2014-2015学年北京市海淀区八年级上学期期末练习数学试题(含答案)

合集下载

海淀八年级数学2015上学期期末试卷

海淀八年级数学2015上学期期末试卷

海淀区八年级数学 第一学期期末考试卷姓名: 分数:一、 选择题(共8道小题,每小题4分,共32分)下面各题均有四个选项,其中只有一个是符合题意的.1.下列各式中,最简二次根式是( ).A .5.0B .12C .2xD . 12+x2.下列汽车标志中,不是轴对称图形的是( ).3.下列因式分解结果正确的是( ).A .3221055(2)a a a a a +=+B .249(43)(43)x x x -=+-C .2221(1)a a a --=-D .256(6)(1)x x x x --=-+ 4.已知等腰三角形的两边长分别为7和3,则第三边的长是A .7B .4C .3D .3或7 5.下列各式不能分解因式的是A .224x x - B .214x x ++C .229x y +D .21m - 6.若分式 211x x --的值为0,则x 的值为A .1B .0C .1-D .1±7.如果132x y x +=,那么x y的值为( ).A .21B .32C .31D . 528.2013年9月,北京到大连的高铁开通运营,高铁列车的运行时间比原动车组的运行时间还要快2小时,已知北京到大连的铁路长约为910千米,原动车组列车的平均速度为x千米/时,高铁列车的平均速度比原动车组列车增加了52千米/时.依题意,下面所列方程正确的是 A .910910252x x -=+ B .910910252x x -=- C .910910252x x-=+ D .22(52)910x x ++= 二、填空题(共4道小题,每小题4分,共16分) 9.计算2144()x y x ⋅-= . 10.如果一个多边形的内角和是外角和的3倍,则这个多边形边数为 .11.如图,AB+AC =7,D 是AB 上一点,若点D 在 BC 的垂直平分线上, 则△ACD 的周长为 .12.下列运算中,正确的是_______.(填写所有..正确式子的序号) ①2612a a a ⋅=;②329()x x =;③33(2)8a a =;④22242(5)255a b a b ab -=--. 三、解答题(共6 道小题,每小题5分,共 30 分)13.计算:()213.142π-⎛⎫--- ⎪⎝⎭解:14.解方程:32x - =22xx-- 解:15. 解:16.先化简,再求值已知:23x y =,求222569222y x xy y x y x y x y ⎛⎫-+--÷⎪--⎝⎭的值. 解:17.先化简,再求值:()()()2x y x y x x y +---,其中13x =,3y = 解:18.已知:如图,AB= AC ,∠DAC=∠EAB ,∠B=∠C .求证:BD = CE . 证明:四、解答题(共4 道小题,每小题5分,共 20 分)19.计算:422222222a a b a ab b a ab b b a-+÷⋅-+. 解:20.已知:如图,点B 、E 、C 、F 四点在同一条直线上,AB ∥DE ,AB=DE ,AC 、DE 相交于点O , BE=CF .求证: AC = DF . 证明:21.如图,ABC △中,AD ⊥BC 于点D ,AD =BD ,C ∠=65°,求∠BAC 的度数.22.列方程解应用题:甲乙两站相距1200千米,货车与客车同时从甲站出发开往乙站,已知客车的速度是货车速度的2.5倍,结果客车比货车早6小时到达乙站,求客车与货车的速度分别是多少?解:五、解答题(共3 道小题,23小题7分,24小题7分,25小题8分,共22 分)23.列分式方程解应用题为提升晚高峰车辆的通行速度,北京市交通委路政局积极设置潮汐车道,首条潮汐车道于2013年9月11日开始启用,试点路段为京广桥至慈云寺桥,全程约2.5千米.该路段实行潮汐车道后,在晚高峰期间,通过该路段的车辆的行驶速度平均提高了25%,行驶时间平均减少了1.5分钟.该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶多少千米?24.已知:如图,在Rt△ABC中,∠BAC=90°,AC=6,BC=10,过点A作D E∥BC,交∠ABC的平分线于E,交∠ACB的平分线于D. 求:(1)AB的长;(2)DE的长.解:25.已知:如图,Rt△ABC中,∠BAC=90 .(1)按要求作图:(保留作图痕迹)①延长BC到点D,使CD=BC;②延长CA到点E,使AE=2CA;③连接AD,BE并猜想线段AD与BE的大小关系;(2)证明(1)中你对线段AD与BE大小关系的猜想.解:(1)AD与BE的大小关系是.(2)证明:。

2014-2015学年北京市海淀区初一第一学期期末数学试题(含答案)、北师大五上数学期末试卷

2014-2015学年北京市海淀区初一第一学期期末数学试题(含答案)、北师大五上数学期末试卷

海淀区七年级第一学期期末练习数学2015.1班级姓名成绩一.选择题(本大题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在表格中相应的位置.1.-A . 2B .21-C .21D .-22.全面贯彻落实“大气十条”,抓好大气污染防治,是今年环保工作的重中之重.其中推进燃煤电厂脱硫改造15000 000千瓦是《政府工作报告》中确定的重点任务之一.将数据15 000 000用科学记数法表示为A .15×106B . 1.5×107C .1.5×108D .0.15×108 3.下列各式结果为正数的是A .22--()B .32-() C .2--D .2--()4.下列计算正确的是A .2527a a a +=B .523a b ab-=C .523a a -=D .3332ab ab ab -+=5.如图,把原来弯曲的河道改直,A ,B 两地间的河道长度变短,这样做的道理是 A .两点确定一条直线 B .两点确定一条线段 C .两点之间,直线最短 D .两点之间,线段最短BA6.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是A .圆柱B .圆锥C .棱锥D .球7.若2是关于x 的方程112x a +=-的解,则a 的值为 A .0B .2C .2-D .6-8.有理数a ,b 在数轴上的位置如图所示,则下列各式成立的是A .b -a >0B .-b >0C .a >-bD .-ab <0 9.已知33x y -=,则53x y -+的值是 A .8B .2C .2-D .8-10.已知线段AB =6cm ,若M 是AB 的三等分点,N 是AM 的中点,则线段MN 的长度为 A .1cmB .2cmC .1.5cmD .1cm 或2cm二.填空题(本大题共24分,每小题3分) 11.比较大小:2-3-(填“>”,“<”或“=”). 12.写出一个以1为解的一元一次方程. 13.若=2040α∠′,则α∠的补角的大小为.14.商店上月收入为a 元,本月的收入比上月的2倍还多5元,本月的收入为元(用含a 的式子表示).15.若22(3)0a b -++=,则2a b -的值为_____________.16.将一副三角板如图放置,若=20AOD ∠︒,则BOC ∠的大小为____________.0 ba17.已知关于x 的方程7kx x =-有正整数解,则整数k 的值为.18.有一组算式按如下规律排列,则第6个算式的结果为________;第n 个算式的结果为_________________________(用含n 的代数式表示,其中n 是正整数).1 = 1 (-2) + (-3) + (-4) = -9 3 + 4 + 5 + 6 + 7 = 25 (-4) + (-5) + (-6) + (-7) + (-8) + (-9) + (-10) = -49 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 = 81…… 三.解答题(本大题共18分,第19题6分, 第20题各4分,第21题各8分) 19.计算:(1)12(18)(7)15--+--;(2)()()2316821⎪⎭⎫⎝⎛-÷-+-⨯⎪⎭⎫ ⎝⎛-.20.如图,平面上四个点A ,B ,C ,D .按要求完成下列问题: (1)连接AD ,BC ;(2)画射线AB 与直线CD 相交于E 点;(3)用量角器度量得∠AED 的大小为_________(精确到度).B A21.解方程:(1)2(10)6x x x -+=;(2)12324x x+-=+.四.解答题(本大题共12分,每小题4分)22.先化简,再求值:()()a a a a a 3225222---+,其中5-=a .23. 点A ,B ,C 在同一直线上,AB =8,AC : BC =3 : 1,求线段BC 的长度.24.列方程解应用题:甲种铅笔每支0.4元,乙种铅笔每支0.6元,某同学共购买了这两种铅笔30支,并且买乙种铅笔所花的钱是买甲种铅笔所花的钱的3倍,求该同学购买这两种铅笔共花了多少钱?五.解答题(本大题共16分,第25题5分,第26题各5分,第27题各6分)25.如图,将连续的偶数2,4,6,8,10,…排成一数阵,有一个能够在数阵中上下左右平移的T 字架,它可以框出数阵中的五个数.试判断这五个数的和能否为426,若能,请求出这五个数,若不能,请说明理由.26. 用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b =22ab ab a ++. 如:1☆3=2132131⨯+⨯⨯+=16. (1)求(-2)☆3的值;(2)若(12+a ☆3)☆(-12)=8,求a 的值; (3)若2☆x =m ,1()4x ☆3=n (其中x 为有理数),试比较m , n 的大小.27.如图1,AOB=α∠,COD β∠=,OM ,ON 分别是∠AOC ,∠BOD 的角平分线. (1)若∠AOB =50°,∠COD =30°,当∠COD 绕着点O 逆时针旋转至射线OB 与OC 重合时(如图2),则∠MON 的大小为______________;(2)在(1)的条件下,继续绕着点O 逆时针旋转∠COD ,当∠BOC =10°时(如图3),求∠MON 的大小并说明理由;(3)在∠COD 绕点O 逆时针旋转过程中,∠MON =__________________________.(用含αβ,的式子表示).图3N MDCB OA图2NMD(C )B OA图1N M DCB O A海淀区七年级第一学期期末练习数 学参考答案及评分标准2015.1说明: 合理答案均可酌情给分,但不得超过原题分数 . 一、选择题(本大题共30分,每小题3分)二、填空题(本大题共24分,每小题3分)11.> 12.x =1(答案不唯一) 13.15920'︒ 14.(2a +5) 15.8 16.160︒ 17.0或6 18.-121; 12(1)(21)n n +-- (第一个空1分,第二个空2分)三、解答题(本大题共18分,第19题6分,第20题4分,第21题8分) 19.(1)解:原式1218715=+--30715=--=8. ………………………………3分(2)解:原式=4(6)9+-⨯ ………………………………2分 =-50. ………………………………3分 20.(1)图略; ………………………………1分 (2)图略; ………………………………3分 (3)30︒ (误差1︒不扣分). ………………………………4分 21.(1)解:原方程可化为2106x x x --=.………………………………2分 510x =-.………………………………3分2x =- . ………………………………4分 (2)解:原方程可化为2(1)12(2)x x +=+-. ………………………………2分2214x x +=-. 312x = .4x =. ………………………………4分四.解答题(本大题12分,每小题4分)22.解:原式2225226a a a a a =+--+ ………………………………1分244a a =+. ………………………………2分当5a =-时,原式24(5)45=⨯--⨯………………………………3分10020=-80=. ………………………………4分23.解:由于AC : BC =3 : 1,设BC x =,则3.AC x = 第一种情况:当点C 在线段AB 上时,AC BC AB +=.因为 AB =8,所以 38.x x += 解得 2.x =所以 2.BC = ………………………………2分第二种情况:当点C 在AB 的延长线上时,.AC BC AB -=因为 AB =8, 所以 38.x x -= 解得 4.x =所以 4.BC = …………………………4分综上,BC 的长为24或.24.解:设该同学购买甲种铅笔x 支,则购买乙种铅笔(30-x )支. ………………1分根据题意可列方程 0.630)30.4x x -=⨯(. …………………………2分 解得 x = 10. …………………………3分则 0.63010)0.4101-+⨯=(元. 答:该同学购买这两种铅笔共花了16元. …………………………4分C BA CB五、解答题(本大题共 16分,第25题5分,第26题5分,第27题6分)25. 解:这五个数的和能为426. 原因如下:设最小数为x ,则其余数为10,12,14,20x x x x ++++. ………………1分 由题意得,(10)(12)(14)(20)426x x x x x ++++++++=. ………………3分 解方程得, x =74. …………………………4分 所以这五个数为74,84,86,88,94. …………………………5分26. (1)解:(-2)☆32232(2)3(2)32=-⨯+⨯-⨯+-=-. …………………………1分(2)解:2111133238(1)2222a a a a a ++++=⨯+⨯⨯+=+☆. ……………………2分解得, 3.a = …………………………3分(3)解:由题意222222242m x x x x =+⨯+=++,21113234444n x x x x =⨯+⨯⨯+=, 所以 2220m n x -=+>.所以 m n >. …………………………5分27.(1)40°. …………………………1分(2)解:因为∠BOD =∠BOC+∠COD=10°+30°=40°,因为ON 平分∠BOD , 所以∠BON =11402022BOD ∠=⨯=. 因为∠AOC =∠BOC+∠AOB=10°+50°=60°, 因为OM 平分∠AOC , 所以∠COM =11603022AOC ∠=⨯=. 所以∠BOM =∠COM-∠BOC=30°-10°=20°.所以∠MON =∠MOB+∠BON=20°+20°=40° . …………………………4分(3)12αβ+() 或11802αβ-+(). …………………………6分2118(1)()28(1)()8(1)8.22a a a +⨯-+⨯+⨯-++=北师大版五年级上册数学期末试卷(60分钟完卷)班级姓名成绩一、直接写出得数(10分)5.43+1.47= 5-3.28= 0.46÷4.6= 4×0.25=3÷0.3= 4.5×0.4= 0.63÷0.7= 1.8×0.4=9.58×101-9.58= 85÷(1-0.9)=二、填空题(20分)1、3.248×1.26的积里有()位小数。

2014--2015学年八年级上册期末考试数学试题及答案【新课标人教版】

2014--2015学年八年级上册期末考试数学试题及答案【新课标人教版】

2014-2015上册期末考试八年级数学试题一、选择题:1.如下书写的四个汉字,是轴对称图形的有( )个。

A.1 B2 C.3 D.42.与3-2相等的是( )A.91B.91- C.9D.-9 3.当分式21-x 有意义时,x 的取值范围是( )A.x <2B.x >2C.x ≠2D.x ≥2 4.下列长度的各种线段,可以组成三角形的是( )A.1,2,3B.1,5,5C.3,3,6D.4,5,6 5.下列式子一定成立的是( )A.3232a a a =+ B.632a a a =• C. ()623a a = D.326a a a =÷6.一个多边形的内角和是900°,则这个多边形的边数为( ) A.6 B.7 C.8 D.97.空气质量检测数据pm2.5是值环境空气中,直径小于等于2.5微米的颗粒物,已知1微米=0.000001米,2.5微米用科学记数法可表示为( )米。

A.2.5×106B.2.5×105C.2.5×10-5D.2.5×10-68.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为( )。

A.50° B.80° C.50°或80° D.40°或65° 9.把多项式x x x +-232分解因式结果正确的是( )A.2)1(-x xB.2)1(+x xC.)2(2x x x - D.)1)(1(+-x x x 10.多项式x x x +--2)2(2中,一定含下列哪个因式( )。

A.2x+1B.x (x+1)2C.x (x 2-2x ) D.x (x-1) 11.如图,在△ABC 中,∠BAC=110°,MP 和NQ 分别垂直平分AB 和AC ,则∠PAQ 的度数是( ) A.20° B.40° C.50° D.60°12.如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE 于D 点,AD=2.5cm,DE=1.7cm ,则BE 的长为( )A.0.8B.1 C .1.5 D.4.213.如图,折叠直角三角形纸片的直角,使点C 落在AB 上的点E 处,已知BC=24,∠B=30°,则DE 的长是( )A.12B.10C.8D.614. 如图,从边长为(a+4)cm 的正方形纸片中剪去一个边长为(a+1)cm 的正方形,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则拼成的矩形的面积是( )cm 2.A .a a 522+ B.3a+15 C .(6a+9) D .(6a+15)15.艳焕集团生产某种精密仪器,原计划20天完成全部任务,若每天多生产4个,则15天完成全部的生产任务还多生产10个。

北京市海淀区2013-2014八年级第一学期期末统考数学试卷及答案

北京市海淀区2013-2014八年级第一学期期末统考数学试卷及答案

根据数阵排列的规律,第 5 行从左向右数第 3 个数是
数第 n 2 个数是
三、解答题(本题共 19 分,第 20 题 4 分,其余每小题 5 分)
17.计算: 12 3 (2013)0 ( 1 )1 2

2
5
b
F
D
C
D. 180 3α
6
17 3 2 19 2 5
(用含 n 的代数式表示).
A. a2 a3 a5
3
B. a 2 3 a5
3.下列长度的三条线段能组成直角三角形的是( )
A.1,2,3
4.下列二次根式中,是最简二次根式的是(
1
A.
2
B. 2,3,4
B. 3
4
5.在平面直角坐标系 xOy 中,点 P (2,1)关于 y 轴对称的点的坐标是( )
A. (-2 ,1 )

3 1.
24.在△ABC 中,AD 平分∠BAC,BD⊥AD,垂足为 D,过 D 作 DE∥AC,交 AB 于 E,若 AB=5,求线段 DE 的 长.
A
E
B
D
C
五、解答题(本题共 13 分,第 25 题 6 分,第 26 题 7 分) 25. 阅读材料 1:
对于两个正实数 a,b ,由于 a b 2 0 ,所以 a 2 2 a b b 2 0 ,即 a 2 ab b 0 ,
14.若实数 a 、 b 满足 a 22 b 4 0 ,则 a
15.如图,等边△ABC 中,AB = 2, AD 平分∠BAC 交 BC 于 D,
则线段 AD 的长为
16.下面是一个按某种规律排列的数阵:

2014-2015学年北京市海淀区初一第一学期期末数学试题(含答案)、北师大四上数学期末试卷

2014-2015学年北京市海淀区初一第一学期期末数学试题(含答案)、北师大四上数学期末试卷

海淀区七年级第一学期期末练习数学2015.1班级姓名成绩一.选择题(本大题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在表格中相应的位置.1.-A . 2B .21-C .21D .-22.全面贯彻落实“大气十条”,抓好大气污染防治,是今年环保工作的重中之重.其中推进燃煤电厂脱硫改造15000 000千瓦是《政府工作报告》中确定的重点任务之一.将数据15 000 000用科学记数法表示为A .15×106B . 1.5×107C .1.5×108D .0.15×108 3.下列各式结果为正数的是A .22--()B .32-() C .2--D .2--()4.下列计算正确的是A .2527a a a +=B .523a b ab-=C .523a a -=D .3332ab ab ab -+=5.如图,把原来弯曲的河道改直,A ,B 两地间的河道长度变短,这样做的道理是 A .两点确定一条直线 B .两点确定一条线段 C .两点之间,直线最短 D .两点之间,线段最短BA6.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是A .圆柱B .圆锥C .棱锥D .球7.若2是关于x 的方程112x a +=-的解,则a 的值为 A .0B .2C .2-D .6-8.有理数a ,b 在数轴上的位置如图所示,则下列各式成立的是A .b -a >0B .-b >0C .a >-bD .-ab <0 9.已知33x y -=,则53x y -+的值是 A .8B .2C .2-D .8-10.已知线段AB =6cm ,若M 是AB 的三等分点,N 是AM 的中点,则线段MN 的长度为 A .1cmB .2cmC .1.5cmD .1cm 或2cm二.填空题(本大题共24分,每小题3分) 11.比较大小:2-3-(填“>”,“<”或“=”). 12.写出一个以1为解的一元一次方程. 13.若=2040α∠′,则α∠的补角的大小为.14.商店上月收入为a 元,本月的收入比上月的2倍还多5元,本月的收入为元(用含a 的式子表示).15.若22(3)0a b -++=,则2a b -的值为_____________.16.将一副三角板如图放置,若=20AOD ∠︒,则BOC ∠的大小为____________.0 ba17.已知关于x 的方程7kx x =-有正整数解,则整数k 的值为.18.有一组算式按如下规律排列,则第6个算式的结果为________;第n 个算式的结果为_________________________(用含n 的代数式表示,其中n 是正整数).1 = 1 (-2) + (-3) + (-4) = -9 3 + 4 + 5 + 6 + 7 = 25 (-4) + (-5) + (-6) + (-7) + (-8) + (-9) + (-10) = -49 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 = 81…… 三.解答题(本大题共18分,第19题6分, 第20题各4分,第21题各8分) 19.计算:(1)12(18)(7)15--+--;(2)()()2316821⎪⎭⎫⎝⎛-÷-+-⨯⎪⎭⎫ ⎝⎛-.20.如图,平面上四个点A ,B ,C ,D .按要求完成下列问题: (1)连接AD ,BC ;(2)画射线AB 与直线CD 相交于E 点;(3)用量角器度量得∠AED 的大小为_________(精确到度).B A21.解方程:(1)2(10)6x x x -+=;(2)12324x x+-=+.四.解答题(本大题共12分,每小题4分)22.先化简,再求值:()()a a a a a 3225222---+,其中5-=a .23. 点A ,B ,C 在同一直线上,AB =8,AC : BC =3 : 1,求线段BC 的长度.24.列方程解应用题:甲种铅笔每支0.4元,乙种铅笔每支0.6元,某同学共购买了这两种铅笔30支,并且买乙种铅笔所花的钱是买甲种铅笔所花的钱的3倍,求该同学购买这两种铅笔共花了多少钱?五.解答题(本大题共16分,第25题5分,第26题各5分,第27题各6分)25.如图,将连续的偶数2,4,6,8,10,…排成一数阵,有一个能够在数阵中上下左右平移的T 字架,它可以框出数阵中的五个数.试判断这五个数的和能否为426,若能,请求出这五个数,若不能,请说明理由.26. 用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b =22ab ab a ++. 如:1☆3=2132131⨯+⨯⨯+=16. (1)求(-2)☆3的值;(2)若(12+a ☆3)☆(-12)=8,求a 的值; (3)若2☆x =m ,1()4x ☆3=n (其中x 为有理数),试比较m , n 的大小.27.如图1,AOB=α∠,COD β∠=,OM ,ON 分别是∠AOC ,∠BOD 的角平分线. (1)若∠AOB =50°,∠COD =30°,当∠COD 绕着点O 逆时针旋转至射线OB 与OC 重合时(如图2),则∠MON 的大小为______________;(2)在(1)的条件下,继续绕着点O 逆时针旋转∠COD ,当∠BOC =10°时(如图3),求∠MON 的大小并说明理由;(3)在∠COD 绕点O 逆时针旋转过程中,∠MON =__________________________.(用含αβ,的式子表示).图3N MDCB OA图2NMD(C )B OA图1N M DCB O A海淀区七年级第一学期期末练习数 学参考答案及评分标准2015.1说明: 合理答案均可酌情给分,但不得超过原题分数 . 一、选择题(本大题共30分,每小题3分)二、填空题(本大题共24分,每小题3分)11.> 12.x =1(答案不唯一) 13.15920'︒ 14.(2a +5) 15.8 16.160︒ 17.0或6 18.-121; 12(1)(21)n n +-- (第一个空1分,第二个空2分)三、解答题(本大题共18分,第19题6分,第20题4分,第21题8分) 19.(1)解:原式1218715=+--30715=--=8. ………………………………3分(2)解:原式=4(6)9+-⨯ ………………………………2分 =-50. ………………………………3分 20.(1)图略; ………………………………1分 (2)图略; ………………………………3分 (3)30︒ (误差1︒不扣分). ………………………………4分 21.(1)解:原方程可化为2106x x x --=.………………………………2分 510x =-.………………………………3分2x =- . ………………………………4分 (2)解:原方程可化为2(1)12(2)x x +=+-. ………………………………2分2214x x +=-. 312x = .4x =. ………………………………4分四.解答题(本大题12分,每小题4分)22.解:原式2225226a a a a a =+--+ ………………………………1分244a a =+. ………………………………2分当5a =-时,原式24(5)45=⨯--⨯………………………………3分10020=-80=. ………………………………4分23.解:由于AC : BC =3 : 1,设BC x =,则3.AC x = 第一种情况:当点C 在线段AB 上时,AC BC AB +=.因为 AB =8,所以 38.x x += 解得 2.x =所以 2.BC = ………………………………2分第二种情况:当点C 在AB 的延长线上时,.AC BC AB -=因为 AB =8, 所以 38.x x -= 解得 4.x =所以 4.BC = …………………………4分综上,BC 的长为24或.24.解:设该同学购买甲种铅笔x 支,则购买乙种铅笔(30-x )支. ………………1分根据题意可列方程 0.630)30.4x x -=⨯(. …………………………2分 解得 x = 10. …………………………3分则 0.63010)0.4101-+⨯=(元. 答:该同学购买这两种铅笔共花了16元. …………………………4分C BA CB五、解答题(本大题共 16分,第25题5分,第26题5分,第27题6分)25. 解:这五个数的和能为426. 原因如下:设最小数为x ,则其余数为10,12,14,20x x x x ++++. ………………1分 由题意得,(10)(12)(14)(20)426x x x x x ++++++++=. ………………3分 解方程得, x =74. …………………………4分 所以这五个数为74,84,86,88,94. …………………………5分26. (1)解:(-2)☆32232(2)3(2)32=-⨯+⨯-⨯+-=-. …………………………1分(2)解:2111133238(1)2222a a a a a ++++=⨯+⨯⨯+=+☆. ……………………2分解得, 3.a = …………………………3分(3)解:由题意222222242m x x x x =+⨯+=++,21113234444n x x x x =⨯+⨯⨯+=, 所以 2220m n x -=+>.所以 m n >. …………………………5分27.(1)40°. …………………………1分(2)解:因为∠BOD =∠BOC+∠COD=10°+30°=40°,因为ON 平分∠BOD , 所以∠BON =11402022BOD ∠=⨯=. 因为∠AOC =∠BOC+∠AOB=10°+50°=60°, 因为OM 平分∠AOC , 所以∠COM =11603022AOC ∠=⨯=. 所以∠BOM =∠COM-∠BOC=30°-10°=20°.所以∠MON =∠MOB+∠BON=20°+20°=40° . …………………………4分(3)12αβ+() 或11802αβ-+(). …………………………6分2118(1)()28(1)()8(1)8.22a a a +⨯-+⨯+⨯-++=小学四年级数学上学期期末评价试题(北师大版)同学们,一个学期又快结束了。

北京市海淀区14—15学年上学期八年级期末练习数学试题(附答案)

北京市海淀区14—15学年上学期八年级期末练习数学试题(附答案)

北京市海淀区14—15学年上学期八年级期末练习数学试题(分数:100分 时间:90分钟)一、选择题:(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的. 请将正确选项前的字母填在表格中相应的位置.1.下列图形中,不是..轴对称图形的是(A ) (B ) (C ) (D ) 2.下列运算中正确的是(A )xy y x 532=+ (B )428x x x =÷(C )3632)(y x y x = (D )62322x x x =⋅3.在平面直角坐标系xOy 中,点P (-3,5)关于x 轴的对称点的坐标是(A ) (3,5) (B )(3,-5) (C )(5,-3) (D )(-3,-5)4x 的取值范围是 (A )x ≠-32(B )x <-32 (C )x ≥-32 (D )x ≥23-5.下列各式中,从左到右的变形是因式分解的是(A )3353()5x y x y +-=+- (B )2(1)(1)1x x x +-=- (C )2221(1)x x x ++=+ (D )xy x y x x -=-2)( 6.下列三个长度的线段能组成直角三角形的是(A )1 (B )1 (C )2,4,6 (D )5,5,67.计算)123(2- ,结果为(A )6 (B )6- (C )66- (D )66- 8.下列各式中,正确的是 (A )212+=+a b a b (B )22++=a b a b (C )a b a b c c-++=- (D )22)2(422--=-+a a a a9.若x m +与2x -的乘积中不含x 的一次项,则实数m 的值为 (A )2- (B )2 (C )0 (D )110.如图,在△ABC 和△CDE 中,若︒=∠=∠90CED ACB ,AB=CD ,BC=DE ,则下列结论中不正确...的是 (A )△ABC ≌ △CDE (B )CE=AC (C )AB ⊥CD (D )E 为BC 中点11.如图,由四个全等的直角三角形与一个小正方形拼成一个大正方形. 如果大正方形的面积是25,小正方形的面积是1,直角三角形的两条直角边的长分别是a 和b ,那么2()a b +的值为 (A )49(B )25 (C )13 (D )112.当x 分别取2014-、2013-、2012-、….、2-、1-、0、1、12、13、…、12012、12013、12014时,计算分式2211x x -+的值,再将所得结果相加,其和等于 (A )1- (B )1 (C )0 (D ) 2014 二、填空题:(本题共24分,每小题3分)13.若实数x y 、20y +=,则x y +的值为 .14.计算:2325b a ⎛⎫- ⎪⎝⎭= .15.比较大小:.16.分解因式:3312a a -= .17.如图,△ABC ≌△DEF ,点F 在BC 边上,AB 与EF 相交于点P .若37DEF ∠=︒,PB=PF ,则APF ∠= °.18.如图,△ABC 是等边三角形,点D 为 AC 边上一点,以BD 为边作等边△BDE, 连接CE .若CD =1,CE =3,则BC =_____.19.在平面直角坐标系xOy 中,点A 、点B 的坐标分别为(-6,0)、(0,8).若△ABC 是以∠BAC 为顶角的等腰三角形,点C 在x 轴上,则点C 的坐标为 .20.如图,分别以正方形ABCD 的四条边为边,向其内部作等边三角形,得到△ABE 、△BCF 、△CDG 、△DAH ,连接EF 、FG 、GH 、HE .若AB =2,则四边形EFGH 的面积为 . 三、解答题:(本题共14分,第21题5分,第22题9分)21.计算:101()(2)2π--++1-22.(1)解方程:xx x 211=--.(2))先化简,再求值:2)4442(22+÷-+--+x xx x x x x ,其中2=x .四、解答题:(本题共9分,第23题4分,第24题5分) 23.如图,点F 、C 在BE 上,BF CE =,AB DE =,∠B =∠E .求证: ∠A =∠D .24. 列方程(组)解应用题:上图为地铁调价后的计价图. 调价后,小明、小伟从家到学校乘地铁分别需4元和3元.由于刷卡坐地铁有优惠,因此,他们平均每次实付3.6元和2.9元.已知小明从家到学校乘地铁的里程比小伟从家到学校乘地铁的里程多5千米,且小明每千米享受的优惠金额是小伟的2倍,求小明和小伟从家到学校乘地铁的里程分别是多少千米?五、解答题:(本题共17分,第25题5分,第26题6分,第27题6分) 25.已知:如图,△ABC ,射线AM 平分BAC ∠. (1)尺规作图(不写作法,保留作图痕迹)作BC 的中垂线,与AM 相交于点G ,连接BG 、CG .(2)在(1)的条件下,∠BAC 和∠BGC 的等量关系为 ,证明你的结论.26.阅读:对于两个不等的非零实数a 、b ,若分式()()x a x b x--的值为零,则x a =或x b =.又因为2()()()()x a x b x a b x ab ab x a b x x x---++==+-+,所以关于x 的方程abx a b x +=+有两个解,分别为1x a =,2x b =. 应用上面的结论解答下列问题:(1)方程86x x+=的两个解中较大的一个为 ; (2)关于x 的方程42m n m mn nx mnx mn-+-+=的两个解分别为1x 、2x (12x x <),若1x 与2x 互为倒数,则1_____x =,2______x =;(3)关于x 的方程22322321n n x n x +-+=+-的两个解分别为1x 、2x (12x x <),求2122x x -的值.27.阅读:如图1,在△ABC 中,3180A B ∠+∠=︒,4BC =,5AC =,求AB 的长. 小明的思路:如图2,作BE AC ⊥于点E ,在AC 的延长线上取点D ,使得DE AE =,连接BD ,易得A D ∠=∠,△ABD 为等腰三角形.由3180A ABC ∠+∠=︒和180A ABC BCA ∠+∠+∠=︒,易得2BCA A ∠=∠,△BCD 为等腰三角形.依据已知条件可得AE 和AB 的长.图1 图2解决下列问题:(1)图2中, AE = ,AB = ; (2)在△ABC 中,A ∠、B ∠、C ∠的对边分别为a 、b 、c .①如图3,当32180A B ∠+∠=︒时,用含a 、c 的式子表示b ;(要求写解答过程) ②当34180A B ∠+∠=︒,2b =,3c =时,可得a = .图3参考答案一、 选择题:(本题共36分,每小题3分)二、填空题:(本题共24分,每小题3分)三、解答题:(本题共14分,第21题5分,第22题9分)21101()(2)2π--++1解:原式=211------------------4分=分 22.(1)解方程:211x x x-=-. 解:方程两边同时乘以(1)x x -,得2(1)2(1)x x x x --=-. -----------------1分解方程,得2=x . -----------------3分 经检验,2=x 是原方程的解.∴ 原方程的解为2=x . -----------------4分(2)先化简,再求值:2244()242x x x xx x x -+-÷+-+,其中x = 解:原式=2(2)2(2)(2)2x x xx x x x ⎡⎤--÷⎢⎥++-+⎣⎦-----------------2分=22()22x x x x x x -+-⋅++ =222x x x +⋅+-----------------3分 =2x. -----------------4分当x ==分四、解答题:(本题共9分,第23题4分,第24题5分) 23.证明:∵BF CE =, ∴BC EF =. -----------------1分 在△ABC 和△DEF 中,,,,AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF . -----------------3分 ∴A D ∠=∠. -----------------4分24.解:设小明从家到学校乘地铁的里程为x 千米.4 3.62(3 2.9)5x x --=-. -----------------3分解方程,得 10x =.-----------------4分经检验,10x =为原分式方程的解,且符合题意. ∴55x -=.答:小明和小伟从家到学校乘地铁的里程分别是10千米和5千米. ------------5分 五、解答题:(本题共17分,第25题5分,第26题6分,第27题6分) 25.解:(1)(注:不写结论不扣分)-----------------1分(2) 180BAC BGC ∠+∠=︒ . -----------------2分证明:过点G 作GE AB ⊥于点E ,GF AC ⊥交AC 的延长线于点F.∵点G 在∠BAC 平分线上, ∴GE GF =.∵点G 在BC 的中垂线上, ∴GB GC =.在Rt △GBE 和Rt △GCF 中,,,GE GF GB GC ==⎧⎨⎩ ∴△GBE ≌△GCF . ---------------4分 ∴12∠=∠.26. 解:(1)4x =;-----------------1分 (2) 112x =,22x =;-----------------3分 (3)∵22322321n n x n x +-+=+-, ∴223212221n n x n x +--+=+-. ∵223(1)(3)n n n n +-=-+,(1)(3)22n n n -++=+,12x x <, ∴1211x n -=-,2213x n -=+. ∴12n x =,222nx =+.-----------------5分 ∴212122x x -=.-----------------6分 27.(1)92AE =,6AB =;-----------------2分(2)①作BE AC ⊥交AC 延长线于点E ,在AE 延长线上取点D ,使得DE AE =,连接BD . ∴BE 为AD 的中垂线.∴AB =BD =c .∴A D ∠=∠.-----------------3分 ∵180A D ABD ∠+∠+∠=︒, ∴21180DBC A ∠+∠+∠=︒.∵321180A ∠+∠=︒, ∴1DBC A ∠=∠+∠. ∵31A ∠=∠+∠, ∴3DBC ∠=∠.∴CD =BD =c . -----------------4分 ∴AE =2b c +, 2c bCE -=. 在△BEC 中,90BEC ∠=︒,222BE BC CE =-.在△BEA 中,90BEA ∠=︒,222BE AB AE =-.∴2222AB AE BC CE -=-. ∴2222()()22b c c b c a +--=-. ∴22c a b c-=.-----------------5分②3a =.-----------------6分 (注:本卷中许多问题解法不唯一,请老师根据评分标准酌情给分)。

2014—2015学年第一学期期末考试八年级数学试卷(含答案)1

2014—2015学年第一学期期末考试八年级数学试卷(含答案)1

111---a a a 11-+a a 1--a a ()⎪⎭⎫ ⎝⎛•-b a ab 243853-x 2013—2014学年第一学期期末考试八年级数学试卷(时间:90分钟 卷面分100分)一、选择题(每小题3分,共24分)1、下列运算正确的是( )A 、a+a=a 2B 、(3a) 2=6a 2C 、(a+1) 2=a 2+1D 、a ·a=a 22、某三角形其中两边长分别为5cm 和8cm ,则此三角形的第三边长可能是( )A 、2cmB 、5cmC 、13cmD 、15cm3、观察下列中国传统工艺品的花纹,其中轴对称图形是( )4、计算 的结果为( ) A 、 B 、 C 、 -1 D 、1-a5、如图,某人将一块五边形玻璃打碎成四块,现要到玻璃店配一块完全一样的玻璃,那么最省事的方法是( )A 、带①去B 、带①②去C 、带①②③去D 、带①②③④去6、如图是跷跷板的示意图,支柱OC 与地面垂直,点O 是横板AB 的中点,AB 可以绕着点O 上下转动,当A 端落地时,∠OAC=20°,横板上下可转动的最大角度(即∠A ′OA )是( )A 、80°B 、60°C 、40°D 、20°7、的边长为a 的正方形中挖去一个边长为b 的小正方形(a>b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A 、(a+b) 2=a 2+2ab+b 2B 、(a-b) 2=a 2-2ab+b 2C 、a 2-b 2=(a+b)(a-b)D 、(a+2b)(a-b)=a 2+ab-2b 28、如图,已知△AB C ≌△CDA ,下列结论:(1)AB=CD,BC=DA ;(2)∠BAC=∠DCA,∠ACB=∠CAD ;(3)A B ∥CD,BC ∥DA 。

其中正确的结论有( )个A 、0B 、1C 、2D 、3二、填空题(每小题3分,共24分)9、计算: = 10、当x 时,分式 有意义22322=--+x x x 2112211112+-÷⎪⎭⎫ ⎝⎛-++a a a a a 11、分解因式:x 3-9x=12、点P (-3,a )和点Q (b ,-2)关于Y 轴对称,则a+b=13、如图,点P 在∠AOB 人平分线上,若使△AOP ≌△BOP ,则需添加的一个条件是 (只写一个即可,不添加辅助线)14、已知:在Rt △AB C 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若BC=32cm ,且BD :DC=9:7,则D 到AB 边的距离为15、如图,△AB C 中,∠C=90°,∠A=30°,AB 的垂直平分线交AC 于D ,交AB 于E ,CD=2,则AC=16、如图所示,△AB C 中,点A 的坐标为(0,1),点C 的坐标为(4,3),若要使使△AB C 和△AB D 全等,则点D 的坐标为三、解答题(共52分)17、(6分)解方程:18、(7分)先化简再求值:(a 2b-2ab 2-b 2)÷b-(a+b)(a-b),其中a=-3,b=19、(7分)先化简: ,再先一个你认为合适的数作为a 的值代入求值。

2014年海淀区八年级数学第一学期期末考试题答案

2014年海淀区八年级数学第一学期期末考试题答案

海淀区八年级第一学期期末练习数学参考答案及评分标准2014.1 一、选择题(本题共30分,每小题3分)三、解答题(本题共19分,第20题4分,其余每小题5分)17011(2013)()2--+解:原式=21332+-+----------------------------------4分=133+------------------------------------5分18.如图,在△ABC中,AB=AC, D是BC的中点,DE⊥AB于E,DF⊥AC于F.求证:DE=DF.解法一:∵D是BC的中点,∴BD=CD . ------------------------------1分∵DE⊥AB于E,DF⊥AC于F,∴∠BED=∠CFD=90°. ---------------------------------------2分∵AB=AC,∴∠B=∠C . ---------------------------------------3分∵△BED和△CFD中⎪⎩⎪⎨⎧=∠=∠∠=∠CDBDCBCFDBED∴△BED≌△CFD. ------------------------------------------------4分∴DE=DF. ----------------------------------------------------------5分B解法二: 连接AD .∵在△ABC 中, AB =AC ,D 是BC 的中点,∴AD 平分∠BAC . --------------------------------------------------3分 ∵DE ⊥AB 于E ,DF ⊥AC 于F ,∴DE =DF . ----------------------------------------------------------5分 19.已知0342=--x x ,求代数式()()()2232y y x y x x --+--的值.解:原式=()()22229124yyx x x ---+-=22229124y y x x x -+-+-=91232+-x x ------------------------------------------------------------------------------3分 ∵0342=--x x ,∴342=-x x∴原式=()189339432=+⨯=+-x x .----------------------------------------------------------5分20.如图,电信部门要在公路m,n 之间的S 区域修建一座电视信号发射塔P .按照设计要求,发射塔P 到区域S 内的两个城镇A ,B 的距离必须相等,到两条高速公路m ,n 的距离也必须相等.发射塔P 建在什么位置?在图中用尺规作图的方法作出它的位置并标出. (不写作法但保留作图痕迹)作图痕迹线段AB 的垂直平分线的作图痕迹2分覆盖区域S 的直线m 与n 的夹角的角平分线作图痕迹2分. (未标出点P 扣一分)四、解答题(本题共20分,每小题5分) 21.解方程:3221+=x x 解:方程两边同乘()32+x x ,得:x x 43=+----------------------------------------------------------2分解这个整式方程,得:1=x --------------------------------------------------------------4分B检验:当1=x 时,()()0311232≠+⨯⨯=+x x ,∴原方程的解是1=x .------------------------------------------------------------5分 22.先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a . 解:原式=1211112++÷⎪⎭⎫⎝⎛+-++a a a a a a =121112++÷+-+a a aa a =()aa a a 211+⋅+ =1+a ------------------------------------------------------------4分当13-=a 时, 原式=3113=+-.---------------------------------------5分23.小明是学校图书馆A 书库的志愿者,小伟是学校图书馆B 书库的志愿者,他们各自负责本书库读者当天还回图书的整理工作.已知某天图书馆A 书库恰有120册图书需整理, 而B 书库恰有80册图书需整理,小明每小时整理图书的数量是小伟每小时整理图书数量的1.2倍,他们同时开始工作,结果小伟比小明提前15 分钟完成工作.求小明和小伟每小时分别可以整理多少册图书?解:设小伟每小时可以整理x 册图书,则小明每小时可以整理1.2x 册图书.60158021120+=x x .-------------------------------------------------------2分 解得: 80=x ----------------------------------------------------3分 经检验80=x 是原方程的解且符合实际.-----------------------4分96802121=⨯=.x .答:小伟每小时可以整理80册图书,小明每小时可以整理96册图书. -----------5分<24.在△ABC 中,AD 平分∠BAC ,BD ⊥AD ,垂足为D ,过D 作DE ∥AC ,交AB 于E ,若AB=5,求线段DE 的长.解:∵AD 平分∠BAC ,∴∠1=∠2 .∵DE ∥AC∴ ∠2=∠ADE . ∴ ∠1=∠ADE .∴AE =DE .-------------------------------------------------------3分 ∵AD ⊥DB ,∴∠ADB =90°∴∠1+∠ABD =90°,∠ADE +∠BDE =∠ADB =90°, ∴∠ABD =∠BDE .∴DE =BE .--------------------------------------------------------4分 ∵AB =5∴DE =BE= AE=5252121.AB =⨯=.------------------5分 五、解答题(本题共13分,第25题6分,第26题7分)25. 阅读材料1:对于两个正实数,a b ,由于()02≥-ba ,所以()()0222≥+⋅-b b a a ,即02≥+-b ab a ,所以得到ab b a 2≥+,并且当a b =时,a b += 阅读材料2:若0x >,则22111x x x x x x x +=+=+,因为10,0x x>>,所以由阅读材料1可得,2121=⋅≥+x x x x ,即21x x +的最小值是2,并且当1x x=时,取得最小值.根据以上阅读材料,请回答以下问题: (1)比较大小:21x + ≥ 2x (其中1x ≥); 1x x +____2-(其中1x <-)---------2分 (2)已知代数式2331x x x +++变形为11x n x +++,求常数n 的值;解: 111332+++=+++x n x x x x()()1111121+++=+++++x n x x x x x11112+++=+++x n x x x 21∴2=n --------------------------------------------4分 (3)当x = 0 时,133+++x xx 有最小值,最小值为 3 . (直接写出答案)---6分26.在四边形ABDE 中,C 是BD 边的中点.(1)如图(1),若AC 平分BAE ∠,ACE ∠=90°, 则线段AE 、AB 、DE 的长度满足的数量关系为 AE=AB+DE ;(直接写出答案)------------1分(2)如图(2),AC 平分BAE ∠, EC 平分AED ∠,若120ACE ∠=︒,则线段AB 、BD 、DE 、AE 的长度满足怎样的数量关系?写出结论并证明; 解:猜想:AE =AB+DE +BD 21.------------2分证明:在AE 上取点F ,使AF =AB ,连结CF , 在AE 上取点G ,使EG =ED ,连结CG . ∵C 是BD 边的中点,∴CB =CD=BD 21.∵AC 平分BAE ∠,∴∠BAC =∠F AC .∵AF =AB ,AC =AC , 图(2) ∴△ABC ≌△AFC .∴CF =CB ,∴∠BCA =∠FCA .----------------------------4分 同理可证:CD =CG ,∴∠DCE =∠GCE . ∵CB =CD ,∴CG =CF∵120ACE ∠=︒,∴∠BCA +∠DCE=180°-120°=60°. ∴∠FCA +∠GCE=60°.∴∠FCG=60°.∴△FGC 是等边三角形.-------------------------5分 ∴FG =FC=BD 21. ∵AE =AF+EG+FG .∴AE =AB+DE +BD 21.-----------------------6分 (3)如图(3),BD = 8,AB =2,DE =8,135ACE ∠=︒,则线段AE 长度的最大值是2410+.(直接写出答案)----------------7分说明:其它正确解法按相应步骤给分.EDCBA图(3)EDC BA图(1)GFEDCBA。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海淀区八年级第一学期期末练习数学 2015.1一、选择题:(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的. 请将正确选项前的字母填在表格中相应的位置. 1.下列图形中,不是..轴对称图形的是(A ) (B ) (C ) (D ) 2.下列运算中正确的是(A )xy y x 532=+ (B )428x x x =÷ (C )3632)(y x y x = (D )62322x x x =⋅3.在平面直角坐标系xOy 中,点P (-3,5)关于x 轴的对称点的坐标是(A ) (3,5) (B )(3,-5) (C )(5,-3) (D )(-3,-5)4x 的取值范围是 (A )x ≠-32 (B )x <-32 (C )x ≥-32 (D )x ≥23-5.下列各式中,从左到右的变形是因式分解的是(A )3353()5x y x y +-=+- (B )2(1)(1)1x x x +-=- (C )2221(1)x x x ++=+ (D )xy x y x x -=-2)( 6.下列三个长度的线段能组成直角三角形的是(A )1 (B )1 (C )2,4,6 (D )5,5,67.计算)123(2- ,结果为 (A )6 (B )6- (C )66- (D )66- 8.下列各式中,正确的是(A )212+=+a b a b (B )22++=a b a b (C )a b a b c c-++=- (D )22)2(422--=-+a a a a 9.若x m +与2x -的乘积中不含x 的一次项,则实数m 的值为(A )2- (B )2 (C )0 (D )110.如图,在△ABC 和△CDE 中,若︒=∠=∠90CED ACB ,AB=CD ,BC=DE , 则下列结论中不正确...的是 (A )△ABC ≌ △CDE (B )CE=AC (C )AB ⊥CD (D )E 为BC 中点11.如图,由四个全等的直角三角形与一个小正方形拼成一个大正方形. 如果大正方形的面积是25,小正方形的面积是1,直角三角形的两条直角边的长分别是a 和b ,那么2()a b +的值为 (A )49 (B )25 (C )13 (D )1 12.当x 分别取2014-、2013-、2012-、….、2-、1-、0、1、12、13、…、12012、12013、12014时,计算分式2211x x -+的值,再将所得结果相加,其和等于(A )1- (B )1 (C )0 (D ) 2014 二、填空题:(本题共24分,每小题3分)13.若实数x y 、20y +=,则x y +的值为 .14.计算:2325b a ⎛⎫- ⎪⎝⎭= .15.比较大小:.16.分解因式:3312a a -= .17.如图,△ABC ≌△DEF ,点F 在BC 边上,AB 与EF 相交于点P .若37DEF ∠=︒,PB=PF ,则APF ∠= °. 18.如图,△ABC 是等边三角形,点D 为 AC 边上一点,以BD 为边作等边△BDE, 连接CE .若CD =1,CE =3,则BC =_____.19.在平面直角坐标系xOy 中,点A 、点B 的坐标分别为(-6,0)、(0,8).若△ABC 是以∠BAC 为顶角的等腰三角形,点C 在x 轴上,则点C 的坐标为 .20.如图,分别以正方形ABCD 的四条边为边,向其内部作等边三角形, 得到△ABE 、△BCF 、△CDG 、△DAH ,连接EF 、FG 、GH 、HE .若AB =2, 则四边形EFGH 的面积为 .三、解答题:(本题共14分,第21题5分,第22题9分)21.计算:101()(2)2π--++1- 22.(1)解方程:x x x 211=--.(2))先化简,再求值:2)4442(22+÷-+--+x xx x x x x ,其中2=x .四、解答题:(本题共9分,第23题4分,第24题5分)23.如图,点F 、C 在BE 上,BF CE =,AB DE =,∠B =∠E . 求证: ∠A =∠D .24. 列方程(组)解应用题:上图为地铁调价后的计价图. 调价后,小明、小伟从家到学校乘地铁分别需4元和3元.由于刷卡坐地铁有优惠,因此,他们平均每次实付3.6元和2.9元.已知小明从家到学校乘地铁的里程比小伟从家到学校乘地铁的里程多5千米,且小明每千米享受的优惠金额是小伟的2倍,求小明和小伟从家到学校乘地铁的里程分别是多少千米?五、解答题:(本题共17分,第25题5分,第26题6分,第27题6分) 25.已知:如图,△ABC ,射线AM 平分BAC ∠.(1)尺规作图(不写作法,保留作图痕迹)作BC 的中垂线,与AM 相交于点G ,连接BG 、CG .(2)在(1)的条件下,∠BAC 和∠BGC 的等量关系为 , 证明你的结论.26.阅读:对于两个不等的非零实数a 、b ,若分式()()x a x b x--的值为零,则x a =或x b =.又因为2()()()()x a x b x a b x ab ab x a b x x x---++==+-+,所以关于x 的方程abx a b x +=+有两个解,分别为1x a =,2x b =.应用上面的结论解答下列问题: (1)方程86x x+=的两个解中较大的一个为 ;(2)关于x 的方程42m n m mn nx mnx mn-+-+=的两个解分别为1x 、2x (12x x <),若1x 与2x 互为倒数,则1_____x =,2______x =;(3)关于x 的方程22322321n n x n x +-+=+-的两个解分别为1x 、2x (12x x <),求2122x x -的值.27.阅读:如图1,在△ABC 中,3180A B ∠+∠=︒,4BC =,5AC =,求AB 的长. 小明的思路:如图2,作BE AC ⊥于点E ,在AC 的延长线上取点D ,使得DE AE =,连接BD ,易得A D ∠=∠,△ABD 为等腰三角形.由3180A ABC ∠+∠=︒和180A ABC BCA ∠+∠+∠=︒,易得2BCA A ∠=∠,△BCD 为等腰三角形.依据已知条件可得AE 和AB 的长.图1 图2解决下列问题:(1)图2中, AE = ,AB = ;(2)在△ABC 中,A ∠、B ∠、C ∠的对边分别为a 、b 、c . ①如图3,当32180A B ∠+∠=︒时,用含a 、c 的式子表示b ;(要求写解答过程) ②当34180A B ∠+∠=︒,2b =,3c =时,可得a = .图3海淀区八年级第一学期期末练习数 学 答 案 2015.1一、 选择题:(本题共36分,每小题3分)二、填空题:(本题共24分,每小题3分)13.1; 14.26425b a; 15.<; 16.3(2)(2)a a a +-; 17. 74︒; 18.4; 19.(16,0)-,(4,0);20.8-三、解答题:(本题共14分,第21题5分,第22题9分)21101()(2)2π--++1-解:原式=211------------------4分=分 22.(1)解方程:211x x x-=-. 解:方程两边同时乘以(1)x x -,得2(1)2(1)x x x x --=-. -----------------1分解方程,得2=x . -----------------3分 经检验,2=x 是原方程的解.∴ 原方程的解为2=x . -----------------4分(2)先化简,再求值:2244()242x x x xx x x -+-÷+-+,其中x = 解:原式=2(2)2(2)(2)2x x xx x x x ⎡⎤--÷⎢⎥++-+⎣⎦-----------------2分=22()22x x x x x x -+-⋅++ =222x x x+⋅+-----------------3分=2x. -----------------4分当x ==分四、解答题:(本题共9分,第23题4分,第24题5分) 23.证明:∵BF CE =,∴BC EF =. -----------------1分在△ABC 和△DEF 中,,,,AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF . -----------------3分 ∴A D ∠=∠. -----------------4分24.解:设小明从家到学校乘地铁的里程为x 千米.4 3.62(3 2.9)5x x --=-. -----------------3分解方程,得 10x =.-----------------4分经检验,10x =为原分式方程的解,且符合题意. ∴55x -=.答:小明和小伟从家到学校乘地铁的里程分别是10千米和5千米. ------------5分 五、解答题:(本题共17分,第25题5分,第26题6分,第27题6分) 25.解:(1)(注:不写结论不扣分)-----------------1分(2) 180BAC BGC ∠+∠=︒ . -----------------2分证明:过点G 作GE AB ⊥于点E ,GF AC ⊥交AC 的延长线于点F .∵点G 在∠BAC 平分线上, ∴GE GF =.∵点G 在BC 的中垂线上, ∴GB GC =.在Rt △GBE 和Rt △GCF 中,,,GE GF GB GC ==⎧⎨⎩∴△GBE ≌△GCF . ---------------4分 ∴12∠=∠. ∴BGC EGF ∠=∠.∵360AEG AFG BAC EGF ∠+∠+∠+∠=︒,90AEG AFG ∠=∠=︒, ∴180BAC EGF ∠+∠=︒.∴180BAC BGC ∠+∠=︒.-----------------5分 26. 解:(1)4x =;-----------------1分 (2) 112x =,22x =;-----------------3分 (3)∵22322321n n x n x +-+=+-, ∴223212221n n x n x +--+=+-. ∵223(1)(3)n n n n +-=-+,(1)(3)22n n n -++=+,12x x <, ∴1211x n -=-,2213x n -=+. ∴12n x =,222nx =+.-----------------5分 ∴212122x x -=.-----------------6分 27.(1)92AE =,6AB =;-----------------2分(2)①作BE AC ⊥交AC 延长线于点E ,在AE 延长线上取点D ,使得DE AE =,连接BD .∴BE 为AD 的中垂线. ∴AB =BD =c .∴A D ∠=∠.-----------------3分 ∵180A D ABD ∠+∠+∠=︒, ∴21180DBC A ∠+∠+∠=︒. ∵321180A ∠+∠=︒, ∴1DBC A ∠=∠+∠.∵31A ∠=∠+∠, ∴3DBC ∠=∠.∴CD =BD =c . -----------------4分 ∴AE =2b c +, 2c bCE -=. 在△BEC 中,90BEC ∠=︒,222BE BC CE =-.在△BEA 中,90BEA ∠=︒,222BE AB AE =-.∴2222AB AE BC CE -=-. ∴2222()()22b c c b c a +--=-. ∴22c a b c-=.-----------------5分②a =.-----------------6分 (注:本卷中许多问题解法不唯一,请老师根据评分标准酌情给分)。

相关文档
最新文档