均布荷载作用下简支梁结构分析
简支梁受均布载荷作用,试写出剪力和弯矩方程

一、简支梁的基本概念简支梁是一种常见的结构形式,其特点是两端固定支撑,中间无任何支撑,形成一个简单的横跨结构。
在工程建设中,简支梁常被用于桥梁、楼板等结构的设计与施工中。
当梁承受均布载荷时,其上产生的剪力和弯矩是设计和分析的重要参数。
二、受力分析的基本原理1. 剪力的定义和计算公式在简支梁上,当均布载荷作用时,梁体上的任意一截面上都受到来自上部和下部梁体的相互作用力。
剪力的大小可以通过以下公式计算:V = wL/2 - 信信其中,V代表该截面上的剪力,w代表均布载荷的大小,L代表梁的长度,x代表距离截面起点的距离。
2. 弯矩的定义和计算公式同样,在简支梁上,距离梁的任意一截面上也存在着弯矩。
弯矩的计算公式如下:M = wLx/2 - w*x^2/2其中,M代表该截面上的弯矩,w代表均布载荷的大小,L代表梁的长度,x代表距离截面起点的距离。
三、剪力和弯矩方程的推导1. 剪力方程的推导根据前文所述的剪力的计算公式,可以推导出简支梁受均布载荷作用时的剪力方程。
假设梁的起点为原点,横向为x轴方向,竖向为y轴方向,由上述公式可知,剪力V与距离x的关系为线性关系,斜率为wL/2,截距为0。
简支梁受均布载荷作用时的剪力方程为:V = wL/2 - 信信2. 弯矩方程的推导同样地,根据前文所述的弯矩的计算公式,可以推导出简支梁受均布载荷作用时的弯矩方程。
假设梁的起点为原点,横向为x轴方向,竖向为y轴方向,通过弯矩的计算公式可得知,弯矩M与距离x的关系为二次函数关系,并且开口向下。
简支梁受均布载荷作用时的弯矩方程为:M = wLx/2 - w*x^2/2四、结论与应用在工程设计中,通过以上剪力和弯矩方程的推导,可以为简支梁的设计、分析提供依据。
在实际工程中,根据预设的载荷情况和结构参数,可以通过计算得到不同截面处的剪力和弯矩,从而根据这些受力情况,进行梁的截面选取、钢筋布置、构造设计等工作。
剪力和弯矩方程的推导及其应用具有重要的实际意义和价值。
均布荷载作用下简支梁的跨中弯矩

均布荷载作用下简支梁的跨中弯矩简支梁是一种常见的结构,经常用于桥梁、楼板等建筑中。
当梁上承受均布荷载时,会产生跨中弯矩。
本文将详细介绍均布荷载作用下简支梁的跨中弯矩,并为读者提供一些有关梁设计和分析的指导意义。
首先,让我们来了解一下什么是均布荷载。
均布荷载是指在梁的整个跨度上均匀分布的荷载,这种荷载是梁所承受的常见荷载之一。
均布荷载可以是自重、人员的荷载、雪的荷载等等。
在设计简支梁时,我们需要考虑这些荷载对梁的弯曲产生的影响。
当均布荷载作用在简支梁上时,梁会发生弯曲,这导致了梁的跨中出现弯矩。
弯矩是指材料在受力作用下的扭曲力,在简支梁的跨中处会形成一个最大的弯矩值。
为了计算均布荷载作用下的简支梁的跨中弯矩,我们可以使用梁的弯曲理论。
根据弯曲理论,简支梁的弯矩可以通过以下公式计算:M = (wL^2)/8其中,M是跨中弯矩,w是均布荷载的大小,L是梁的跨度。
通过这个公式,我们可以很容易地计算出梁的跨中弯矩。
从这个公式可以看出,跨中弯矩与荷载大小和梁的跨度的平方成正比。
这意味着如果我们增加荷载的大小或增长梁的跨度,跨中弯矩也会相应增加。
因此,在设计简支梁时,我们需要合理选择梁的尺寸和材料,以确保它能够承受所预期的荷载。
此外,我们还可以通过绘制弯矩图来更好地理解均布荷载作用下的简支梁的跨中弯矩分布情况。
在弯矩图中,横轴表示梁的距离,纵轴表示跨中弯矩的大小。
通过绘制弯矩图,我们可以看到在梁的两端弯矩为零,而在梁的跨中处弯矩达到最大值。
通过对均布荷载作用下简支梁的跨中弯矩的分析,我们可以得出以下几个设计和分析方面的指导意义:1. 在设计简支梁时,我们应该合理选择梁的尺寸和材料,以确保其能够承受所预期的荷载。
2. 在使用简支梁设计建筑物时,我们应该将荷载的大小和梁的跨度考虑在内,以避免梁出现过大的弯曲和破坏。
3. 在梁的实际施工中,我们需要遵循相关的设计规范和标准,以确保简支梁的稳定性和安全性。
总之,均布荷载作用下简支梁的跨中弯矩是一个重要的设计和分析问题。
求简支梁受均布荷载跨中位移有限元分析步骤(平面梁单元)

K151 M O K 5151
对号入座,组合整体刚度矩阵,并将各个分块矩阵对应的数值代入, 组合成整体刚度矩阵
1
6l 12 6l 2l 2 −12 −6l 2 6l 2l 0 0 0 0 0 0 0 EI 0 K= 3 l M M 0 0 0 0 −12 −6l
ql RA − 12 2 6l −12 ql 2 − 6l 12 0 ql 0 0 0 EI 0 ql = l 0 M M ql RB − 2 0 ql 2 0 12
{Fpy }( 2 )
− ql / 2 − ql 2 / 12 2 = − ql / 2 3 2 ql / 12
……
1
2
3
….
51
ql Fpy = − 2
1
−
ql 12
2
ql 0 ql 0 L
−
ql 2
ql 12
根据
[ F ] = [ K ][δ ]
υ1 = 0
−12 −6l 24 0 −12 6l 0 0 0 0 M 6l 2l 2 −6l 2l 2 0 0 0 0
求出各节点的结点位移
[δ ]
0 θ 1 v2 θ2 v3 θ3 M 0 θ51
0 1 −
0 0
2 3 l l2 1 2 − 3 2 l l
δ1 1 δ 2 = N δ e − [ ] l δ3 1 δ 4 l2 0 0
承受均布荷载设计值q作用下的矩形截面简支梁,安全等级二级

承受均布荷载设计值q作用下的矩形截面简支梁,安全等级二级【实用版】目录1.矩形截面简支梁的概述2.均布荷载设计值 q 的定义和作用3.安全等级二级的含义和要求4.矩形截面简支梁在均布荷载设计值 q 作用下的安全性分析5.结论正文一、矩形截面简支梁的概述矩形截面简支梁是一种在结构工程中常见的梁式构件,其特点是截面呈矩形,两端为简支条件,即在两端固定,中间承受均布荷载。
矩形截面简支梁广泛应用于桥梁、房屋建筑等领域。
二、均布荷载设计值 q 的定义和作用均布荷载设计值 q 是指在设计过程中,为了保证结构的安全性和稳定性,对实际荷载进行统计分析和概率计算后得到的一个数值。
均布荷载设计值 q 是结构设计中一个重要的参考依据,它可以帮助工程师更准确地评估结构的承载能力和安全性。
三、安全等级二级的含义和要求安全等级二级是指结构在正常使用极限状态下,应满足一定的安全系数要求,以确保结构的安全性和稳定性。
对于矩形截面简支梁而言,安全等级二级要求其在均布荷载设计值 q 作用下,应具有足够的抗弯强度和抗剪强度,以保证梁的安全性能。
四、矩形截面简支梁在均布荷载设计值 q 作用下的安全性分析在均布荷载设计值 q 作用下,矩形截面简支梁的弯矩和剪力分布均匀。
为了确保矩形截面简支梁在均布荷载设计值 q 作用下的安全性,需要对其进行强度计算和稳定性分析。
1.强度计算:根据弯矩和剪力的分布,可以计算出矩形截面简支梁在均布荷载设计值 q 作用下的弯矩和剪力。
然后,通过比较这些内力和梁的允许应力值,可以判断梁的强度是否满足设计要求。
2.稳定性分析:矩形截面简支梁在均布荷载设计值 q 作用下,可能发生弯曲失稳或剪切失稳。
为了确保梁的稳定性,需要分析梁在各种工况下的稳定性,并根据稳定性分析结果,采取相应的加固措施。
五、结论综上所述,矩形截面简支梁在均布荷载设计值 q 作用下的安全性,需要通过强度计算和稳定性分析来评估。
有限元例子-简支梁受均布荷载

例1 简支梁受均布荷载计算简图:图1-(a)所示一简支梁,高3 m,长18 m,承受均布荷载10 N/m2,E=2×1010Pa ,μ= 0. 167,取t=1 m,作为平面应力问题。
由于对称,只对右边一半进行有限单元法计算,如图1-(b)所示,而在y轴上的各结点处布置水平连杆支座。
图1 计算简图图2 计算剖分图数据整理1、节点坐标文件91 551 0.750 0.5002 1.500 0.5003 2.250 0.5004 3.000 0.5005 3.750 0.5006 4.500 0.5007 5.250 0.5009 6.750 0.50010 7.500 0.50011 8.250 0.50012 0.750 1.00013 1.500 1.00014 2.250 1.00015 3.000 1.00016 3.750 1.00017 4.500 1.00018 5.250 1.00019 6.000 1.00020 6.750 1.00021 7.500 1.00022 8.250 1.00023 0.750 1.50024 1.500 1.50025 2.250 1.50026 3.000 1.50027 3.750 1.50028 4.500 1.50029 5.250 1.50030 6.000 1.50031 6.750 1.50032 7.500 1.50033 8.250 1.50034 0.750 2.00035 1.500 2.00036 2.250 2.00037 3.000 2.00038 3.750 2.00039 4.500 2.00040 5.250 2.00041 6.000 2.00042 6.750 2.00043 7.500 2.00044 8.250 2.00045 0.750 2.50046 1.500 2.50047 2.250 2.50048 3.000 2.50049 3.750 2.50050 4.500 2.50051 5.250 2.50053 6.750 2.50054 7.500 2.50055 8.250 2.50056 9.000 3.00057 8.250 3.00058 7.500 3.00059 6.750 3.00060 6.000 3.00061 5.250 3.00062 4.500 3.00063 3.750 3.00064 3.000 3.00065 2.250 3.00066 1.500 3.00067 0.750 3.00068 0.000 3.00069 0.000 2.50070 0.000 2.00071 0.000 1.50072 0.000 1.00073 0.000 0.50074 0.000 0.00075 0.750 0.00076 1.500 0.00077 2.250 0.00078 3.000 0.00079 3.750 0.00080 4.500 0.00081 5.250 0.00082 6.000 0.00083 6.750 0.00084 7.500 0.00085 8.250 0.00086 9.000 0.00087 9.000 0.50088 9.000 1.00089 9.000 1.50090 9.000 2.00091 9.000 2.500该文件第1行第1个数据为节点数91,第2个数据为内部节点数55。
均布荷载作用下简支梁结构分析

均布荷载作用下简支梁结构分析The Standardization Office was revised on the afternoon of December 13, 2020均布荷载作用下简支梁结构分析摘要:本文利用ANSYS软件中的BEAM系列单元建立简支梁有限元模型,对其进行静力分析与模态分析,得出梁的结构变形,分析梁的受力情况。
并用有限元刚度矩阵知识求解简支梁端点处得位移和旋度。
在此基础上,利用经典力学对以上所得的结果进行梁的有关计算,并将结果与有限元刚度矩阵和ANSYS软件所得结果进行比较。
通过比较得出不同方法在简支梁求解过程中自己的优势和缺点。
关键词:ANSYS简支梁均布荷载求解应力位移1.引言钢制实心梁的截面尺寸为10mm×10mm(如图1所示),弹性模量为200GPa,均布荷载的大小及方向如图1所示。
图12.利用力学方法求解运用力学方法将上述结构求解,易得A、B支座反力相等为500N,该简支梁的计算简图、弯矩图以及剪力图如下图所示:1000N/m1000mm图2简支梁计算简图跨中弯矩:125N㎡图3简支梁弯矩图支座反力500N图4简支梁剪力图3.利用ANSYS软件建立模型与求解通过关键点创建实体模型,然后定义材料及单元属性,然后划分网格,建立有限元模型。
具体步骤包括:添加标题、定义关键点、定义直线、选择单元,定义实常数、定义材料属性、设定网格尺寸、划分网格、施加荷载求解(选择分析类型、定义约束、施加荷载)查看分析结果。
图5简支梁变形前后的情况图6简支梁应力图图7简支梁剪力图4.计算结果对比简支梁内力分析结果比较节点应力有下面公式计算求得:ᵟ=有限元计算所得结果与力学的计算结果对比如下表所示:单位(N/㎡)节点应力102270348046305720675077208630948010270ANSYS模态结果结构力学计算结果简支梁竖向位移分析结果比较结构力学计算求得的简支梁最大位移由下面图乘法求得:x实际荷载作用下梁弯矩表达式:M(x)=500x-500x2单位荷载作用下梁弯矩表达式:Mp= (1-a)x (0<x<a)a(1-x) (a<x<1)则在梁上任意点的竖向位移f:f=500+500dx= ……)分别代入分段点的a的数值得各点的位移如下表:有限元计算所得简支梁y方向位移如下图8所示:图8端点旋度分析结果比较(1)利用结构力学图乘法求得端点处得旋度旋度:Ф=()=(2)利用有限元刚度矩阵求得端点位移与旋度为:假设梁的两端固定,并计算等价的节点荷载用以表示均匀变化的荷载力M1 -M2R1 R2-1/2qL 12 6L -12 6L v1-1/12qL2 6L 4L2 -6L 2L2Ө1-1/2qL =EI/L3 -12L -6L 12 -6L v2 (a)1/12qL2 6L 2L2 -6L 4L2 Ө2方程(a)是固定的精确模型,因为如果从中解出的所有位移和旋度,它们的计算值都将为零。
简支梁受力组合变形

简支梁受力组合变形-概述说明以及解释1.引言概述部分的内容可以如下所示:1.1 概述简支梁是一种常见的结构形式,由于其结构简单、使用方便,广泛应用于建筑、桥梁、机械等领域。
简支梁在受到外力作用时,会发生变形,这种变形对于梁的安全性和使用寿命至关重要。
因此,研究简支梁受力组合变形是提高梁的设计和使用性能的重要方面。
本文将深入探讨简支梁受力组合变形的原因、特点以及对梁结构的影响。
首先,我们将介绍简支梁的定义和特点,包括它的基本结构和建筑原理。
接着,我们将通过对简支梁的受力分析,揭示不同受力组合对梁的变形产生的原因。
随后,我们将对梁的变形进行详细的分析,包括弯曲变形、剪切变形和挠度等。
最后,我们将研究受力组合在简支梁上的影响,探讨其对梁的变形程度和安全性的影响。
通过本文的研究,我们将对简支梁受力组合变形的机理有更深入的了解,同时也能为简支梁的设计和使用提供有用的指导。
这对于提高梁的结构性能、延长梁的使用寿命具有重要意义。
此外,对于简支梁受力组合变形的应用前景,本文也将进行展望,探讨其在未来工程领域中的可能应用和发展方向。
总之,通过本文的研究和分析,我们将为读者提供一个全面的简支梁受力组合变形的概述,从而增进对该领域的理解和应用。
相信本文的内容将对相关领域的研究人员和工程师具有一定的参考价值。
1.2 文章结构文章结构部分的内容可以参考以下示例:2.文章结构本文将按照以下结构进行叙述和分析简支梁受力组合变形的相关内容:2.1 简支梁的定义和特点首先,我们将介绍简支梁的定义和特点。
简支梁是一种常见的结构形式,其特点是两端支座可以自由转动,同时梁自身在受力作用下会发生弯曲变形。
我们将详细探讨简支梁的定义、结构特征以及其在工程实践中的应用。
2.2 受力分析在本节中,我们将进行简支梁的受力分析。
通过分析简支梁在不同荷载作用下的受力情况,我们可以了解到梁的内力分布以及受力大小。
我们将介绍常见的荷载类型,并利用力学原理进行受力计算和分析。
简支梁在均布荷载作用下的弯曲变形

简支梁在均布荷载作用下的弯曲变形下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!简支梁在均布荷载作用下的弯曲变形1. 简介简支梁是结构工程中常见的一种构件,其在承受均布荷载时会发生弯曲变形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
均布荷载作用下简支梁结构分析
摘要:本文利用ANSYS软件中的BEAM系列单元建立简支梁有限元模型,对其进行静力分析与模态分析,得出梁的结构变形,分析梁的受力情况。
并用有限元刚度矩阵知识求解简支梁端点处得位移和旋度。
在此基础上,利用经典力学对以上所得的结果进行梁的有关计算,并将结果与有限元刚度矩阵和ANSYS软件所得结果进行比较。
通过比较得出不同方法在简支梁求解过程中自己的优势和缺点。
关键词:ANSYS简支梁均布荷载求解应力位移
1.引言
钢制实心梁的截面尺寸为10mm×10mm(如图1所示),弹性模量为200GPa,均布荷载的大小及方向如图1所示。
图1
2.利用力学方法求解
运用力学方法将上述结构求解,易得A、B支座反力相等为500N,该简支梁的计算简图、弯矩图以及剪力图如下图所示:
1000N/m
1000mm
图2简支梁计算简图
跨中弯矩:125N㎡
图3简支梁弯矩图
支座反力500N
图4简支梁剪力图
3.利用ANSYS软件建立模型与求解
通过关键点创建实体模型,然后定义材料及单元属性,然后划分网格,建立有限元模型。
具体步骤包括:添加标题、定义关键点、定义直线、选择单元,定义实常数、定义材料属性、设定网格尺寸、划分网格、施加荷载求解(选择分析类型、定义约束、施加荷载)查看分析结果。
图5简支梁变形前后的情况
图6简支梁应力图
图7简支梁剪力图
4.计算结果对比
4.1简支梁内力分析结果比较
节点应力有下面公式计算求得:
ᵟ=
有限元计算所得结果与力学的计算结果对比如下表所示:)
单位(N/㎡
ANSYS模态结果结构力学计算结果
4.2简支梁竖向位移分析结果比较
4.2.1结构力学计算求得的简支梁最大位移
由下面图乘法求得:
a
Fp
x
实际荷载作用下梁弯矩表达式:
M(x)=500x-500x2
单位荷载作用下梁弯矩表达式:
Mp= (1-a)x (0<x<a)
a(1-x) (a<x<1)
则在梁上任意点的竖向位移f:
f=500+500dx
=0.25a4-0.5a3+0.25a(0,0.1, 0.2 ……) 分别代入分段点的a的数值得各点的位移如下表:
4.2.2有限元计算所得简支梁y方向位移
如下图8所示:
图8
4.3端点旋度分析结果比较
(1)利用结构力学图乘法求得端点处得旋度
旋度:Ф=()0.5=
(2)利用有限元刚度矩阵求得端点位移与旋度为:
假设梁的两端固定,并计算等价的节点荷载用以表示均匀变化的荷载力
M1 -M2
R2
-1/2qL 12 6L -12 6L v1
-1/12qL26L 4L2-6L 2L2Ө1
-1/2qL =EI/L3-12L -6L 12 -6L v2 (a)
1/12qL26L 2L2-6L 4L2 Ө2
方程(a)是固定的精确模型,因为如果从中解出的所有位移和旋度,它们的计算值都将为零。
利用边界条件,得到矩阵方程:
-ῳL2/30=EI/L3 4L2 2L2 Ө1
-ῳL2/202L2 4L2 Ө2 (b)解方程组(b),得每个点处得旋度大小为:
Ө1=Ө2=qL3/24EI (c)用实际节点荷载代替作用在梁上的荷载力,加上由节点旋度引起的反作用力,计算出最后的反作用力:
R1 12 6L -12 6L 0 1/2qL
M1 =EI/L3 6L 4L2-6L2 2L2 -qL3/24EI + 1/12qL2
R2 -12 -6L 12 -6L 0 qL/2 (d)M2 6L 2L2-6L2 4L2 qL3/24EI -1/12qL2
求解矩阵方程,得到最终结果:
R1=qL/2 R2=qL/2 M1=M2=0
5.结论
(1)本文通过ANSYS有限元软件中BEAM4单元建立了简支梁模型,经过同种工况的力学静力分析,简支梁应力、位移结果相同。
(2)用有限元刚度矩阵法求得的简支梁端点位移与旋度的结果和经典结构力学求得的结果一致。
(3)对静定简支梁的分析,有限元软件ANSYS能直观的观察梁的各种物理变化,经典力学求解方法相对刚度矩阵法更加简洁方便,但刚度矩阵法对更加复杂结构的求解相对更方便。
参考文献:
1.徐芝纶. 弹性力学(第3版)[M].北京:高等教育出版社,2004.
2.王勖成. 有限单元法[M]. 北京:高等教育出版社,200
3.。