤<+,故后一向量组是线性相关的.若r s =,则前一组是线性无关 的,后一组是线性相关的,则由定理3.5知,β可由1α,2α, ,s α线性表出, 且表达式唯一.若r s <,则两组均是线性相关的,且两个向量组的秩是相等 的,也可推出β可由1α,2α, ,s α线性表出. 10. 证:因为12,,n εεε 能由12,,n a a a 线性表示, 所以 1212(,,,)(,,,)n n r r a a a εεε≤ ,而12(,,,)n r n εεε= ,12(,,,)n r a a a n ≤ ,所以12(,,,)n r a a a n = ,从而 12,,n a a a 线性无关.11. 证:因为任一向量β可由12,,,s ααα 线性表出,故n 维基本向量组12,,s εεε能由12,,,s ααα 线性表出,又知12,,,s ααα 可由基本向量组12,,s εεε 表出,故12,,,s ααα 与12,,s εεε 等价,所以12,,,s ααα 的秩为s ,即 12,,,s ααα 线性无关.12. 证:由于123,,ααα线性无关,而1234,,,αααα线性相关,故一定存在123,,k k k , 使得4112233k k k αααα=++.若其中某个i k 不为零,假定10k ≠,则1422331()/k k k αααα=--,知423,,ααα也是极大线性无关组,唯一性矛盾. 故一定有1230k k k ===,即40α=.13. 证:必要性.若12,,,s βββ 线性无关,则12,(,,)s r s βββ= ,又因为 12,12(,,)min{(),(,,,)}s s r r A r βββααα≤ ,而12(,,,)s r s ααα= ,故12,(,,)()s r s r A βββ=≤ ,又因为()r A s ≤,则一定有()r A s =,即矩阵A 可 逆.充分性,若矩阵A 可逆,则在等式两边左乘1A -,然后根据矩阵秩的不等 式可得11212,(,,,)min{(),(,,)}s s r r A r αααβββ-≤ ,显然有112(,,,)()s r s r A s ααα-=≤= ,可推出1212,(,,,)(,,)s s r s r αααβββ=≤ , 又12,(,,)s r s βββ≤ ,故只能12,(,,)s r s βββ= ,即12,,,s βββ 线性无关. 14. 证:因为向量组12,,,s ααα 的秩为1r ,则其中有1r 个线性无关的向量,设为 112,,,r c c c .向量组12,,,t βββ 的秩为2r ,则其中有2r 个线性无关的向量,设 为212,,,r d d d .则向量组1212,,,,,,s t αααβββ 中线性无关的向量一定在 121212,,,,,,r r c c c d d d 中选取,所以312r r r ≤+. 15. 定义即得.16. (例题)12(,,,)s r r ααα= ,且12,,,r i i i ααα 为其中r 个线性无关的向量.设 k α是向量组中任意一个向量,则12,,,,r i i i k αααα 线性相关,否则向量组的 秩会大于r .所以,由定理3.5,k α可由12,,,r i i i ααα 线性表出,故 12,,,r i i i ααα 为向量组的一个极大线性无关组.17. (1) 11311322601003000004000A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,故123()(,,)2r A r ααα==, 1α 2α 3α故一个极大线性无关组是1α,2α.(2) 24611231123100013691000012310000A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥---⎢⎥⎢⎥⎣⎦⎣⎦,1234()(,,,)2r A r αααα==, 故一个极大线性无关组是1α,4α.(3) 12341234234501233456000045670000A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,1234()(,,,)2r A r αααα==, 故一个极大线性无关组是1α,2α.18. (1) 11511151112302743181000013970000A ----⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=→⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦,于是得阶梯形方程组 123423450,2740,x x x x x x x ⎧-+-=⎨-+=⎩方程组的一般解为:34343432722x x x x X x x ⎡⎤--⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 可得方程组的一个基础解系为:137,,1,022Tη⎡⎤=-⎢⎥⎣⎦,[]21,2,0,1T η=--.通解为1122X k k ηη=+,1k ,2k 为常数.(3) 212112133112054736290010A ---⎡⎤⎡⎤⎢⎥⎢⎥=--→⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦,于是得阶梯形方程组12342343230,5470,0,x x x x x x x x ---=⎧⎪++=⎨⎪-=⎩方程组的一般解为44417,,0,55TX x x x ⎡⎤=-⎢⎥⎣⎦,可得方程组的一个基础解系:117,,0,155Tη⎡⎤=-⎢⎥⎣⎦,通解为11X k η=.(4) 方程组本身即为一个阶梯形方程组,其一般解为:()23423413,,,4TX x x x x x x ⎡⎤=-+-⎢⎥⎣⎦,可得方程组的一个基础解系:11,1,0,04Tη⎡⎤=-⎢⎥⎣⎦,23,0,1,04Tη⎡⎤=⎢⎥⎣⎦,31,0,0,14Tη⎡⎤=-⎢⎥⎣⎦.通解为112233X k k k ηηη=++,1k ,2k ,3k 为常数.19. 证:首先由定理3.9知AX O =的基础解系含有n r -个线性无关的解向量.设 12,,,r ηηη 是AX O =的任意n r -个线性无关的解向量,要证12,,,r ηηη 是 AX O =的基础解系,只需证AX O =的任一解向量β都可由12,,,r ηηη 线性 表出.事实上,12,,,,r ηηηβ 必线性相关(否则AX O =的基础解系至少含有 1n r -+个线性无关的解向量,与已知矛盾),所以β都可由12,,,r ηηη 线性 表出,故12,,,r ηηη 是AX O =的基础解系.20. 证:假定一个基础解系为12,,s ηηη ,向量组12,,,s βββ 与其等价,故也含 有s 个向量.已知向量组12,,,s βββ 满足线性无关性,又因为每一个解向量 都可以由12,,s ηηη 线性表出,而12,,s ηηη 和12,,,s βββ 是等价向量组, 根据线性表出的传递性,每个解向量都可以由12,,,s βββ 线性表出,故 12,,,s βββ 也是一个基础解系.21. 证:先证122331,,ηηηηηη+++线性无关.设存在123,,k k k ,使得 112223331()()()0k k k ηηηηηη+++++=,即131122233()()()0k k k k k k ηηη+++++=,又因为123,,ηηη线性无关,则1312230,0,0,k k k k k k +=⎧⎪+=⎨⎪+=⎩ 可得只能1230k k k ===,即122331,,ηηηηηη+++线性无关.由于112223331()()()X k k k ηηηηηη=+++++ 131122233()()()k k k k k k ηηη=+++++,可知任意一个向量都可由122331,,ηηηηηη+++线性表出, 即122331,,ηηηηηη+++也是AX O =的一个基础解系.22. 证:(1)反证法,若12,γγ线性相关,则12,γγ一定成倍数关系,不妨令12k γγ=. 又因为12γγ≠,故1k ≠.由于12γγ-为齐次线性方程组AX O =的解,并且 122(1)k γγγ-=-,所以有22(1)(1)A k k A O γγ-=-=,而1k ≠,则有2A O γ=, 这与2A γβ=矛盾,所以假设不成立,即12,γγ线性无关.(2)若()1r A n =-,则齐次线性方程组AX O =的基础解系中只有一个解向 量,又12()A O γγββ-=-=,故112()k γγ-即为基础解系,其中1k 为某个非 零常数,又已知η是齐次线性方程组AX O =的解,则一定有2112()k k ηγγ=-, 即说明12,,ηγγ是线性相关的.23. (1)[]27316121123522401151109417200000A β---⎡⎤⎡⎤⎢⎥⎢⎥=→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,于是得阶梯形方程组:123423422,11510,x x x x x x x --+=-⎧⎨+-=⎩取3x ,4x 为自由变量,则方程组一般解为:()()3434341129,105,,1111TX x x x x x x ⎡⎤=-+--+⎢⎥⎣⎦,可得一个特解为:0210,,0,01111Tη⎡⎤=-⎢⎥⎣⎦,一个基础解系为:115,,1,01111Tη⎡⎤=-⎢⎥⎣⎦,291,,0,11111Tη⎡⎤=-⎢⎥⎣⎦.则方程组的通解为:01122122191111111051111111010001X k k k k ηηη⎡⎤⎡⎤⎡⎤--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-=++=++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,其中1k ,2k 为常数. (2) []15231115231131425021131901170091475361100000A β----⎡⎤⎡⎤⎢⎥⎢⎥-----⎢⎥⎢⎥=→⎢⎥⎢⎥----⎢⎥⎢⎥--⎣⎦⎣⎦, 于是得阶梯形方程组:12342343452311,23,9147,x x x x x x x x x -+-=⎧⎪--+=⎨⎪-=⎩取4x 为自由变量,可得方程组一般解为:()444431751,,714,29189TX x x x x ⎡⎤=---+⎢⎥⎣⎦,可得一个特解为:01770,,,099Tη⎡⎤=-⎢⎥⎣⎦,一个基础解系为:13514,,,12189T η⎡⎤=--⎢⎥⎣⎦.则方程组的通解为:011X k ηη=+,其中1k 为常数.(3) []211331321451010407551132121000152A β---⎡⎤⎡⎤⎢⎥⎢⎥=--→-⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦,于是得阶梯形方程组:12342344324,75511,152,x x x x x x x x -+-+=⎧⎪-+=⎨⎪-=⎩取3x 为自由变量,可得方程组一般解为:333131552,,,1573715TX x x x ⎡⎤=++-⎢⎥⎣⎦,可得一个特解为:01352,,0,15315Tη⎡⎤=-⎢⎥⎣⎦,一个基础解系为:115,,1,077Tη⎡⎤=⎢⎥⎣⎦.则方程组的通解为:011X k ηη=+,其中1k 为常数. (4) 方程组本身即为一个阶梯形方程组,其一般解为: []2345234544236,,,,TX x x x x x x x x =+-+-, 可得一个特解为:[]04,0,0,0,0Tη=, 一个基础解系:[]14,1,0,0,0Tη=,[]22,0,1,0,0Tη=-,[]33,0,0,1,0Tη=,[]46,0,0,0,1Tη=- 通解为011223344X k k k k ηηηηη=++++,1k ,2k ,3k ,4k 为常数.24. 解:[]2211230112302325012112020000A βλλλλλ--⎡⎤⎡⎤⎢⎥⎢⎥=-→-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦, 当20λλ-=,即0λ=或1λ=时有解. 当20λλ-≠,即0λ≠且1λ≠时无解.若有解,得阶梯形方程组:1234234230,2,x x x x x x x λ+-+=⎧⎨+-=⎩取3x ,4x 为自由变量,则方程组一般解为: []34343444,2,,TX x x x x x x λλ=-+--+, 可得一个特解为:[]0,,0,0Tηλλ=-,一个基础解系为:[]14,2,1,0Tη=-,[]24,1,0,1Tη=-. 则方程组的通解为:01122X k k ηηη=++,其中1k ,2k 为常数,0λ=或1λ=.25. 解:[]11321113211316301121151010001053115230002226A b b a a b β⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=→⎢⎥⎢⎥--+⎢⎥⎢⎥---+--⎣⎦⎣⎦,若220a -+=且260b --≠时,即1a =且3b ≠-时,无解. 若1a ≠时,有唯一解为:263420,6,5,11Tb b X b b b a a ++⎡⎤=--+-+⎢⎥--⎣⎦. 若1a =且3b =-时,有无穷多解.此时阶梯形方程组为:12342343321,21,2,x x x x x x x x +++=⎧⎪-+=⎨⎪=⎩取4x 为自由变量,可得方程组一般解为: []448,32,2,TX x x =--, 可得一个特解为:[]08,3,2,0Tη=-, 一个基础解系为:[]10,2,0,1T η=-.则方程组的通解为:011X k ηη=+,其中1k 为常数 26. 证法1:单位矩阵E 的每一列都是AX O =的解,故A AE O ==. 证法2:假设A O ≠,则()0r A r =≠,所以AX O =只有n r -个线性无关的解, 显然矛盾.27.证:已知齐次线性方程组AX O =的系数矩阵的秩为()r r n <,则AX O =的基 础解系中含有n r -个线性无关的解向量.反证法假设12(,,,)t r n r ααα>- , 则其中有大于n r -个线性无关的解向量,并且其中每个解向量都可由这 12(,,,)t r ααα 个解向量线性表出,这说明AX O =的基础解系中含有大于 n r -个线性无关的解向量,这与已知矛盾,故假设不成立.则 12(,,,)t r n r ααα≤-28.证:(1)AX O =的基础解系中含有()n r A -个线性无关的解向量,BX O =的基 础解系中含有()n r B -个线性无关的解向量.若AX O =的解均为BX O =的解,即有()()n r A n r B -≤-,故()()r A r B ≥.(2)若AX O =与BX O =同解,通过(1)的结论,基础解系中含有相同个数的 线性无关的解向量,则()()n r A n r B -=-,故()()r A r B =. (3)略.(4)不能.只能说基础解系中含有相同个数的线性无关的解向量,但这些解向 量不一定相等.。

线性代数第三 四章答案

线性代数第三 四章答案

解:由3(α1 − α) + 2(α2 + α) = 5(α3 + α) 可得6α = −5α3 + 2α2 + 3α1, 即α = (−5α3 + 2α2 + 3α1)/6 = (1, 2, 3, 4).
3-4. 设β1 = α1 + α2, β2 = α2 + α3, β3 = α3 + α4, β4 = α4 + α1, 证明向量组β1, β2, β3, β4线 性相关.
3v1 + 2v2 − v3 = 3(1, 1, 0) + 2(0, 1, 1) − (3, 4, 0) = (3, 3, 0) + (0, 2, 2) − (3, 4, 0) = (0, 1, 2).
3-2. 设3(α1 − α) + 2(α2 + α) = 5(α3 + α), 其中,α1 = (2, 5, 1, 3), α2 = (10, 1, 5, 10), α3 = (4, 1, −1, 1),求α.
证明:因为β1−β2 = α1−α3, β4−β3 = α1−α3. 所以β1−β2 = β4−β3, 即β1−β2+β3−β4 = 0,向量组β1, β2, β3, β4线性相关。
3-5. 设β1 = α1, β2 = α1 + α2, · · · , βr = α1 + α2 + · · · αr, 且向量组α1, α2, · · · , αr线性无
4-11.
若方程组
x1 + 2x2 + x3 = 0 2x1 + x2 + λx3 = 0
存在基础解系,则λ等于【5】
4-12. 设A为m × n矩阵,则齐次线性方程组AX = 0有结论【若A有n阶子式不为0,则

线性代数(含全部课后题详细答案)3第三章矩阵习题解答.docx

线性代数(含全部课后题详细答案)3第三章矩阵习题解答.docx

习题三A 组1 •填空题.(1)设口 = (1,1,1), 6 = (-1,-1,-1),则ah x= _____________ , a vh= _________ro o>1 ](3)若么=(1, 2, 3), B — 1, —, — , A — a}d ,则 A n =I 2 3丿‘1 0⑷设A= 0 2J o解0.(5)设 a = (l, 0, -if ,矩阵 A=aa l \ 斤为正整数,贝 i\kE - A n解 k 2(k-2n ).(6)设昇为斤阶矩阵,且A =2,贝ij AA T= _________ , AA : = _______2(2)设八1-3 2),B =-3丿1 -13 1 3>则AB = (0 0丿(—3 -3丿2 13232 3 1 1)0 ,正整数 /7 > 2 ,则 A n -2A ,l ~' =2“+i2".(cos& -sin&\(7)、sin& cos& 丿cos& sin&\、一sin& cos& 丿0 0、2 0 ,则(A*y =4 5,解討丫2(10)设矩阵/二,矩阵B满足BA = B + 2E,则B二,B<-1 2(2 0(11)设/,〃均为三阶矩阵,AB = 2A + B f B= 0 4,2 0‘0 0 P解0 1 0b o oj(12)设三阶矩阵/满足|力|二*, (3A)~l-2A* =1627(13)设/为加阶方阵,B为兀阶方阵,同=Q,\B\ = b, C =°, 则\c\ =(8)设…®?工0 ,则、\Z曾丿1)a n1%■■1 1■色丿丿a lP(9)设A= 22、0 ,贝=2丿/0、0 ,矩阵〃满足关系式ABA =2BA ^E,其屮才'为力的伴随矩阵,则|B | =解*•解0.解一3・是nxp 矩阵,C 是pxm 矩阵,加、n 、p 互不相等,则下列运算没有(B) ABC ;解D.(2)设/是mxn 矩阵(m n), B 是nxm 矩阵,则下列解(一l)〃5b ・(15)设4阶矩阵/的秩为1,则其伴随矩阵/的秩为 (14)设三阶矩阵/ =R(4)解1.(17)设矩阵力'a 、b\ a }b 2■ ■a 2b 2 ■ • ■a n b2,其中匕・工0, (Z=l,2,•••,/?),则力的秩,且7?(J) = 3,则丘=0、 -2i,则将/可以表示成以下三个初等矩阵的乘积(D) AC T .的运算结果是n 阶力•阵.(A) AB ;解B.(B) A YBT;(C) B r A T ;(D) (4B)T.(16 )设?1 = •咕、 ・仇 ・ a n b n)解2.选择题.(1)设/是mxn 矩阵,(3) 设力」是斤阶方阵,AB = O,贝I 」有 ________ • (A) A = B = Ox(B) A + B = O ; (C)同=0或|同=0;(D)同 + 圖=0・解C ・(4) 设力,〃都是斤阶矩阵,则必有 _______ . (A) \A + B\ = \^ + \B\; (B) AB = BA ; (C) \AB\ = \BA\ ;(D) (/1 + B)T M /T + BT ・解C ・(5) 设/,B 是斤阶方阵,下列结论正确的是 __________ ・ (A)若均可逆,则A^B 可逆; (B)若力,〃均可逆,则力〃可逆; (C)若A + B 可逆,则A-B 可逆;(D)若A + B 可逆,则4〃均可逆.解B.(6) 设斤阶方阵A,B,C 满足关系式 ABC = E ,则必有 ___________ ・ (A) ACB = E ; (B) CBA = E ;(C) BAC = E ;(D) BCA = E .解D.(7) 设昇,B,力 + B, /T+BT 均为斤阶可逆矩阵,贝等于 ________________________ (A)(B) A + B ;(C) (D) g + 3)".解C.(8) 设£B,C 均为兀阶矩阵,若B = E + MB , C = A^CA.则B-C 为 ________________ . (A) E\ (B) —E ; (C) ; (D) —A.. 解A.(9) 设矩阵A = (a i .} 满足才其中才是/的伴随矩阵,川为昇的转置矩阵.若\ "3x3。

高等数学(上册)第3章(1)习题答案_吴赣昌_人民大学出版社_高数_理工类

高等数学(上册)第3章(1)习题答案_吴赣昌_人民大学出版社_高数_理工类
/
至少存在一点
ξ (a,b)
使得
( x) 0
f / (ξ ) f (b) f (a) ba g / (ξ )
3.2 洛必 达 法则
基本形式 通 分 或 取 倒 数化 为 基本形式
0 0
型与
型未定式
0 型或 型; 0 0 2) 0 型:常用取倒数的手段化为 型或 型,即: 0 0 0 0 或0 ; 1/ 0 1/ 0

14 (1,2) , ξ 即为满足定理的数值。 9
★★★6.设
f ( x) 在 [0,1] 上连续,在 (0,1) 内可导,且 f (1) 0 。求证:
f (ξ ) f (ξ ) 。 ξ
存在 ξ (0, 1) ,使
知识点:罗尔中值定理的应用。 思路 :从 f (ξ )
f (ξ ) 。 ξ
f ( x) ,只要 x
注:辅助函数的构造方法一般可通过结论倒推,如:要使 f ( x)
f ( x) 1 [ xf ( x)] [ln f ( x)] [ln x] [ln xf ( x)] 0 0 [ xf ( x)] 0 f ( x) x xf ( x)
知识点:罗尔中值定理的应用。 思路:连续两次使用罗尔中值定理。 证明:∵ f ( x) 在 (a,b) 内具有二阶导函数,∴ f ( x) 在 [ x1 ,x 2 ] 、 [ x 2 ,x 3 ] 内连续,
在 ( x1 ,x 2 ) 、 ( x 2 ,x 3 ) 内可导,又 ∴由罗尔定理,至少有一点 ξ1 使得
★★8.若 4 次方程 a 0 x
4
(ξ1 ,ξ 2 ) ( x1 ,x 3 ) ,使得 f (ξ ) 0 。

线代第三章习题解答

线代第三章习题解答

第三章 行列式习题3.13-1-6.用定义计算行列式(1)()2,1,0,,,0000000222211114=≠=i d c b a d c b a d c b a D i i i i解:设444⨯=ija D 则4D 中第1行的非0元为113111,b a a a ==,故11,3j =同法可求:2342,4;1,3;2,4j j j ===∵4321,,,j j j j 可组成四个4元排列 1 2 3 4,1 4 3 2,3 2 1 4,3 4 1 2,故4D 中相应的非0项有4项,分别为2211d b c a ,,2211c b d a -2211d a c b -,2211c a d b 其代数和即为4D 的值,整理后得 ()()122112214d c d c b a b a D --=(2)010...0002 0000...000 0n D n =M M MM解:由行列式的定义121212()12(1)n n nj j j n j j nj j j j D a a a τ=-∑L L L仅当12,,,n j j j L 分别取2,3,…,n-1,n,1 时,对应项不为零,其余各项都为零12121()(231)1212231(1)(1)(1)(1)(1)12(1)!n n n j j j n n j j nj n n n n D a a a a a a a n n ττ---=-=-=-⋅=-⋅L L L L L习题3.23.2-2.证明(1)0sin cos 2cos sin cos 2cos sin cos 2cos 222222=γγγβββααα证明:22222222222222132222222cos sin cos sin cos cos sin cos sin cos sin cos cos sin cos sin cos sin cos cos sin c c αααααααβββββββγγγγγγγ-=-+-左0= (2) 322)(11122b a b b a a b ab a -=+证明:23222212()()2()11001c c a ab ab b b a a b b a b a b c c a ba b b a b a b a b --------==---左右=-=3)(b a(3) 121211221100001000001n n n n n n n n x x x a x a x a x a x a a a a a x-------=+++++-+L L M M MO M M L L L证明: 按最后一行展开,得1211000000010001000(1)(1)0001000010010001n n n n x x a a x x x ++----=-+-----L L LL O M M M M M O M M L L LL 左321220000100000000100(1)(1)000100000000100001n n n x x x x a a x x +----+-++----L L LL L M M M OM M M M M O M M L L LL211000010()(1)00010000n x x x a x x--++--L LM MM O M M L L 222222121221(1)(1)(1)(1)()(1)n n n n n n n n n n a a x a x a x x a x ----=-+-+-++-++-L 2211221n n n n n n a a x a x a x a x x ----=++++++=L 右3=2-3.计算下列行列式 (1)11111100((1))((1))0x a a a x a a x a x a x n a x n a a a xa a xx a-=+-=+--L L L L L LM M O M M M O M M M O M LLL])1([)(1a n x a x n -+-=-(2)()()()()()()111(1)211111111()1(1)(1)111111nnnn n n n n n n n n nnna a a n a a a n a a a n D a a a n a a a n a a a n ---++---------==-------L L L LM MOMMM O ML L LL(最后一行(n+1)行依次与第n,n-1,…,2,1行交换,经过n 次交换;再将新的行列式的最后一行(即原来的n 行)依次换到第二行,经过n-1次交换;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档