人教版七年级数学下册--《相交线与平行线》教师教案
七年级下册《相交线与平行线》教案优秀范文五篇

七年级下册《相交线与平行线》教案优秀范文五篇令公桃李满天下,何用堂前更种花。
今天小编为大家带来的是七年级下册《相交线与平行线》教案优秀范文,供大家阅读参考。
七年级下册《相交线与平行线》教案优秀范文一1两条直线的位置关系(第1课时)课时安排说明:《两条直线的位置关系》共分两课时,第一课时,主要内容是探索两条直线的位置关系,了解对顶角、余角、补角的定义及其性质;第二课时,主要内容是垂直的定义、表示方法、性质及其简单应用.一、学生起点分析学生的知识技能基础:学生在小学已经认识了平行线、相交线、角;在七年级上册中,已经对角及其分类有了一定的认识。
这些知识储备为本节课的学习奠定了良好的基础,使学生具备了掌握本节知识的基本技能。
学生活动经验基础:在前面知识的学习过程中,教师为学生提供了广阔的可供探讨和交流的空间,学生已经经历了一些动手操作,探索发现的数学活动,积累了初步的数学活动经验,具备了一定的图形认识能力和借助图形分析问题解决问题的能力;能够将直观与简单推理相结合;在合作探究的过程中,学生在以前的数学学习中学生已经经历了小组合作的学习过程,积累了大量的方法和经验,具备了一定的合作与交流能力。
二、教学任务分析针对七年级学生的学情,本节从学生熟悉的、感兴趣的情境出发,引导学生自主提炼归纳出同一平面内两直线的位置关系,了解补角、余角、对顶角的概念及其性质并能够进行简单的应用;通过“让学生经历观察、操作、推理、想象等探索过程” ,发展学生的空间观念及推理能力;能从实际情境中抽象出数学模型,为后续学习“空间与图形”这一数学领域而打下坚实的基础;激发学生从数学的角度认识现实,能够敏锐的发现问题、提出问题,并运用所掌握的数学知识初步解决问题;引导学生在思考、交流、表达的基础上逐步达成有关情感与态度目标. 本节内容在教材中处于非常重要的地位,起着承前启后的作用。
因此,本节课的目标是:1.知识与技能:在具体情境中了解相交线、平行线、补角、余角、对顶角的定义,知道同角或等角的余角相等、同角或等角的补角相等、对顶角相等,并能解决一些实际问题。
人教版七年级下册第五章相交线与平行线教案

第五章相交线与平行线5.1相交线[教学目标]1. 通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力。
2. 了解邻补角、对顶角以及同位角,内错角,同旁内角,能找出图形中的这些角,理解并能运用它解决一些简单问题。
[教学重难点]重点:邻补角与对顶角,垂线与及同位角,内错角,同旁内角的概念。
难点:理解对顶角相等的性质的探索,垂线的画法。
考点知识1.邻补角:有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。
两条直线相交有4对邻补角。
对顶角:有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。
两条直线相交,有2对对顶角;对顶角相等。
⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。
⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。
2.垂线:⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
C符号语言记作:如图所示:AB⊥CD,垂足为OOA BD⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
简称:垂线段最短。
3.垂线的画法:⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。
注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。
画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。
初中数学人教七年级下册(2023年新编) 相交线与平行线 平行线教学设计

课题:平行线教学设计教材分析:“平行线”是第五章相交线与平行线第二节内容,在这一课,通过让学生观察教具模型,想象转动的过程中有相交的情况,也有不相交的情况,从而得出平行线的概念、再进一步得出平行公理及平行公理的推论,为后面的学习做好铺垫。
教学目标:1.掌握平行线的概念、符号表示。
.2.会用三角尺和直尺过已知直线外一点画这条直线的平行线.3.掌握平行公理以及平行公理的推论,会用符号语言表示平行公理推论.4.经历观察、画图、想象、实践、交流、归纳等活动,进一步发展学生的数学语言表达能力和空间观念。
重点:平行线的作图,平行公理及其推论.难点:平行公理推论的应用.教学方法:情境导入法、小组讨论法、探究交流法、合作质疑法。
教师引导学生观察模型,动手画图、猜想、归纳、类比、合作、讨论,共同探索出平行线的概念,平行公理及推论。
教具准备:课件、教具、三角板、直尺教学流程:一、情境引入观察:分别将木条a,b与木条c钉在一起,并把它们想象成在同一平面内两端可以无限延伸的三条直线, 顺时针转动a二、思考(1)直线a与直线b的交点位置将发生什么变化?(2)在这个过程中, 有没有直线a与b不相交的位置?(设计意图:通过教具演示,可以帮助学生对平行公理有一个初步的感知,直观理解平行线的概念。
同时,学生通过观察,亲身体验,提高学生学习的兴趣)平行概念:同一平面内,存在一条直线a与直线b不相交的位置,这时直线a与b 互相平行.即:同一平面内, 不相交的两条直线叫做平行线.直线a与b是平行线, 记作a∥b.追问:同一平面内,两条直线存在哪些位置关系?答案:相交和平行练习1:平行线在生活中很常见, 你能举出一些例子吗?答案:如:三、探究1问题:如何画平行线呢?给一条直线a,你能画出直线a的平行线吗?步骤:一、放;二、贴;三、推;四、画追问:你能画出多少条直线a的平行线?答案:无数条四、探究2问题1:在转动木条a的过程中有几个位置使得直线a与b平行?问题2:过点B画直线a的平行线,能画出几条?(设计意图:通过观察、画图、讨论、类比等活动过程,归纳出平行公理,及其推论,从而真正理解平行公理,及其推论。
人教版七年级数学下册第五章相交线与平行线全章教学设计(全章教案)

5.1相交线六、教学过程设计师生活动设计意图教学过程一、观察剪刀剪布的过程,引入两条相交直线所成的角二、认识邻补角和对顶角,探索对顶角性质1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?学生思考并在小组内交流,全班交流.2.学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有“相邻”关系的两角互补,“对顶”关系的两角相等.3.学生根据观察和度量完成下表:4.概括形成邻补角、对顶角概念5.对顶角性质三、巩固运用判断题:(课堂作业)(1)如果两个角有公共顶点和一条公共边,而且这两角互为补角, 那么它们互为邻补角. ( )(2)两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补. ( )四、小结五、布置作业通过教具直观演示法、启发引导、尝试研讨、变式练习白板(课件)和黑板(重点板书)结合教学经历实际操作,通过观察讨论等活动,能在具体的情境中认识对顶角、邻补角。
通过学生练习,对有关知识加以巩固,让学生从运用所学知识解决问题的过程,获得成功的体验5.1.2 垂线5.1.3 同位角、内错角、同旁内角一、导入新课前面我们研究了一条直线与另一条直线相交的情形,接下来,我们进一步研究一条直线分别与两条直线相交的情形。
二、同位角、内错角、同旁内角如图,直线a、b与直线c相交,或者说,两条直线a、b被第三条直线c所截,得到八个角。
我们来研究那些没有公共顶点的两个角的关系。
∠1与∠2、∠4与∠8、∠5与∠6、∠3与∠7有什么位置关系?在截线的同旁,被截直线的同方向(同上或同下).具有这种位置关系的两个角叫做同位角。
(同位角形如字母“F”)∠3与∠2、∠4与∠6的位置有什么共同的特点?在截线的两旁,被截直线之间。
具有这种位置关系的两个角叫做内错角.(内错角形如字母“Z”)∠3与∠6、∠4与∠2的位置有什么共同的特点?在截线的同旁,被截直线之间。
相交线与平行线全章教案

相交线与平行线全章教案第一章:相交线与平行线的概念介绍教学目标:1. 了解相交线与平行线的定义及特点。
2. 能够识别和判断直线之间的相交与平行关系。
3. 掌握平行线的性质及推论。
教学内容:1. 相交线的定义及特点。
2. 平行线的定义及特点。
3. 平行线的性质及推论。
教学活动:1. 通过图片和生活实例引导学生认识相交线与平行线。
2. 利用几何工具(直尺、三角板)进行实际操作,让学生观察和体验相交线与平行线的关系。
3. 引导学生通过观察和思考,总结出平行线的性质及推论。
作业布置:1. 请学生运用几何工具,画出两条相交线和两条平行线。
2. 请学生总结平行线的性质及推论,并加以证明。
第二章:相交线的性质与判定教学目标:1. 掌握相交线的性质及判定方法。
2. 能够运用相交线的性质解决实际问题。
教学内容:1. 相交线的性质。
2. 相交线的判定方法。
教学活动:1. 通过几何图形的观察和分析,引导学生掌握相交线的性质。
2. 利用几何工具进行实际操作,让学生体验相交线的判定方法。
作业布置:1. 请学生运用相交线的性质,解决一些实际问题。
2. 请学生总结相交线的判定方法,并加以证明。
第三章:平行线的性质与判定教学目标:1. 掌握平行线的性质及判定方法。
2. 能够运用平行线的性质解决实际问题。
教学内容:1. 平行线的性质。
2. 平行线的判定方法。
教学活动:1. 通过几何图形的观察和分析,引导学生掌握平行线的性质。
2. 利用几何工具进行实际操作,让学生体验平行线的判定方法。
作业布置:1. 请学生运用平行线的性质,解决一些实际问题。
2. 请学生总结平行线的判定方法,并加以证明。
第四章:平行线的应用教学目标:1. 掌握平行线的应用方法。
2. 能够运用平行线的性质解决实际问题。
教学内容:1. 平行线的应用方法。
2. 实际问题解决。
教学活动:1. 通过几何图形的观察和分析,引导学生掌握平行线的应用方法。
2. 提供一些实际问题,让学生运用平行线的性质解决。
新人教版数学七年级下册第五章《相交线与平行线》全章教案

1.【探究一】
合
作 如图,怎样描述直线 AB、CD 和 EF 的位置关系? 学生讨论、回答:
探
究
直线 AB、CD 被直线 EF
所截
师概括为三线八角
2.【探究二】
引导学生观察得出
(1)观察图中的∠1 和∠5 与截线及两条 这 两 个 角 分 别 在 直 线
教学反思:
, 的垂线.
C
A
D
B
B
年级 七年级 学科
数学
备课 内容
5.1.2 垂线(2)
教学目标
了解垂线段、点到直线的距离的概念,会利用三角尺画垂线段,会量点到 直线的距离.
教学重、难点
重点:两个结论的探究、垂线段和点到直线距离的概念. 难点:经历探究“垂线段最短”的过程,掌握垂线性质 2
教 学 过 程设计
角两边的反向延长线。
互为邻补角的两个角的特点:①两个角有一个公共顶点②两个角有一条公共边
(邻)③两个角在公共边两侧④两个角和为
五、布置作业:、 教学反思:
(补)
年级 七年级 学科
数学
备课 内容
5.1.2 垂线(1)
教学目标
1、理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的 垂线。 2、掌握点到直线的距离的概念,并会度量点到直线的距离。 3、掌握垂线的性质,并会利用所学知识进行简单的推理。
(5)如图直线 AB、CD、EF 相交于点 O,∠BOE 的对顶角是______,∠COF 的邻
a 补角是____ ,若∠AOE=30°,那么∠BOE=_____,∠BOF=_______。 E 2
人教版初中七年级下册数学教案 第五章 相交线与平行线 5.1 相交线 5.1.1 相交线

第五章相交线与平行线 5.1相交线 5.1.1相交线【情境导入】在我们生活的世界中,蕴含着大量的相交线和平行线.同学们对两条直线相交、平行一定不陌生,大桥上的钢梁和钢索,棋盘上的横线与竖线、笔直的高速公路……都给我们以相交线或平行线的形象,从这一章开始,我们正式开始研究平面内不重合的两条直线的位置关系.今天这节课,我们研究相交线.探究点邻补角与对顶角的认识问题1如图①,观察剪刀工作过程(可动态呈现),将其构造抽象成一个几何图形(如图②),这是一个什么样的图形?请你描述一下.答:剪刀的构造抽象成几何图形可看作两条相交的直线.如果两条直线有一个公共点,就说这两条直线相交,公共点叫做这两条直线的交点.这个图形的几何描述为:直线AB,CD相交于点O.问题2任意画两条相交的直线,在形成的四个角中,两两相配共能组成几对角?各对角存在怎样的位置关系?分别量出各个角的度数,它们存在什么样的数量关系?所以∠1=∠3(同角的补角相等).例1(教材P3例1)如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.解:由邻补角的定义,得∠2=180°-∠1=180°-40°=140°;由对顶角相等,得∠3=∠1=40°,∠4=∠2=140°.【对应训练】1.下图中,∠2的邻补角是( A )A∠1B∠3C∠4D没有邻补角2.下列图形中,∠1与∠2互为对顶角的是( C )3.如图,直线AB,CD相交于点O,若∠AOD减小30°,则∠BOC( D )A.增大30°B.增大150°C.不变D.减小30°4.如图,要测量两堵围墙形成的∠AOB的度数,先分别延长AO,BO得到∠COD,然后通过测量∠COD的度数从而得到∠AOB的度数,其中运用的原理是对顶角相等.例2如图,直线AB和CD相交于点O,OE平分∠AOD.若∠1+∠2=80°,求∠AOE的度数.【对应训练】如图,直线CD与EF相交于点O,OC平分∠AOF.若∠AOE=40°,求∠DOE的度数.【随堂训练】见《创优作业》“随堂小练”册子相应课时训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答:什么是邻补角?邻补角与补角有什么区别和联系?什么是对顶角?对顶角有什么性质?【知识结构】【作业布置】1.教材P7习题5.1第1,2,8,9题.2.《创优作业》主体本部分相应课时训练.1.对顶角:(1)有公共顶点的两个角;(2)其中一个角的两边分别是另外一个角两边的反向延长线.辨认对顶角紧抓以上两点.例1下列示意图中,∠1与∠2是对顶角的是(A)解析:A∠1与∠2有公共顶点,∠1的两边分别是∠2的两边的反向延长线,∠1与∠2是对顶角;B.∠1与∠2没有公共顶点,∠1与∠2不是对顶角;C.∠1与∠2没有公共顶点,∠1与∠2不是对顶角;D.∠1教学步骤师生活动板书设计5.1.1相交线1.邻补角的概念.2.对顶角的概念.3.对顶角的性质:对顶角相等.教学反思本节课中邻补角和对顶角概念的教学都是结合图形进行描述,抓住其本质特征,教会学生如何在图形中识别它们.在学习对顶角的性质时,要让学生明白,由什么条件,依据什么,得出什么结果,初步养成言之有据的习惯.的两边不是∠2的两边的反向延长线,∠1与∠2不是对顶角.故选A.2.邻补角:(1)有公共顶点的两个角;(2)有一条公共边;(3)另一边互为反向延长线.辨认邻补角紧抓以上三点.例2下列各图中,∠1与∠2是邻补角的是(C)例1如图,直线AB和CD相交于点O,OE把∠AOC分成两部分,且∠AOE∶∠EOC=3∶5,OF平分∠BOE.(1)若∠BOD=72°,求∠BOE的度数.(2)若∠BOF=2∠AOE+15°,求∠COF的度数.例2(1)三条直线相交,最少有1个交点,最多有3个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(2)四条直线相交,最少有1个交点,最多有6个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(3)以此类推,n条直线相交,最少有1个交点,最多有个交点,对顶角有n(n-1)对,邻补角有2n(n-1)对.。
最新人教版七年级数学初一下册第五章相交线与平行线单元教案设计

最新人教版七年级数学初一下册第五章相交线与平行线单元教案设计第五章相交线与平行线5.1相交线教学任务分析教学目标知识技能数学思考1.了解对顶角与邻补角的概念,能从图中辨认对顶角与邻补角.2.知道“对顶角相等”.3.了解“对顶角相等”的说理过程.1.经历探究对顶角、邻补角的位置关系的过程,建立空间观念.2.通过分析具体图形得到对顶角、邻补角的概念,发展学生的抽象概括能力.通过小组学习等活动经历得出对顶角相等的过程,进一步提高学生应用已有知识解决数学问题的能力.1.通过对对顶角的探究,使学生初步认识数学与现实生活的密切联系.2.通过师生的共同活动,促使学生在学习活动中培养良好的情感、合作交流、主动参与的意识,在独立思考的同时能够认同他人.解决问题情感态度重点难点对顶角的概念,“对顶角相等”的性质.“对顶角相等”的探究过程.教学流程安排活动流程图活动内容和目的活动1找出图形中的相交线活动2认识邻补角和对顶角活动3探究对顶角相等活动4巩固练习活动5课堂小结布置作业教具教师用三角板活动1观察图片,找出相交线,引入课题.活动2通过探究相交线中相交线角与角的位置关系,得出邻补角和对顶角的概念.并能找出图中的对顶角、邻补角.活动3通过探究发现“对顶角相等”的结论,进而通过说理证实这一结论,初步发展简单说理.活动4通过解决具体问题加深对对顶角、邻补角的理解.活动5通过学生习题,总结回顾本节知识点,以便培养学生的概括表达能力,并巩固知识、灵活应用.课前准备学具量角器,三角板补充材料教学过程设计问题与情境师生行为设计意图让学生借助已有的几何知识从现实生活中发现数学问题,能由实物的形状想象出相交线、平行线的几何图形.使新知识建立在对周围环境的直接感知的基础上.让学生增强对生活中的相交线、平行线的认识.建立直观的,形象化的数学模型.活动1问题找出图中的相交线、平行线.教师出示一组图片.学生观察图片,找相交线、平行线,引出本节课题.在本次活动中,教师应重点关注:(1)学生从简单的具体实物抽象出相交线、平行线的能力.(2)学生认识到相交线、平行线在日常生活中有着广泛的应用.(3)学生学习数学的兴趣.活动2问题(1)看见一把张开的剪刀,你能联想出什么样的几何图形?(2)观察这些角有什么位置关系.教师出示剪刀图片,提出问题.学生独立思考,画出相应的几何图形,并用几何语言描述.教师深入学生中,指导得出几何图形,并在黑板上画出标准图形.教师提出问题.学生分组讨论,在具体图形中得出两条相交线构成四个角,根据图形描述邻补角与对顶角的特征.学生可结合概念特征找到图中的两对邻补角与两对对顶角.在本次活动中,教师应关注:(1)学生画出两条相交线的几何图形,用语言准确描述.(2)学生能否从角的位置关系上对角进行分类.(3)学生是否能够正确区分邻补角、对顶角.(4)学生参与数学学习活动的主动性,敢于发表个人观点.通过生活中的情景抽象出几何图形,发现对顶角、邻补角,培养空间观念,发展几何直觉.通过对图形中角与角位置关系的研究分析,学生描述邻补角、对顶角概念,从角的位置关系上来研究这些角的相互关系.让学生经历从图形到文字到符号的转换过程,使学生加深对对顶角、邻补角概念的理解,积累一些图形研究的经验和方法.活动3问题(1)对顶角有什么大小关系呢?课件运用:此时可以在学生思考的基础上利用课件“对顶角”进行动画演示.(2)你能举出生活中应用对顶角相等的例子吗?教师提出问题.学生以组为单位,在观察的基础上研究解决问题的方法,鼓励学生从经验(用量角器,邻补角和为180度)出发,试从不同角度寻求解决问题的方法,得出对顶角相等的结论,口述过程,教师给予明晰,并板书说理过程.教师提出问题.学生回答.在本次活动中,教师应关注:(1)学生能否借助邻补角互补推导出对顶角相等的性质.(2)学生能否进行简单说理.(3)学生是否能运用对顶角相等准确地找到生活中的实际例子.活动2已从位置上对角进行了研究,现在从角的大小对对顶角进行研究,培养说理习惯.学生在探索的过程中会遇到困难,出现问题,通过合作学习加以解决.通过举出生活中应用对顶角相等的例子,使学生进一步理解对顶角的性质,体会对顶角在生活中的应用.活动4问题教师出示问题.(1)直线a、b相交,学生独立思考、独立解题.∠1=40°,求∠2、∠3、∠4教师具体指导并根据学生情况板书规的度数.范的简单说理过程.本次活动中,教师应关注:(1)学生对对顶角相等的掌握情况.(2)学生进行简单说理的准确性、规范性.(3)学生能否在独立思考的基础上,积极参与数学问题的讨论.(4)是否能用几何符号语言来表达自己的解题过程.(2)∠1等于90°时,∠2、∠3、∠4等于多少度?(3)如图是一个对顶角量角教师提出问题,并用课件“对顶角量角器.你能说明它度量角度的原器”演示度量过程.理吗?学生在观察的基础上进行讨论,最后学生独立解释其度量的原理.在本次活动中,教师应关注:(1)学生能否根据课件演示进行独立思考.(2)学生在思考后能否形成自己的看法并表达出来.通过具体问题,再次强化对顶角的概念及性质,并培养学生的说理习惯,发展符号感,逐步培养学生用几何语言交流的能力.问题(2)教师可根据学生的情况添加,为下一节学习两直线垂直作铺垫.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相交线与平行线(教师教案)第一段典型例题【开课】教师在正式开课前,先把本次课程的内容简单概括一下:今天的内容主要包括以下几部分内容:一.相交线、垂线的概念二.同位角、内错角、同旁内角等的概念三.平行线的的性质和判定【课程目标】1. 理解相交线的定义、对顶角的定义和性质、邻补角的定义,正确识别"三线八角”;2. 理解垂线的定义、点到直线的距离的定义,掌握垂线的性质;3. 理解平行线的概念,正确地表示平行线,会利用三角尺、直尺画平行线,理解平行公理和平行公理的推论;4. 掌握两直线平行的判定方法和平行线的性质;5. 能综合运用平行线的性质和判定证明和计算。
【课程安排】1教师简要介绍本次课程的关键点,同学做题,然后教师讲解2教师总结,学生做综合练习(第二段)教师讲解【教师讲课要求】教师先将第一段练习发给每一位学生,学生做题时教师必须巡视,了解学生做题情况,学生完成练习后,教师进行讲解。
第一部分相交线、垂线课时目标:理解相交线的定义、对顶角的定义和性质、邻补角的定义,正确识别“三线八角”;理解垂线的定义、点到直线的距离的定义,掌握垂线的性质;教师讲课要求【知识要点】:请学生看一下做好上课的准备(一)相交线1. 相交线的定义在同一平面内,如果两条直线只有一个公共点,那么这两条直线叫做相交线,公共点称为两条直线的交点。
如图1所示,直线AB与直线CD相交于点0。
S S S图1 图2 图32. 对顶角的定义若一个角的两条边分别是另一个角的两条边的反向延长线,那么这两个角叫做对顶角。
如图2所示,/ 1与/ 3、/ 2与/ 4都是对顶角。
注意:两个角互为对顶角的特征是:(1)角的顶点公共;(2)角的两边互为反向延长线;(3 )两条相交线形成2对对顶角。
3. 对顶角的性质对顶角相等。
4. 邻补角的定义如果把一个角的一边反向延长,这条反向延长线与这个角的另一边构成一个角,此时就说这两个角互为邻补角。
如图3所示,/ 1与/2互为邻补角,由平角定义可知/ 1 + Z 2 = 180 °。
(二)垂线1. 垂线的定义当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
如图4所示,直线AB与CD互相垂直,垂足为点0,则记作AB丄CD于点0。
其中“丄”是“垂直”的记号;“1"是图形中“垂直”(直角)的标记。
注意:垂线的定义有以下两层含义:(1)v AB 丄CD (已知)(2)vZ 1 = 90°(已知)•••/ 1= 90 ° (垂线的定义)••• AB丄CD (垂线的定义)2. 垂线的性质(1)性质1:在同一平面内,经过直线外或直线上一点,有且只有一条直线与已知直线垂直,即过一点有且只有一条直线与已知直线垂直。
(2)性质2 :连接直线外一点与直线上各点的所有线段中,垂线段最短。
即垂线段最短。
3•点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
图5 图6如图5所示,m的垂线段PB的长度叫做点P到直线m的距离。
4. 垂线的画法(工具:三角板或量角器)5. 画已知线段或射线的垂线(1)垂足在线段或射线上(2)垂足在线段的延长线或射线的反向延长线上(三) “三线八角”两条直线被第三条线所截,可得八个角,即“三线八角”,如图6所示。
(1) 同位角:可以发现/ 1与/ 5都处于直线』的同一侧,直线•、勺的同一方,这样位置的一对角就是同位角。
图中的同位角还有/2与/ 6,/ 3与/ 7,/ 4与/ 8。
(2) 内错角:可以发现/ 3与/ 5都处于直线』的两旁,直线|目、』的两方,这样位置的一对角就是内错角。
图中的内错角还有/4与/ 6。
(3)同旁内角:可以发现/ 4与/ 5都处于直线勺的同一侧,直线3 > '的两方,这样 位置的一对角就是同旁内角。
图中的同旁内角还有/ 3与/ 6。
范例1.判断下列语句是否正确,如果是错误的,说明理由。
(1) 过直线外一点画直线的垂线,垂线的长度叫做这个点到这条直线的距离; (2) 从直线外一点到直线的垂线段,叫做这个点到这条直线的距离; (3) 两条直线相交,若有一组对顶角互补,则这两条直线互相垂直; (4) 两条直线的位置关系要么相交,要么平行。
分析:本题考查学生对基本概念的理解是否清晰。
(1 )、(2)都是对点到直线的距离的描述,由“直线外一点到这条直线的垂线段的长度, 都是错的;由对顶角相等且互补易知,这两个角都是条直线的位置关系是相交或平行,必须强调“在同一平面内”。
解答:(1)这种说法是错误的。
因为垂线是直线,它的长度不能度量,应改为“垂线段 的长度叫做点到直线的距离”。
(2) 这种说法是错误的。
因为“点到直线的距离”不是指点到直线的垂线段的本身, 而是指垂线段的长度。
(3) 这种说法是正确的。
(4) 这种说法是错误的。
因为只有在同一平面内,两条直线的位置关系才是相交或平 行。
如果没有“在同一平面内”这个前提,两条直线还可能是异面直线。
说明:此题目的是让学生抓住相交线平行线这部分概念的本质,弄清易混概念。
范例2.如下图(1)所示,直线 DE 、BC 被直线AB 所截,问 一1各是什么角?图(1)分析:已知图形不标准,开始学不容易看,可把此图画成如下图 (2)的样子,这样就容 易看了。
叫做点到直线的距离” 可判断(1)、( 2)90°故(3)正确;同一平面内,两E图(2)答案: 4 是同位角,㈢是内错角,耳是同旁内角。
范例3如下图(1),图(1)(1 是两条直线______________________ 与____________________ 被第三条直线___________________ 所截构成的_______________________ 角。
(2 )—1是两条直线____________________________ 与____________________ 被第三条直线_______________________ 所截构成的___________________ 角。
(3)I —■_____________ 与______________________ 被第三条直线____________________________ 所截构成的_________________ 角。
(4)丨凶|与'6是两条直线_____________________ 与__________________ ,被第三条直线_________________________ 所截构成的_____________________ 角。
分析:从较复杂的图形中分解出有关角的直线,因此可以得到是由直线亠被第三条直线M所截构成的同位角,如下图(2),类似可知其他情况。
答案: (1) U 1与凹2是两条直线被第三条直线也所截构成的同位角。
(2)曰1与凶3是两条直线被第三条直线已所截构成的同位角。
(3)是两条直线被第三条直线已所截构成的内错角。
(4)丨凶5与凶6是两条直线凶被第三条直线二所截构成的同旁内角。
范例4按要求作图,并回答问题。
<T> 先酒-个厶ABCJS得ZABC > <)0° ;⑵ 分别画出这个二角形各边上的高如人BEfllCF:⑶在你所网的图形中,写出所有的垂线段*(I》適过测址」和I ;点人到直线放*.点"到直线八匚点( ' 到直线的原离・解析(I)⑵分别冊I出BC边上的f^AD^AC边上的高BE、川扌边上的爲CFJt^ D、E.F 是垂足.(3) W* AD丄DC BE±A(\ CF丄AF.所以该图形屮共竹九条垂线段,它ffl分別是Al). HI). (1). RE、AE. CE. KF. BF.CH⑷略.图 1X5. 7(1)如图13.5,7(1),已知直线X h ft!交,画直线小便它•与直线 h 相兗所成的与Z 立互为同位角*⑵如B9 13. 5, 7(2).已知宜线爪 d h 相交于点a 点p 在宜线 厶土・经过点卩吋一条梵线仟与直线茁相交•便蘇和切所成的一个角 // 成同労内角,且与Z0成内错角.解靳这两道小题都是画图题.首先要仔细审题•明确刪图燮求; 其次.在画好图厉要进行验证.甬图题是一种操件題+既能培养动手能 力•乂能加深对概念的理解.对于几何学习右独特作川-范例6证明垂直如图・0是晝线AB 上的•点. OD 足NMJC 的平分卸OE 的平分线,证明小D 丄DE” 利用悄平分塊的摊念m 平 ^ZAtx.;-ZCW-yZA(X.b TOE 平分/#0(:AZroC=yZBtX7 \* Z 「OD 十 Z EOC= ZWE*ZAOC-F ZBOC^ZAOB^ 180' AZf>OE- \ ZAOB - 90s :.()D_LOE第二部分平行线[课时目标]理解平行线的概念,正确地表示平行线,掌握两直线平行的判定方法和平行 线的性质能综合运用平行线的性质和判定证明和计算。
教师讲课要求范例5作图题a知识要点:请学生看一下准备上课1.平行线的概念在同一平面内,不相交的两条直线叫做平行线。
(1)在平行线的定义中,“在同一平面内”是个重要前提;(2)必须是两条直线;(3)同一平面内两条直线的位置关系是:相交或平行,两条互相重合的直线视为同一条直线。
两条直线的位置关系是以这两条直线是否在同一平面内以及它们的公共点个数|回进行平行用“//”表示,如图7所示,直线AB与直线CD平行,记作AB// CD,读作AB平行于CD。
3. 平行线的画法4. 平行线的基本性质(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行。
(2)平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线也平行。
5. 平行线的判定方法:(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
(4)两条直线都和第三条直线平行,那么这两条直线平行。
(5)在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行。
6. 平行线的性质:(1)两条平行线被第三条直线所截,同位角相等。
简记:两直线平行,同位角相等。
(2)两条平行线被第三条直线所截,内错角相等。
简记:两直线平行,内错角相等。
(3)两条平行线被第三条直线所截,同旁内角互补。
简记:两直线平行,同旁内角互补。
范例1如图,已知/ AMF= / BNG=75 °,/ CMA=55 °,求/ MPN的大小答案:50°解析:因为/ AMF= / BNG=75 °,又因为/ BNG= / MNP ,所以/ AMF= / MNP ,所 以 EF //GH ,所以/ MPN= / CME ,又因为/ AMF=75 °,/ CMA=55 °,所以/ AMF+ / CMA=130 °,即/ CMF=130 °,所以/ CME=180 ° - 130° =50 °,所以/ MPN=50范例2如图,/ 1与/ 3为余角,/ 2与/ 3的余角互补,/ / PCM答案:57.5°解析:因为/ 1 + / 3=90// DE ,所以/ BCN= / 4=115 °,所以/ ACM=115 °,又因为 CP 平分/ ACM ,所以/ PCM=/ ACM= 一 X 115 ° =57.5 °,所以/ PCM=57.5 °范例3如图,已知:/ 1 + / 2=180°,/ 3=78 °,求/ 4的大小答案:102°解析:因为/ 2= / CDB ,又因为/ 1+ / 2=180 °,所以/ 1 + / CDB=180 °,所以得到AB // CD ,所以/ 3+ / 4=180 °,又因为/ 3=78 °,所以/ 4=102°范例4如图,已知:/ BAP 与/ APD 互补,/ 1 = / 2,说明:/ E=/ F4=115 ° , CP 平分/ ACM ,求/ 2+ (90°—/ 3) =180°所以/ 2+ / 1=180 °,所以 ABD解析:因为/ BAP与/ APD互补,所以AB // CD,所以/ BAP= / CPA,又因为/ 1 =/ 2,所以/ BAP -Z 1 = / CPA-Z 2,即/ EAP= / FPA,所以EA // PF,所以/ E= / F范例5如图,已知AB // CD , P为HD上任意一点,过P点的直线交HF于0点,试问:/ HOP、/ AGF、/ HPO有怎样的关系?用式子表示并证明答案:/ HOP= / AGF -Z HPO解析:过O作CD的平行线MN,因为AB // CD,且CD // MN,所以AB // MN,所以Z AGF= Z MOF= Z HON,因为CD // MN , Z HPO= Z PON,所以Z HOP= Z HON -Z PON= Z HON -Z HPO,所以Z HOP= Z AGF-Z HPO范例6 如图,已知AB // CD,说明:Z B +Z BED +Z D=360 °分析:因为已知AB // CD,所以在Z BED的内部过点E作AB的平行线,将Z B + Z BED + Z D的和转化成对平行线的同旁内角来求。