亚硝基化合物
食品中N-亚硝基化合物污染的来源

1、食品中N-亚硝基化合物污染的来源N-亚硝基化合物主要来源于食品中亚硝胺的污染如:鱼、肉制品中的亚硝胺、蔬菜水果中的二甲基亚硝胺、啤酒中的二甲基亚硝胺。
N-亚硝基化合物还来自于亚硝基化合物前体物在体内合成。
具体来说N-硝基化合物是由二类称为前体的化合物:一类为仲胺和酰胺(蛋白质的分解物),一类为硝酸盐和亚硝酸盐(俗称硝),在人体内或体外适合的条件下化合而成。
这两类前体广泛存在于各种食物中,蔬菜是硝酸盐的主要来源,很多蔬菜如萝卜、大白菜、芹菜、菠菜中含有较多的硝酸盐。
亚硝酸盐主要存在于腌菜、泡菜及添加硝的香肠、火腿中。
仲胺、酰胺主要来自动物性食品肉、鱼、虾等的蛋白质分解物,尤其当这些食品腐败变质时,仲胺等可大量增加。
2、前体物有哪些N-亚硝基化合物前体物有亚硝酸盐、硝酸盐、胺类、酰胺类、氨基甲酸乙酯、胍类等。
N-亚硝基化合物前体物主要来源于胺类,如:肿胺、二甲胺、胍类;亚硝基化剂,如: -NO3+、-NO2+、N2O3、 NO、 NO2、N2O4等亚硝酸盐;3、哪些措施可以控制食品中N-亚硝基化合物污染1. 阻断或减少N-亚硝基化合物的合成,如防止食物霉变以及其他微生物污染、控制食品加工中硝酸盐及亚硝酸盐的使用量、施用钼肥、改进食品加工工艺。
2. 防止或减少亚硝基化合物的危害作用,如:提高维生素C摄入量、许多食物成分可阻断亚硝胺的形成、吃新鲜食物减少腌制食品的摄入量、暴晒污染的粮食和饮水。
3. 制订食品中N-亚硝基化合物限量标准。
4、食品中多环芳烃化合物的来源和危害来源:多环芳烃化合物主要由各种有机物,如煤,汽油,香烟等不完全燃烧而来。
具体说:食品中的多环芳烃和苯并(a)芘主要来自①食品在用煤、炭和植物燃料烘烤或熏制时直接受到污染;②食品成分在高温烹调加工时发生热解或热聚反应所形成,这是食品中多环芳烃的主要来源;③植物性食品可吸收土壤、水和大气中污染的多环芳烃;④食品加工中受机油和食品包装材料等的污染,在柏油路上晒粮食使粮食受到污染;⑤污染的水可使水产品受到污染;⑥植物和微生物可合成微量多环芳烃。
N-亚硝基化合物

近几年发现的、并且致癌性较强的就有3种:
二噁英、氯丙醇、丙烯酰胺等
大约有80%~90%的癌症与环境因素有关, 而只有10%~20%与遗传因素有关。
如果预防措施得当,可降低30%~40%癌
症发病率,大约每年减少300~400万癌症引
起的死亡。
一、N-亚硝基化合物的种类与理化性质 二、食物中N-亚硝基化合物的来源与合成 三、人体内N-亚硝基化合物来源 四、N-亚硝基化合物的毒性 五、预防N-亚硝基化合物危害的措施源自什么是N-亚硝基化合物呢?
R1
N-N=O R2 N-亚硝胺((N-nitrosamine) 其中,R1、R2可以是烷 基或环烷基,也可以是芳香 环或杂环化合物;另外氢元 子可被其它元素取代。R1和 R2可相同,称为对称性亚硝 胺;R1和R2可不相同,称为 非对称性亚硝胺。 R1 N-N=O R2 ─ CO N-亚硝酰胺((N-nitrosamide) 式中,R1、R2可以是烷基或芳基, R2还可以是NH2、NHR、NR2(称为N亚硝基脲)或RO基团(即亚硝基氨基甲 酸酯)。
中
国
0.5 ~5.0 0.5 ~5.0
(1)从食物中摄取胺类及亚硝酸盐前体物; 硝酸盐在胃内很容易转变成亚硝酸盐。 (2)胃内温度→37℃。
(3)胃内的pH值1~4范围。
(4)胃内存在催化剂:SCN-、NaCl
N-亚硝基化合物的急性毒性(雄性大鼠,经口)
N-亚硝基化合物 甲基苄基亚硝胺 二甲基亚硝胺 LD50 (mg/kg) 18 27~41 N-亚硝基化合物 吡咯烷亚硝胺 二丁基亚硝胺 LD50 (mg/kg) 900 1200
癌性。
(3)N-亚硝基化合物的合成条件及影响因素 1)合成条件:温度在0~100℃之间均可发 生反应,且最适反应温度在37℃左右;浓度在
n-亚硝基化合物的结构

n-亚硝基化合物的结构
n-亚硝基化合物是一类含有亚硝基(-NO)基团的化合物。
亚硝基化合物的结构可以根据不同的化合物而有所不同,常见的亚硝基化合物包括亚硝化物和硝酸酯。
亚硝化物是含有亚硝基的阴离子化合物,如亚硝酸根离子(NO2-)。
亚硝酸根离子呈线性结构,氮原子与两个氧原子相连。
硝酸酯是含有亚硝基的有机化合物,其中亚硝基与一个有机基团连接。
硝酸酯的结构可以有不同的取代基团,如烷基、芳基等。
亚硝基(-NO)与有机基团通过氮与碳的共价键相连。
亚硝基化合物由于含有亚硝基,具有一定的活性。
它们在化学反应中常常发生失去亚硝基(-NO)的反应,生成相应的产物。
亚硝基化合物在生物体内也具有生物活性,因此对人体健康具有潜在的影响。
有机污染物

苯并(a)芘 [benzo(a)pyrene, B(a)P]
理化特性
PAH室温下为固体,高熔点和高沸点,低蒸气压, 水溶解度低,PAH易溶于许多溶剂,具有高亲脂性。 B[a]P由五个苯环构成:
蔬菜品种 硝酸盐 亚硝酸盐
某县新蔬菜中硝酸盐含量(mg/Kg) 韭菜 大白菜 小白菜 胡萝卜婴 160~240 600 700~800 24~320 0.1 0.6~2.0 1.0~1.2 0.2~0.3
冬瓜 100 0.5
蔬菜腌制过程硝酸盐和亚硝酸盐的消长 (mg/Kg) 时间(天) 1.5 2 3 5 8 15 24
③、致畸和致突变作用:
5、预防N-亚硝基化合物危害的措施
避免误食工业盐 —— 这常常是导致N-亚硝基化合物急
性中毒的主要原因
阻断或减少N-亚硝基化合物的合成
① 作物栽培环节——施钼肥 ② 粮食储存环节——防止霉变及微生物污染 ③ 食品加工环节——控制使用硝酸盐和亚硝酸盐
降低亚硝基化合物的危害
2、N-亚硝基化合物的合成及前体物质
① ②
N-亚硝化剂:硝酸盐、亚硝酸盐、氮氧化物 可亚硝化的含氮物
胺(伯胺/仲胺)、酰胺、 多肽、氨基酸、脲、 脲烷、呱啶、芳胺、 羟胺、脒、肼、腙、 酰肼、氰酰肼等
蛋白质、氨基酸、 磷脂代谢或腐败
3、食物中N-亚硝基化合物的来源
①
植物性食物中含硝酸盐和亚硝酸盐,在长期 贮藏和加工(如腌制)过程中生成亚硝胺
三、杂环胺类化合物
1. 2.
亚硝基化合物的转化

亚硝基化合物可以通过多种化学反应进行转化,以下是一些常见的转化方式:
还原反应:亚硝基化合物可以被还原成羟胺或氨基醇等化合物。
例如,在酸性环境中,亚硝基化合物可以被还原成羟胺;在碱性环境中,亚硝基化合物可以被还原成氨基醇。
氧化反应:亚硝基化合物可以被氧化成硝基化合物。
例如,在酸性环境中,亚硝基化合物可以被氧化成硝基化合物;在碱性环境中,亚硝基化合物也可以被氧化成硝基化合物。
重排反应:亚硝基化合物可以发生重排反应,生成其他类型的氮氧化物。
例如,在酸性环境中,亚硝基化合物可以发生重排反应,生成硝基化合物。
总的来说,亚硝基化合物的转化主要涉及的是官能团之间的转换和迁移,这需要依据具体的反应条件和底物结构进行选择和设计。
亚硝基化合物

亚硝胺类的致癌性
Байду номын сангаас
化合物名称 致癌作用
二甲基亚硝胺 +++
二戊基亚硝胺 ++
甲基乙稀亚硝 胺
甲基稀丙基亚 硝胺
亚硝基吡咯烷
+++ ++ +
亚硝基乙酰胺 +++
亚硝基二甲基 +++
尿素
给药途径 主要靶器官
口服
肝
口服、注射 肝、脾
口服
食管
静注
肾
口服 口服 口服
肝
前胃
N-亚硝基化合物的致癌性
• 动物试验证明,N-亚硝基化合物具有致癌作用; • N-亚硝胺稳定,称为前致癌物; • N-亚硝酰胺不稳定,称为终末致癌物; • 未发现对N-亚硝基化合物致癌作用有抵抗力的动物; • 不同亚硝基化合物的致癌强度不同,具有剂量效应关系; • TD50为实验动物50%诱发出肿瘤的平均总致癌剂量; • 器官特异性,不同的化合物有不同的靶器官
硝酸盐、亚硝酸盐和N-亚硝基 化合物
学习目的与要求
• 了解N-亚硝基化合物的结构、性质和合成途径 • 掌握N-亚硝基化合物和前体物的来源以及控制
N-亚硝基化合物危害的措施 • 熟悉亚硝酸盐、硝酸盐和N-亚硝基化合物的毒
性规律,以及在食品中的允许限量标准
• 1937年Freund首次报道了两例职业接触N-亚硝基 二甲基胺(NDMA,又称二甲基亚硝胺)中毒案例, 病人出现中毒性肝炎和腹水。其后以NDMA给小鼠 和狗染毒,也出现肝脏退行性环死。之后揭示了 NDMA不仅是肝脏的剧毒物质,也是强致癌物,可 引起肝脏肿瘤。
NDMA基础知识

N-Nitroso-compound contamination and prevention in food
N-亚硝基化合物(N-Nitroso-compound)
凡是具有 =N-N=O 这种基本结构的化合物 统称为N-亚硝基化合物。 统称为 亚硝基化合物。 亚硝基化合物 N N=O
三种加方法卤肉、禽烤全羊制品亚硝酸盐残留量( 三种加方法卤肉、禽烤全羊制品亚硝酸盐残留量(mg/Kg)
方法
腌后弃汤另煮
样本数 17 37
平均值 范围 0.080 0.065~0.64 0.140 0.009 0.54 0.009~0.54
水、生肉+ + 卤水同时煮 腌后直接烤
19
0.749
0.049~2.36
钠 (mg/Kg)
150 750 1050 1500 2500
67 631 574 811 1386 3 8 10 19
53 310 473 724 1345 8 12 14 19
香肠中加VC对生产亚硝胺的影响
VC加入量 mg/Kg 亚硝酸盐加 二甲基亚硝 胺含量 mg/Kg 入量mg/Kg 加热 2h 加热 4h
N-亚硝基化合物
4. 来源 A 食品中亚硝胺的污染 1) 1)鱼、肉制品中的亚硝胺 2)蔬菜水果中的二甲基亚硝胺 ) 3)啤酒中的二甲基亚硝胺 ) B 亚硝基化合物前体物在体内合成
肉类和鱼制品中亚硝胺的含量水平
含量µg/Kg 国家或地区 含量 干香肠 咸鱼 干鱿鱼 炖猪肉 熏肉 加拿大 英国 日本 前苏联 中国 10--20 1--9 300 0.9-2.5 0.3—6.5 亚硝胺 NDMA NDMA NDMA NDMA NDMA
N-亚硝基化合物(本)

鱼肉和某些蔬菜
17
2014-7-29
N-亚硝基化合物的合成
亚硝化过程
可亚硝基化的胺类 亚硝化剂
N-亚硝基化合物
2014-7-29 18
+
适宜的条件下 (体内、体外)
合成条件及影响因素
前体物浓度和种类
– 生成亚硝胺的量随亚硝酸盐和胺类的增加而增加 – 伯、仲、叔胺中,仲胺是主要前体
植物体内的硝酸盐(nitrates)集聚
– 不同蔬菜种类之间的差异
根菜类 绿叶菜类 葱蒜类 瓜类 食用菌 1634 mg/kg 1426 mg/kg 597 mg /kg 311 mg/kg 38 mg /kg 薯芋类 白菜类 豆科 茄果类 1503 mg/kg 1296 mg/kg 373 mg/kg 155 mg/kg
6.预防措施
防止食品霉变或被其他微生物污染 – 保证食品新鲜、防止腐败霉变 – 加工,保存及食用过程中:低温、密闭、曝晒 食品加工工业: – 控制硝酸盐、亚硝酸盐的用量,不得滥用、多加 – 并用维生素C – 工艺上符合要求的情况下尽量使用替代品 农业上推广使用钼肥:固氮,还原硝酸盐为氨 增加食物中亚硝化阻断剂的摄入量 制定标准、加强监督(标准)
前体物的来源
– 硝酸盐和亚硝酸盐等亚硝化剂 – 可发生亚硝化反应的胺类
形成条件和影响因素
2014-7-29
8
蔬菜等植物中的硝酸盐和亚硝酸盐
自然界中氮元素的循环
氨、尿素、硝酸盐
降 解
大气中的游离氮、氮氧化物
固氮菌
水、土壤中的硝酸盐
植物蛋白
动物蛋白
硝酸盐、亚硝酸盐广泛存在于水、土壤、植物中
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
源,制订限量标准
第二节 多环芳族化合物 一、苯并比 (一)污染来源
主要来源于有机物的不完全燃烧。 1、烘烤和熏制食品 2、食品成分在高温下热解和热聚 3、植物可从土壤及水中吸收 4、食品加工中受到污染 5、水产品从水中吸收 6、植物和微生物可以合成 (二)危害
食品中B(а)P芘的主要来源:
(1)食品在烘烤或熏制时直接受到污染;
(2)食品成分在烹调加工时经高温热解或热聚 所形成,这是食品中多环芳烃的主要来源;
(3)植物性食品可吸收土壤及水中污染的多环 芳烃,还可受到大气飘尘的直接污染;
(4)食品加工中受机油、食品包装材料等的污 染,在柏油路上晒粮食使粮食受到污染;
具有制癌、制畸、致突变作用
第二节 多环芳族化合物 对食品的污染及预防
一、苯并(а)芘[benzo(а) pyrene,B(а)P]
(一)结构及理化性质
苯并(а)芘是由5个苯环构成的多环芳 烃。分子式C20H12,分子量252。在常温下为 针状结晶,浅黄色,性质稳定,沸点310312℃,熔点178℃,在水中溶解度仅为0.56μg/L,稍溶于甲醇和乙醇。
(一) N-亚硝基化合物的前体 (二)影响亚硝基化的因素
除反应浓度之外,氢离子浓度有重要影响,一般在酸性 条件下容易发生反应。 (三)几种重要的亚硝基化合物的来源 1、腌制的动物性食品 2、食品添加剂硝酸盐和亚硝酸盐 3、高热时蛋白质分解产物 4、啤酒 5、霉变食品 (四)食品中亚硝胺及亚硝酰胺在体内的合成
三、N-亚硝基化合物污染食品对人体的危害
1、致癌作用 2、致畸作用 3、致突变作用
N-亚硝基化合物与人类健康的关系
食物中的亚硝胺是人类接触亚硝胺的一个重 要方面。无论是啤酒、奶酪都能检出亚硝胺。 此外人类接触亚硝胺的途径还有化妆品、香 烟烟雾、药物、农药以及餐具清洗液和表面 清洁剂等。
四、预防亚硝基化合物危害的措施 1.控制食品加工中硝酸盐及亚硝酸盐使用量
肌酸或肌酐是杂环胺中α-氨基-3-甲基 咪唑基的来源。
(二)防止杂环胺危害的措施
1 改进烹调加工方法
杂环胺化合物的生成与不良烹调加工有关,特别 是过高温度烹调食物。因此,首要注意的是不要使 烹调温度过高,不要烧焦食物,避免过多采用煎炸 烤的烹调方法。
2、增加蔬菜水果的摄入量
膳食纤维素有吸附杂环胺化合物并降低其生物 活性的作用,某些蔬菜、水果中的一些成分又有抑 制杂环胺化合物的致突变性的作用
4、保持或提高食品的营养价值
5、满足其他特殊需要
(二)分类
按其来源分为两大类:
天然食品添加剂
人工合成食品添加剂。
目前食品添加剂偏重于向天然食品添加 剂发展,使用天然与人工混合食品添加 剂,以弥补各自的不足。
按其用途分为:
防腐剂、抗氧化剂、发色剂、漂白剂、酸 味剂、凝固剂、疏松剂、增稠剂、
消泡剂、法:
第六章 食品添加剂的
使用及卫生
第一节、食品添加剂的概念及分类
(一)概念
食品添加剂是指为改善食品品质、色、 香、味以及防腐和加工工艺的需要加入食品 中的化学合成物质或者天然物质。
作用:
1、增加食品的保藏性,防止腐败变质
2、改善食品的感官性状
3、有利于食品加工操作,适应生产的连续 化
(二)致癌性与致突变性
匈牙利西部一地区胃癌明显高发,调查 认为与此地区居民经常吃家庭自制含B(а)P 较高的熏肉有关。
冰岛是胃癌高发国家,冰岛农民胃癌死亡 率最高,农民吃自己熏制的食品最多,其中 含多环烃或B(а)P高于市售制品。用该地的 熏羊肉喂大鼠,诱发出恶性肿瘤。
(三)体内代谢
通过食物或水进入机体的B(а)P在肠道被吸收, 吸收入血后很快分布于全身。乳腺及脂肪组 织中可蓄积B(а)P。动物试验发现经口摄入 B(а)P可通过胎盘进入胎仔体内,引起毒性 及致癌作用。B(а)P主要经过肝脏胆道从粪 便排出体外。
(四)对食品的污染
食品中B(а)P芘最主要来源于烘烤和 熏制食品。多环芳烃主要由各种有机物 如煤、柴油、汽油、原油及香烟燃烧不 完全而来。
一般烤肉、烤香肠内B(а)P含量 为0.17-0.68μg/kg,而炭火烤的肉可达 2.6-11.2μg/kg。新疆烤羊肉如滴落油 着火后,则含量为4.7-95.5μg/kg,平 均为31.0μg/kg。冰岛家庭熏肉为 23μg/kg,如将肉熏制后挂于厨房则高 达107μg/kg。
品质改良剂、抗结剂、增味剂、保鲜剂、 酶制剂、被膜剂、香料、营养强化剂及 其他等类。
三、 食品添加剂的使用及卫生要求
我国颁布了《食品添加剂使用卫生标准》 (GB2760-86)和《食品添加剂卫生管理办法》, 规定了食品添加剂的使用品种、使用范围、 使用量及卫生管理事宜。为了确保食品添加 剂的食用安全,对食品添加剂提出如下使用 要求:
2 N-亚硝酰胺(n-nitrosamide) R1为烷基,R2CO为酰基。亚硝酰胺的化
学性质活泼,在酸性条件下或碱性溶液 中均不稳定。
在致癌作用上的重要差别是亚硝酰胺本身 是终末致癌物,亚硝胺则需要有一个体内 活化过程
二、N-亚硝基化合物的来源及合成 N-亚硝基化合物的最突出的特点是:除了本身之外,其 前体在适宜条件下即可生成亚硝胺或亚硝酰胺
第一节 N-亚硝基化合物
一、N-亚硝基化合物的分类、结构及特性
(一) 分类:
根据其分子结构不同,把N-亚硝基化合物 分成:N-亚硝胺和N-亚硝酰胺二大类。
1、N-亚硝胺(n-nitrosamine)
低分子量的亚硝胺(如二甲基亚硝胺)在常 温下为黄色油状液体,高分子量的亚硝胺多 为固体;二甲基亚硝胺可溶于水及有机溶剂, 其它亚硝胺则不能溶于水,只能溶于有机溶 剂。
(5)污染的水可使水产品受到污染;
(6)植物和微生物可合成微量多环芳烃。
(五)防止苯并(а)芘危害的措施
1. 防止污染及减少食品成分热解和热聚 2. 去毒 3 制定食品中允许含量标准
二、杂环胺化合物
(一)杂环胺化合物的来源
正常烹调食品中均含有不同量的杂环胺。 实验表明,所有烹调的含有肌肉组织的 食品都含有相似的前体物。