均布荷载作用下的简支梁结构有限元分析1
均布荷载作用下简支梁的跨中弯矩

均布荷载作用下简支梁的跨中弯矩简支梁是一种常见的结构,经常用于桥梁、楼板等建筑中。
当梁上承受均布荷载时,会产生跨中弯矩。
本文将详细介绍均布荷载作用下简支梁的跨中弯矩,并为读者提供一些有关梁设计和分析的指导意义。
首先,让我们来了解一下什么是均布荷载。
均布荷载是指在梁的整个跨度上均匀分布的荷载,这种荷载是梁所承受的常见荷载之一。
均布荷载可以是自重、人员的荷载、雪的荷载等等。
在设计简支梁时,我们需要考虑这些荷载对梁的弯曲产生的影响。
当均布荷载作用在简支梁上时,梁会发生弯曲,这导致了梁的跨中出现弯矩。
弯矩是指材料在受力作用下的扭曲力,在简支梁的跨中处会形成一个最大的弯矩值。
为了计算均布荷载作用下的简支梁的跨中弯矩,我们可以使用梁的弯曲理论。
根据弯曲理论,简支梁的弯矩可以通过以下公式计算:M = (wL^2)/8其中,M是跨中弯矩,w是均布荷载的大小,L是梁的跨度。
通过这个公式,我们可以很容易地计算出梁的跨中弯矩。
从这个公式可以看出,跨中弯矩与荷载大小和梁的跨度的平方成正比。
这意味着如果我们增加荷载的大小或增长梁的跨度,跨中弯矩也会相应增加。
因此,在设计简支梁时,我们需要合理选择梁的尺寸和材料,以确保它能够承受所预期的荷载。
此外,我们还可以通过绘制弯矩图来更好地理解均布荷载作用下的简支梁的跨中弯矩分布情况。
在弯矩图中,横轴表示梁的距离,纵轴表示跨中弯矩的大小。
通过绘制弯矩图,我们可以看到在梁的两端弯矩为零,而在梁的跨中处弯矩达到最大值。
通过对均布荷载作用下简支梁的跨中弯矩的分析,我们可以得出以下几个设计和分析方面的指导意义:1. 在设计简支梁时,我们应该合理选择梁的尺寸和材料,以确保其能够承受所预期的荷载。
2. 在使用简支梁设计建筑物时,我们应该将荷载的大小和梁的跨度考虑在内,以避免梁出现过大的弯曲和破坏。
3. 在梁的实际施工中,我们需要遵循相关的设计规范和标准,以确保简支梁的稳定性和安全性。
总之,均布荷载作用下简支梁的跨中弯矩是一个重要的设计和分析问题。
求简支梁受均布荷载跨中位移有限元分析步骤(平面梁单元)

K151 M O K 5151
对号入座,组合整体刚度矩阵,并将各个分块矩阵对应的数值代入, 组合成整体刚度矩阵
1
6l 12 6l 2l 2 −12 −6l 2 6l 2l 0 0 0 0 0 0 0 EI 0 K= 3 l M M 0 0 0 0 −12 −6l
ql RA − 12 2 6l −12 ql 2 − 6l 12 0 ql 0 0 0 EI 0 ql = l 0 M M ql RB − 2 0 ql 2 0 12
{Fpy }( 2 )
− ql / 2 − ql 2 / 12 2 = − ql / 2 3 2 ql / 12
……
1
2
3
….
51
ql Fpy = − 2
1
−
ql 12
2
ql 0 ql 0 L
−
ql 2
ql 12
根据
[ F ] = [ K ][δ ]
υ1 = 0
−12 −6l 24 0 −12 6l 0 0 0 0 M 6l 2l 2 −6l 2l 2 0 0 0 0
求出各节点的结点位移
[δ ]
0 θ 1 v2 θ2 v3 θ3 M 0 θ51
0 1 −
0 0
2 3 l l2 1 2 − 3 2 l l
δ1 1 δ 2 = N δ e − [ ] l δ3 1 δ 4 l2 0 0
汽车荷载作用下简支梁的内力计算_算例-1

汽车荷载作用下简支梁的内力计算_算例-1交通部在2004 年6 月28 日颁布,并于当年10 月1 日实施的《公路桥涵设计通用规范》(JTGD60—2004) 对原来的《公路桥涵设计通用规范》(JTJ021-81) 进行了修订。
其中取消了原标准的汽车荷载等级,改为采用公路-Ⅰ级和公路-Ⅱ级标准汽车荷载。
取消了挂车和履带车验算荷载,将验算荷载的影响间接反映在汽车荷载当中。
另外将汽车冲击系数以跨径为主要影响因素的计算方法,改为以结构基频为主要因素的计算方法。
因此,在汽车荷载作用下,其加载原理以及主梁内力的计算方式较以前有所不同。
本算例介绍在新标准中的汽车荷载作用下,简支梁的内力计算原理。
一、汽车荷载介绍新标准公路桥涵设计通用规范(JTGD60 - 2004)规定,汽车荷载分为公路-Ⅰ级和公路-Ⅱ级两个等级。
在设计中因公路等级的不同而采用不同的荷载等级。
除高速公路和一级公路采用公路-Ⅰ级外,其余均采用公路-Ⅱ级。
根据所计算的结构构件的不同,汽车荷载由车道荷载和车辆荷载组成。
其中,车道荷载由集中荷载和均布荷载组成,用来计算桥梁结构的整体(如图1所示) 。
图1 车道荷载示意图在车道荷载中,当采用公路-Ⅰ级时,q k = 10.5 kN/m。
P k的值与桥梁的计算跨径l 有关。
当l ≤5m 时,P k = 180kN。
当l≥50 m 时,P k = 360 kN。
两者之间则采用内插法求得。
如计算剪力效应,则P k应乘以1.2 的系数。
而车辆荷载则用来计算桥梁结构的局部加载、涵洞、桥台以及挡土墙土压力等(如图2所示) 。
如果采用公路-Ⅱ级,则其值应按公路-Ⅰ级的0.75 倍采用。
在整个桥梁结构计算的加载过程中,加载方式因内力影响线而定。
其中,q k应满布于使结构产生最不利效应的同号影响线上,而P k作用于影响线的最大峰值处。
二、荷载的横向分布计算在计算主梁内力时,首先必须计算出每片主梁关于相关荷载的横向分布系数。
均布荷载作用下简支梁结构分析

均布荷载作用下简支梁结构分析摘要:本文利用ANSYS软件中的BEAM系列单元建立简支梁有限元模型,对其进行静力分析与模态分析,得出梁的结构变形,分析梁的受力情况。
并用有限元刚度矩阵知识求解简支梁端点处得位移和旋度。
在此基础上,利用经典力学对以上所得的结果进行梁的有关计算,并将结果与有限元刚度矩阵和ANSYS软件所得结果进行比较。
通过比较得出不同方法在简支梁求解过程中自己的优势和缺点。
关键词:ANSYS简支梁均布荷载求解应力位移1.引言钢制实心梁的截面尺寸为10mm×10mm(如图1所示),弹性模量为200GPa,均布荷载的大小及方向如图1所示。
图12.利用力学方法求解运用力学方法将上述结构求解,易得A、B支座反力相等为500N,该简支梁的计算简图、弯矩图以及剪力图如下图所示:1000N/m1000mm图2简支梁计算简图跨中弯矩:125N㎡图3简支梁弯矩图支座反力500N图4简支梁剪力图3.利用ANSYS软件建立模型与求解通过关键点创建实体模型,然后定义材料及单元属性,然后划分网格,建立有限元模型。
具体步骤包括:添加标题、定义关键点、定义直线、选择单元,定义实常数、定义材料属性、设定网格尺寸、划分网格、施加荷载求解(选择分析类型、定义约束、施加荷载)查看分析结果。
图5简支梁变形前后的情况图6简支梁应力图图7简支梁剪力图4.计算结果对比4.1简支梁内力分析结果比较节点应力有下面公式计算求得:ᵟ=有限元计算所得结果与力学的计算结果对比如下表所示:)单位(N/㎡ANSYS模态结果结构力学计算结果4.2简支梁竖向位移分析结果比较4.2.1结构力学计算求得的简支梁最大位移由下面图乘法求得:aFpx实际荷载作用下梁弯矩表达式:M(x)=500x-500x2单位荷载作用下梁弯矩表达式:Mp= (1-a)x (0<x<a)a(1-x) (a<x<1)则在梁上任意点的竖向位移f:f=500+500dx=0.25a4-0.5a3+0.25a(0,0.1, 0.2 ……) 分别代入分段点的a的数值得各点的位移如下表:4.2.2有限元计算所得简支梁y方向位移如下图8所示:图84.3端点旋度分析结果比较(1)利用结构力学图乘法求得端点处得旋度旋度:Ф=()0.5=(2)利用有限元刚度矩阵求得端点位移与旋度为:假设梁的两端固定,并计算等价的节点荷载用以表示均匀变化的荷载力M1 -M2R2-1/2qL 12 6L -12 6L v1-1/12qL26L 4L2-6L 2L2Ө1-1/2qL =EI/L3-12L -6L 12 -6L v2 (a)1/12qL26L 2L2-6L 4L2 Ө2方程(a)是固定的精确模型,因为如果从中解出的所有位移和旋度,它们的计算值都将为零。
2022年注册土木工程师(岩土)《专业基础考试》真题及答案详解

2022年注册土木工程师(岩土)《专业基础考试》真题及答案详解单项选择题(共60题,每题2分。
每题的备选项中只有一个最符合题意)1.随着材料含水率的增加,材料密度的变化规律是()。
A.增加B.不变C.降低D.不确定【答案】B2.硅酸盐水泥熟料后期强度增长较快的矿物组成是()。
A.铝酸三钙B.铁铝酸四钙C.硅酸三钙D.硅酸二钙【答案】D3.砂子的粗细程度以细度模数表示,其值越大表明()。
A.砂子越粗B.砂子越细C.级配越好D.级配越差【答案】A4.下列措施中,能够有效抑制混凝土碱—骨料反应破坏的技术措施是()。
A.使用高碱水泥B.使用大掺量粉煤灰C.使用较高的胶凝材料D.使用较大的水灰比【答案】B5.下列措施中,改善混凝土拌合物和易性合理可行的方法是()。
A.选用最佳砂率B.增加用水量C.掺早强剂D.改用较大粒径的粗骨料【答案】A6.设计混凝土配合比时,确定水灰比的依据是()。
A.强度要求B.和易性要求C.保水性要求D.强度和耐久性要求【答案】D7.钢材屈强比越小,则()。
A.结构安全性高B.强度利用率高C.塑性差D.强度低8.水准测量中,已知A点水准尺读数为1.234m,B点水准尺读数为2.395m,则两点的高差h ab为()。
A.+1.161mB.-1.161mC.+3.629mD.-3.629m【答案】A9.1∶500地形图的比例尺精度为()。
A.0.1mB.0.05mC.0.2mD.0.5m【答案】C10.计算求得某导线的纵、横坐标增量闭合差分别为:f x=0.04m、f y=-0.05m,导线全长490.34m,则导线全长相对闭合差为()。
A.1/6400B.1/7600C.1/5600D.1/4000【答案】B11.若要求地形图能反映实地0.2m的长度,则所用地形图的比例尺不应小于()。
A.1/500B.1/1000C.1/2000D.1/5000【答案】C12.已知直线AB的坐标方位角为185°,则直线BA所在象限为()。
简支梁的有限单元法分析-三角形三节点单元

三角形三节点平面单元
王 峰
有限元分析的基本步骤:
结构离散化
单元分析
整体分析
1 结构离散化
图示为简支梁,梁的厚度为t,泊松比m =0.3,弹性 模量为E=2e+5Mpa,用三节点三角形单元进行离散, 直角三角形边长为2。
2 单元分析
单元分析的主要内容:由节点位移求内部任一点的
物理方程
{s }=[D]{} 而 { }=[B]{}e (求应力的表达式) {s }=[D][B]{ }e
记 [S]=[D][B]
[S]应力矩阵: [S]=[Si Sj Sm]
2.5节点力与节点位移的关系
令实际受力状态在虚位移状态上做虚功,虚功方程:
({ *}e )T {F}e { *}T tdxdy s
位移,由节点位移求单元应变、应力和节点力。
单元分析的步骤:
节点 (1) 位移
单元内部 各点位移
(2)
单元 (3) 应变
单元 应力
(4)
节点 力
单元分析
2.1 形函数
形函数反映了单元的位移形态,是坐标的函数。 三节点三角形单元的形函数为:
1 Ni ( x, y ) (ai bi x ci y )(i , j , m) 2A ai x j ym xm y j (i , j , m) bi y j ym ci xm x j
Ni 1 Ni 1 bi , ci x 2 A y 2 A
因此,三角形单元的应变矩阵[B]是常量,
(i , j , m)
代入数据得到:
1 0 0 0 1 0 1 B 0 0 0 1 0 1 2 0 1 1 0 1 1
进行有限元分析时简支梁约束条件的确定

进行有限元分析时简支梁约束条件的确定王得胜;程建业;高国富【摘要】为使用三维单元对简支梁进行有限元分析,结合简支梁支座的约束特点,提出建立与梁截面中性层重合的基准平面,并用此基准平面与梁的两个端面生成的分割线作为约束对象,对固定铰链端的分割线施加固定约束,对活动铰链端的分割线施加梁端平面内的移动约束的方法,可实现有限元分析中对三维模型的约束功能与材料力学中简支梁的支座约束功能一致.通过与材料力学的计算结果比较可知,这种施加约束的方法,能够获得正确的有限元计算结果,从而为简支梁的有限元分析提供了重要参考.【期刊名称】《河南理工大学学报(自然科学版)》【年(卷),期】2014(033)002【总页数】5页(P177-181)【关键词】简支梁;铰链;有限元分析;约束条件【作者】王得胜;程建业;高国富【作者单位】河南理工大学机械与动力工程学院,河南焦作454000;郑州煤炭工业技师学院,河南新郑451150;河南理工大学机械与动力工程学院,河南焦作454000【正文语种】中文【中图分类】TP391.41按照材料力学的理论,当作用在直杆上的外力与杆的轴线垂直时(一般称为横向力),直杆的轴线由原来的直线弯成曲线,这种变形称为弯曲,以弯曲变形为主的杆件称为梁.在进行梁的强度和刚度计算时,必须对其几何形状、约束和载荷进行简化.梁受到作用在其对称平面内的载荷后,在对称面内可能有3种刚体位移,即沿梁轴线及其垂直方向的移动和在对称面内绕其端点的转动.因此,必须有支座来约束梁的运动,约束的数目至少能够阻止上述3种位移,使支座处的约束反力与载荷组成一个平衡的平面力系.根据支座能够提供的约束反力将支座分为固定铰链、活动铰链和固定端3种类型.其中固定铰链约束沿梁轴线及其垂直方向的位移,但允许绕支座中心产生转动;活动铰链允许有沿梁轴线的微小位移和绕支座中心的转动,但约束了梁轴线垂直方向的位移;固定端则约束了全部位移(移动和转动),接近于绝对固定.在实际工程中的支座,可能对某一方向的运动既不能完全阻止,而又有一定的阻力,这时需要根据实际情况近似地简化成典型支座进行计算.如一根传动轴,如果一端的支承轴承的宽度比较窄且无止推功能,它基本上不能阻止轴在其轴线平面内的微小转动与沿轴线的移动,此时将其简化为活动铰链.如果支承轴承的宽度较窄但有止推功能,则可简化成固定铰链.简化后得到的力学模型,若是一支座为活动铰链,而另一支座为固定铰链的梁,则称其为简支梁;若直杆两端均伸出支座之外,称为外伸梁;若只有一端为固定端则称为悬臂梁.这种简化因未考虑构件截面形状和尺寸的变化,可认为是一种宏观力学模型.随着计算机辅助设计技术的发展,有限元分析技术已经成为机械设计领域的重要手段.不仅是ANSYS,ADINA,ABAQUS,MSC等知名软件的应用越来越广泛,而且在SOLIDWORKS,PROE和UG等三维设计软件中也融入了有限元分析功能,为评估机械系统或零件的结构与尺寸的合理性提供了方便[1-7].有限元分析是一种数值计算方法,在求解构件或零件的应力和变形时,不是去求出准确的连续函数,而是将构件或零件先划分成若干个单元(如平面问题的三角形,空间问题的四面体等),并设法求出节点(单元的顶点)的位移,其它各点的位移表示成单元顶点位移的插值函数,从而获得一个近似的位移分布.如果划分的单元足够多,且分布的位置也比较恰当,则可得到足够准确的解答[8-12].与材料力学中的模型相比,有限元分析是用微小尺寸的模型来表示较大尺寸构件的力学参数,可以认为是一种微观力学模型.使用有限元分析软件对构件进行有限元分析时,一般要经过建立构件的三维模型,选取材料,选择单元形式,划分网格,确定边界条件(包括施加载荷与约束),进行计算以获得相关数据,查看结果等步骤.虽然材料、单元形式等对计算精度有一定影响,但因其主要取决于软件的功能,使用者能够干预的因素较少,而边界条件(包括载荷与约束条件)会随着使用者的水平不同对结果数据产生较大的影响.因此,本文主要结合简支梁支座的约束特点,讨论使用三维单元对简支梁进行有限元分析时确定约束条件的方法和步骤.简支梁是按材料力学理论确定的计算模型,如图1所示是受均布载荷的简支梁,若从有限元分析的角度考虑,它是一种平面模型,在图1坐标系的x轴方向(图1中未示出x轴)没有移动,也没有绕y轴和z轴的转动,A端的固定铰链约束了2个自由度(即沿z轴和y轴的移动),保留了绕A点(实质上是过A点垂直于yz平面的轴,下同)的转动,B端为活动铰链,约束了沿y轴的移动,保留了沿z轴的移动和绕B点的转动.在进行有限元分析时,简支梁支座的这些特点是对A和B端施加约束条件的重要依据.在目前常用的有限元分析软件中,用于简支梁有限元分析的单元类型可归纳为2大类:二维和三维单元.二维单元如ANSYS中的BEAM3,BEAM23和BEAM54等,三维单元如ANSYS中的BEAM4,BEAM24和BEAM344等,另外,实体单元SOLID45等也可以作为简支梁有限元分析的单元.不同类型的单元需要使用者定义的参数数量和类型各不相同,需要定义的支座自由度约束数量和类型也不同.对于等截面的直杆,若采用BEM3梁单元,两端支座简化为节点,只需对模型(显示为一段线段)两个端点的自由度进行约束即可.这类单元虽然计算速度快,结果数据正确,但不能显示梁截面上的应力(应变)分布情况,不能用于求解梁截面变化较大或需要考察梁截面上应力分布情况的问题.在SOLIDWORKS,PROE和UG等三维设计软件中的有限元分析插件,利用设计软件建立三维模型的优势,实现了三维模型建立与有限元分析的无缝对接.例如,在SOLIDWORKS三维设计软件中,其有限元分析插件专门设立了“视为横梁”选项,并提供了铰链约束,计算后查看结果的图形虽然是三维的,但仍然没有清楚表明梁截面上的应力分布情况如图2所示.为了考察梁截面上应力或应变的分布情况,必须使用三维单元对简支梁进行有限元分析.由于构件具有一定的尺寸,而且单元是在整个研究域内划分的,所以,确定约束的类型和施加位置就成为能否获得正确数据的关键.本文利用SOLIDWORKS 三维设计软件中的有限元分析插件的相关功能,说明对简支梁进行有限元分析时确定约束条件的方法.3.1 简支梁有限元模型的建立设图1所示简支梁的截面为正方形(100 mm×100 mm),梁的跨度l=600 mm,均布载荷强度q=100 N/mm,为利用SOLIDWORKS三维设计软件中的有限元分析插件进行计算,首先建立三维模型,将坐标原点设置在梁截面的形心上,并利用基准平面在简支梁两截端面上添加分割线,以作为施加约束条件的对象,如图3所示.分析可知,为使进行有限元分析时的约束条件与材料力学规定的简支梁支座特点一致,在对三维模型施加约束时,只能选择两端面的边线或分割线作为约束对象,而不能选择三维模型中的其它面要素或体要素.对于固定铰链,使约束对象固定,可实现固定铰链的约束功能;对于活动铰链,使约束对象在y和x方向的位移为0,实现活动铰链的约束功能.将图1中的分布载荷,转化为p=1 N/mm2的压强施加于梁三维模型的上表面上,从而完成简支梁的三维建模.3.2 不同约束条件的有限元分析结果3.2.1 对两端面上缘边线施加约束的情况当在简支梁两端面上缘边线施加约束时,简支梁的弯曲应力云图和沿梁长度方向的应力分布如图4所示.从图4可以看出,简支梁的上缘为压应力,下缘为拉应力,在梁的中部对称截面上,压应力具有最小值而拉应力具有最大值,其绝对值均接近27 MPa,但上缘的应力分布在接近两端附近出现较大波动.3.2.2 对两端面分割线施加约束的情况在载荷不变的情况下,在简支梁两端面分割线施加约束,简支梁的弯曲应力云图和沿梁长度方向的应力分布如图5所示.从图5可以看出,简支梁的上缘为压应力,下缘为拉应力,在梁的中部对称截面上,压应力具有最小值而拉应力具有最大值,其绝对值均接近27 MPa,上缘和下缘的应力分布在接近两端附近均比较平滑,没有明显的波动.3.2.3 对两端面下缘边线施加约束的情况仍然保持载荷不变,在简支梁两端面下缘边线施加约束,简支梁的弯曲应力云图和沿梁长度方向的应力分布如图6所示.从图6可以看出,简支梁的上缘为压应力,下缘为拉应力,在梁的中部对称截面上,压应力具有最小值而拉应力具有最大值,其绝对值均接近27 MPa,下缘的应力分布在接近两端附近具有较大的波动,且波动的规律基本与上缘相同.根据计算条件,按照材料力学理论容易算出,上述简支梁的最大弯矩为梁的抗弯截面模量为梁危险截面(中部对称截面)上的最大弯曲应力(绝对值)为对比图4-图6可知,在载荷条件不变的情况下,3种约束条件下的计算结果在危险截面上的最大应力值基本相同,且均接近按照材料力学计算的理论值,说明这种简支梁有限元分析模型是有效的.但是,无论是把两端面的上缘边线还是下缘边线作为约束对象,与约束对象处于同一表面的弯曲应力的分布在两端面附近都会出现较严重的波动,这种现象是不符合材料力学的理论分析结果的,而只有以两端面对称分割线作为约束对象时,弯曲应力的分布规律才与材料力学理论分析结果基本一致.这种情况并非偶然,由材料力学理论可知,此例中两端截面上的分割线正是两端面的中性轴,而用于产生分割线的基准平面正是梁的中性层.对于简支梁来说,建立约束的本质实际上就是在中性层上对约束目标进行约束.因此,对于任意截面形状的简支梁来说,要实现简支梁的固定铰链和活动铰链约束,首先应该建立梁两端截面的中性轴,然后约束固定铰链端中性轴的全部移动自由度,约束活动铰链端的中性轴在端面内的移动自由度,即可实现简支梁两端支座的约束功能.上述讨论虽然是以方形截面的简支梁为对象,但所得结果对于其它截面形状的简支梁也是适用的.分析方形截面梁的有限元计算过程,可归纳出对任意截面形状的简支梁进行有限元分析的一般步骤如下.(1)建立梁的三维模型.(2)根据梁的截面形状确定其中性层,建立与中性层重合的基准平面.(3)利用与中性层重合的基准平面与梁两端面的交线,生成端面分割线(中性轴).(4)对固定铰链端的分割线施加固定约束,对活动铰链端的分割线施加端平面内的移动约束.(5)对直杆施加载荷.(6)划分单元.(7)进行计算.(8)查看计算结果.其中步骤(1)~(5)本质上就是建立简支梁的三维有限元分析模型的步骤.简支梁是一类最常见的应用广泛的力学模型,如机械系统中部分传动轴,建筑设计中的承重梁等,一般都可简化为简支梁模型.采用有限元分析方法分析简支梁的应力和变形分布规律,可以使技术人员对梁结构设计的合理性进行评价,对梁的结构尺寸进行优化.另外,为了对简支梁的设计质量具有更深入的了解,有时还需要分析简支梁的动态特性和疲劳寿命等,因此正确建立简支梁的三维有限元分析模型,对于简支梁的计算机辅助设计具有重要实际意义.本文将材料力学理论与有限元分析软件的功能相结合,提出对梁端面的中性轴进行约束,以实现简支梁支座约束功能的方法,解决了有限元分析中实现固定铰链和活动铰链约束的技术难题,为简支梁的有限元分析和获得正确的计算结果奠定了基础.E-mail:***************.cn【相关文献】[1] 吕红明. 边界条件对短梁结构有限元分析影响的研究[J]. 工程设计学报,2013,20(4):321-325.[2] 徐格宁,冯晓蕾,陶元芳,等. 边界条件对机械结构有限元分析结果的影响[J]. 起重运输机械,2010(2):60-64.[3] 王晓臣,蒲军平. 变截面梁有限元分析[J]. 浙江工业大学学报,2008,36(3):311-315.[4] 唐良兵,王伟. 基于ANSYS 的汽车传动轴的有限元分析[J]. 机械,2013,40(1):45-48.[5] 李晓丽,袁圆.基于COSMOS/Works 的带式输送机传动滚筒的有限元分析[J]. 煤矿机械,2010,31(9):95-96.[6] 逯艳艳,李永奎. 基于SolidWorks 轴类零件优化设计[J]. 农业科技与装备,2012(1):24-26.[7] 罗裴. 基于有限元仿真的简支梁结构损伤分析[J]. 测试技术学报,2011,25(5):440-444.[8] 李科, 徐海涛. 三类简支梁非线性有限元分析[J]. 低温建筑技术,2010(6):66-67.[9] 吴襄飞, 栾振辉, 曹多美. 同步齿轮泵传动轴的有限元分析[J]. 煤矿机械,2009,30(6):84-86.[10] 张克鹏,邵林,邓超,等. 重型卡车传动轴强度仿真与试验分析[J]. 汽车工程师,2013(7):29-32.[11] 杨延功, 平学成. 内燃机车传动轴焊接缺陷的有限元力学分析[J]. 内燃机车,2011(2):25-26.[12] 王延芸,韩兵,朱茂桃. 混合动力发动机传动轴有限元分析[J]. 机械设计与制造,2010(3):6-7.。
均布荷载简支梁弯矩计算公式

均布荷载简支梁弯矩计算公式
摘要:
1.均布荷载简支梁的概念
2.均布荷载简支梁弯矩计算公式的推导
3.均布荷载简支梁弯矩计算公式的应用
正文:
一、均布荷载简支梁的概念
均布荷载简支梁是一种结构力学模型,它是指在梁的两端固定,梁上承受的荷载均匀分布的一种梁。
在实际工程中,这种结构形式非常常见,如桥梁、楼板等。
由于荷载的分布均匀,使得均布荷载简支梁在受力分析时具有一定的特点。
二、均布荷载简支梁弯矩计算公式的推导
在计算均布荷载简支梁的弯矩时,我们可以通过以下几个步骤推导出弯矩计算公式:
1.假设均布荷载简支梁的长度为L,梁的截面宽度为b,截面高度为h,单位长度上的荷载为q。
2.根据力学原理,梁在均布荷载作用下,弯矩的最大值出现在梁的中点,即x=L/2 处。
3.对梁进行受力分析,可以得出弯矩的计算公式为:M = ql/8。
其中,M 表示弯矩,q 表示单位长度上的荷载,l 表示梁的长度。
三、均布荷载简支梁弯矩计算公式的应用
在实际工程中,我们可以通过均布荷载简支梁弯矩计算公式来计算梁在均
布荷载作用下的弯矩。
这对于梁的强度分析、梁的材料选择以及梁的稳定性分析等方面具有重要的意义。
例如,当我们知道梁的长度、截面尺寸和单位长度上的荷载时,可以通过公式M = ql/8 计算出梁在均布荷载作用下的弯矩。
这样可以帮助我们更好地了解梁的受力情况,从而为梁的设计和施工提供依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
哈工程有限元大作业
均布荷载作用下简支梁结构分析
院(系)名称:船舶工程学院
专业名称:港口航道与海岸工程
学生姓名:白天华
学号:03
摘要
本文利用ANSYS软件中的BEAM系列单元建立简支梁有限元模型,对其进行
静力分析与模态分析,得出梁的结构变形,分析梁的受力情况。
并用有限元刚度矩阵知识求解简支梁端点处得位移和旋度。
在此基础上,利用经典力学对以上所得的结果进行梁的有关计算,并将结果与有限元刚度矩阵和ANSYS软件所得结
果进行比较。
通过比较得出不同方法在简支梁求解过程中自己的优势和缺点。
1.问题求解
问题描述
钢制实心梁的截面尺寸为10mm×10mm(如图1所示),弹性模量为200GPa,均布荷载的大小及方向如图1所示。
图1
利用力学方法求解
运用力学方法将上述结构求解,易得A、B支座反力相等为500N,该简支梁的计算简图、弯矩图以及剪力图如下图所示
1000N/m
1000mm
图2简支梁计算简图
图3简支梁弯矩图
支座反力500N
图4简支梁剪力图
利用ANSYS软件建立模型与求解
通过关键点创建实体模型,然后定义材料及单元属性,然后划分网格,建立有限元模型。
具体步骤包括:添加标题、定义关键点、定义直线、选择单元,定义实常数、定义材料属性、设定网格尺寸、划分网格、施加荷载求解(选择分析类型、定义约束、施加荷载)查看分析结果。
图5简支梁变形前后的情况
图6简支梁应力图
图7简支梁剪力图
2计算结果对比
简支梁内力分析结果比较
节点应力有下面公式计算求得:
ᵟ=
有限元计算所得结果与力学的计算结果对比如下表所示:
单位(N/㎡)
节点应力
1 0
2 270
3 480
4 630
5 720
6 750
7 720
8 630
9 480
10 270
ANSYS模态结果结构力学计算结果简支梁竖向位移分析结果比较
(1)结构力学计算求得的简支梁最大位移由下面图乘法求得:
a
Fp
x
实际荷载作用下梁弯矩表达式:
M(x)=500x-500x2
单位荷载作用下梁弯矩表达式:
Mp= (1-a)x (0<x<a)
a(1-x) (a<x<1)
则在梁上任意点的竖向位移f:
f=500+500dx
= ……)
分别代入分段点的a的数值得各点的位移如下表:
a 位移
(2)有限元计算所得简支梁y方向位移如下图8所示:
图8
端点旋度分析结果比较
(1)利用结构力学图乘法求得端点处得旋度
旋度:Ф=()=
(2)利用有限元刚度矩阵求得端点位移与旋度为:
假设梁的两端固定,并计算等价的节点荷载用以表示均匀变化的荷载力
M1 -M2
R1 R2
-1/2qL 12 6L -12 6L v1
-1/12qL2 6L 4L2-6L 2L2Ө1
-1/2qL =EI/L3-12L -6L 12 -6L v2 (a)
1/12qL2 6L 2L2-6L 4L2 Ө2
方程(a)是固定的精确模型,因为如果从中解出的所有位移和旋度,它们的计算值都将为零。
利用边界条件,得到矩阵方程:
-ῳL2/30=EI/L3 4L2 2L2 Ө1
-ῳL2/202L2 4L2 Ө2 (b)解方程组(b),得每个点处得旋度大小为:
Ө1 =Ө2=qL3/24EI (c)用实际节点荷载代替作用在梁上的荷载力,加上由节点旋度引起的反作用力,计算出最后的反作用力:
R1 12 6L -12 6L 0 1/2qL
M1 =EI/L3 6L 4L2-6L2 2L2 -qL3/24EI + 1/12qL2
R2 -12 -6L 12 -6L 0 qL/2 (d)
M2 6L 2L2-6L2 4L2 qL3/24EI -1/12qL2
求解矩阵方程,得到最终结果:
R1=qL/2 R2=qL/2 M1=M2=0
3结论
(1)本文通过ANSYS有限元软件中BEAM3单元建立了简支梁模型,经过同种工况的力学静力分析,简支梁应力、位移结果相同。
(2)用有限元刚度矩阵法求得的简支梁端点位移与旋度的结果和经典结构力学求得的结果一致。
(3)对静定简支梁的分析,有限元软件ANSYS能直观的观察梁的各种物理变化,经典力学求解方法相对刚度矩阵法更加简洁方便,但刚度矩阵法对更加复杂结构的求解相对更方便。
参考文献
[1]李家宝.结构力学(第三版).高等教育出版社.1999
[2]欧宝贵,朱加铭.材料力学.哈尔滨工程大学出版社.2010
[3][美].布查南,董文军,谢伟松译.全美经典学习指导系列-有限元分析。
科学出版社.2002
[4]赵经文,王宏钰结构有限元分析科学出版社.2005。