平方差公式(二)简便运算
初中数学 什么是平方差公式

初中数学什么是平方差公式
平方差公式是初中数学中一个重要的公式,用于计算两个数的平方差。
它的一般形式可以表示为:
(a + b)(a - b) = a^2 - b^2
其中,a和b是任意实数。
平方差公式的推导可以通过展开左边的乘积来得到。
具体步骤如下:
1. 将(a + b)(a - b)展开:
(a + b)(a - b) = a(a - b) + b(a - b)
= a^2 - ab + ab - b^2
= a^2 - b^2
在这个过程中,我们可以看到中间的两项-ab和ab相互抵消,最终得到了平方差公式的形式。
平方差公式的应用非常广泛,可以帮助我们简化复杂的计算,解决各种数学问题。
一些常见的应用包括:
1. 因式分解:
平方差公式可以用于因式分解,特别是当我们需要将一个差的平方进行因式分解时,可以直接应用平方差公式得到因式分解形式。
2. 简化计算:
平方差公式可以帮助我们简化各种数学计算。
例如,当需要计算一个数的平方与另一个数的平方之差时,可以直接应用平方差公式,避免繁琐的计算步骤。
3. 解方程:
平方差公式可以用于解一些特殊的方程。
例如,当我们需要解一个二次方程时,可以通过平方差公式将其转化为两个一次方程,从而求得方程的解。
总之,平方差公式是初中数学中一个重要的工具,可以帮助我们简化计算,解决各种数学问题。
通过掌握平方差公式,我们可以更好地理解和运用数学知识。
公式法之平方差公式

公式法之平方差公式平法差公式是指在代数运算中,存在一种形如(a+b)(a-b)的乘法运算规则,可以将两个相邻的平方差式表示为一个乘法式,从而简化计算。
平方差公式的推导可以通过展开乘法(a+b)(a-b)的过程进行,具体推导如下:首先,我们假设a和b是任意实数。
那么(a+b)可以看作是一个单位,(a-b)可以看作是一个差数。
我们将其展开:(a+b)(a-b)=a(a-b)+b(a-b)接下来,我们将展开式中的乘法运算进行分配:=a*a-a*b+b*a-b*b= a^2 - ab + ba - b^2由于ab和ba表示的是相同的乘法运算,所以我们可以将它们合并:= a^2 - ab + ab - b^2=a^2-b^2可以看到,展开式的结果是a^2和b^2的差。
这个差就是平方差公式的核心内容。
因此,平方差公式可以表示为:(a+b)(a-b)=a^2-b^2这个公式在代数运算中非常常用,并且在很多数学问题的解答中都会用到。
通过使用平方差公式,可以将两个相邻的平方差式简化为一个乘法式,从而可以更方便地进行运算。
举例来说,假设我们需要计算(3+2)(3-2)的值。
根据平方差公式,可以得到:(3+2)(3-2)=3^2-2^2=9-4=5因此,(3+2)(3-2)的值等于5平方差公式在解决二次方程、因式分解、简化分数等问题中都有广泛的应用。
通过运用平方差公式,可以将复杂的运算问题转化为简单的代数运算,从而更加容易进行计算和解答。
总结起来,平方差公式是一种代数运算规则,可以将两个相邻的平方差式表示为一个乘法式。
通过使用平方差公式,可以简化计算过程,提高计算效率。
在数学问题的解答中,平方差公式具有广泛的应用价值。
这就是平方差公式的基本原理和推导过程。
平方差公式和完全平方公式因式分解

平方差公式和完全平方公式因式分解平方差公式和完全平方公式是数学中常用的因式分解方法,它们在解题过程中起到了十分重要的作用。
本文将为大家详细介绍这两个公式,帮助大家理解其原理和应用。
首先,我们来了解一下平方差公式。
平方差公式的表达形式为a² - b² = (a + b)(a - b)。
简言之,它告诉我们两个平方数相减的结果可以因式分解为两个因数的乘积:一个因数是两个平方数的和,另一个因数是两个平方数的差。
这个公式可以极大地简化计算,特别是在解方程或因式分解的题目中,往往能起到事半功倍的效果。
那么,我们来看一个应用平方差公式的例子。
假设我们需要将x² - 4x + 4进行因式分解。
我们可以使用平方差公式进行分解,将x² - 4x + 4看作是(a - b)²的形式,其中a为x,b为2。
根据平方差公式,我们可以得到(x - 2)²,也就是x² - 4x + 4的因式分解形式。
通过应用平方差公式,我们可以将一个多项式快速分解为一对平方数的差的乘积。
接下来,我们将介绍完全平方公式。
完全平方公式的表达形式为a² + 2ab + b² = (a + b)²。
它告诉我们一个二次多项式可以因式分解为两个相同的因数的平方。
与平方差公式类似,完全平方公式也可以在解题过程中提供方便。
我们来看一个应用完全平方公式的例子。
假设我们需要将x² + 6x + 9进行因式分解。
根据完全平方公式,我们可以将x² + 6x + 9看作是(a + b)²的形式,其中a为x,b为3。
带入完全平方公式,我们可以得到(x + 3)²,也就是x² + 6x + 9的因式分解形式。
通过应用完全平方公式,我们可以迅速将二次多项式转化为平方的形式。
在实际应用中,平方差公式和完全平方公式可以帮助我们进行因式分解,并简化问题的求解过程。
平方差公式证明推导过程及运用详解(数学简便计算方法)

数学简便计算方法之平方差公式证明推导及运用详解平方差公式是小学奥数计算中的常用公式。
通常写为:a²-b²=(a+b)x(a-b)它的几何方法推导过程是这样的:如下图所示,四边形ABCD和四边形DEFG为正方形,边长分别为a和b,求阴影部分面积。
显然,阴影部分面积有2种求法。
第一种方法阴影面积=大正方形面积-小正方形面积即,阴影面积=a²-b²(G老师讲奥数)第二种方法作两条辅助线,延长FG、EG,分别交线段AB、BC与点H、J。
阴影面积=四边形AEGH面积+四边形HBJG面积+四边形GFCJ面积跟G老师一起分别计算下上述三个四边形的边长吧。
分别计算出三个四边形的边长后,我们发现四边形GFCJ=四边形AEGH面积。
接下来,我们将四边形GFCJ旋转后挪到四边形HBJG右侧。
即如下图所示,将③移到④后,纯手绘,就认为和上边的图一样吧此刻,阴影部分的面积=①+②+④组成的大矩形面积。
阴影部分面积=(a-b)x[b+(a-b)+b]=(a-b)x(a+b)。
因为第一种和第二种方法都是计算阴影部分面积,所以它们的结果是相等的。
a²-b²=(a+b)x(a-b)当然,代数方法也可以证明。
令A=(a+b),(a+b)x(a-b)=Ax(a-b)=Axa-Axb (乘法分配律)=(a+b)xa-(a+b)xb(代入A=a+b)=a²+ab-ab-b²=a²-b²【例题】计算:48x52+37x43分析:48和52刚好都与50相差2,37和43刚好与40相差3。
48x52+37x43=(50-2)x(50+2)+(40-3)x(40+3)=50²-2²+40²-3²=2500-4+1600-9=4087这类题目往往不会明确告知你需要用什么技巧简化计算,关键在于自己要熟练掌握,牢记于心,灵活运用。
平方差公式(2)

( a+b)( a -b) = a - b 平方差公式
2
2
平方差公式来源于多项式的乘法,又可以用于特殊的两 个二项式相乘。
例: 利用平方差公式计算:
(5x+y)(5x−y)
解: (5x+y)(5x−y)= (5x ) 2− y2= 25x2
2 y −
( a+ b) (a-b)= a2-b2
注意 当“第一积时, 要用括号把这个数整个括起来, 最后的结果要化简。
第 1题
第 4题 第 7题
第 2题
第 5题 第 8题
思考题
第 3题
第 6题 第 9题
(1) (3a +2b)(3a−2b)
2 2 9a -4b
(8) (5ab+1)(5ab-1)
2 2 25a b -1
(6)
1 1 1 1 a b a b 2 3 2 3
原来
5米
现在
(X+5)米
x米
2 x
5米
(X-5) 米
(x+5)(x-5)
相等吗?
x+5
x
x-5
x 5 5 5
5
( x 5)( x 5) = x
2
5
2
做一做、议一议 下面你动手计算试试看,思考
1. 以下题目形式上有哪些相同点?
2.它们的运算结果都有怎样的相同的特征?
(1) ( x (2)
(× ) a2-b2
( 2 ) (2x+3)(2x-3)= 2x2-9
( 3 ) (3x-1)(-3x-1)= 9x2-1 ( 4 ) (2x+3)(3x-3)= 6x2-9
平方差公式(二)

2
B
2
a b (a b)(a b)
2 2
C (a 2b)(a b) a
2
ab 2b
二、填空题 2 )(a 1) 1 a 1. ( -a-1
2. (m n)(n-m ) n m
2
2
3.
(a b 1)(a b 1) ( a+b) (
8a 1
2
4a C.
2
1
D. 16a
1
• 3.如图14-3-1(1),在边长为a的正方形中挖 掉一个边长为b的小正方形(a>b),把余下的 部分剪拼成一个矩形(如图14-3-1(2)),通过 计算两个图形阴影部分的面积,验证了一 个等式,则这个等式是( B )
A (a b) a 2ab b
2 4 8 16
(2 1)(2 1)(2 2 1)(2 4 1)(28 1)(216 1) 1
(2 1)(2 1)(2 1)(2 1)(2 1) 1
2 2 4 8 16
2
2
32
11
32
当堂训练
一、选择题 1.下列可以用平方差公式计算的是( B ) A.(2a-3b)(-2a+3b) B.(-4b-3a)(-3a+4b) C.(a-b)(b-a) D.(a-b-c)(-a+b+c) 2.(-4a-1)(4a-1)的结果等于( D) 2 2 A. B . 16a 1
平方差公式(二)
学习目标
• 1.熟练运用平方差公式进行 计算. • 2.进一步理解平方差公式意 义,掌握平方差公式的结构特 征.
• • • •
1.叙述平方差公式,并用式子表示 2.利用平方差公式计算: (1) (-x+3y)(-x-3y) (2) (y-z)(y+z) (3) 102X98 (4)15.02X14.98
知识卡片-平方差公式

平方差公式能量储备●两数和与这两数差的乘法公式:(a+b)(a-b)=a2-b2.即两数和与这两数差的积,等于这两数的平方差.此公式也简称为平方差公式.●两数和与这两数差的乘法公式(平方差公式)的特点:(1)左边是两个二项式相乘,这两个二项式中有一项完全相同,另一项互为相反数;(2)右边是左边乘式中两项的平方差(相同项的平方减去相反项的平方);(3)公式中的a和b可以是单项式,也可以是多项式.●平方差公式的几种变化形式:①符号变化:(-a-b)(a-b)=-(a+b)(a-b)=-(a2-b2);②位置变化:(a+b)(-b+a)=(a+b)(a-b)=a2-b2;③系数变化:(2a+3b)(2a-3b)=(2a)2-(3b)2=4a2-9b2;④指数变化:(a2+b2)(a2-b2)=(a2)2-(b2)2=a4-b4;⑤增项变化:(a+b+c)(a+b-c)=(a+b)2-c2;⑥公式连用:(a+b)(a-b)(a2+b2)=(a2-b2)(a2+b2)=(a2)2-(b2)2=a4-b4.●平方差公式的几何背景由左到右的拼图可以验证平方差公式.通关宝典★基础方法点方法点1:平方差公式的应用-简便运算对于具有某种特殊关系的两个数的乘法,可运用平方差公式进行简便计算,计算的关键是将原两数的乘积化为两数和与这两数差的积的形式.例:计算:(1)1 002×998;(2)99.3×100.7;解:(1)1 002×998=(1 000+2)(1 000-2)=1 0002-4=999 996.(2)99.3×100.7=(100-0.7)(100+0.7)=1002-0.72=9 999.51.方法点2:巧用平方差公式计算.例:计算:3(22+1)(24+1)(28+1)+1.分析:观察(22+1)(24+1)(28+1)可知,直接计算会比较麻烦,由22+1,24+1,28+1可知若增加因式22-1可使计算简便,且3=22-1.解:3(22+1)(24+1)(28+1)+1=(22-1)(22+1)(24+1)(28+1)+1=(24-1)(24+1)(28+1)+1=(28-1)(28+1)+1=216-1+1=216.★★易混易误点易混易误点: 利用平方差公式计算时,系数没有平方例:计算:(12a+13b)(13b−12a).解:原式=(12a+13b)(13b−12a)=(13b)2−(12a)2=19b2-14a2.蓄势待发考前攻略速记口诀:平方差公式有两项,符号相反切记牢,两数和乘两数差,等于两数平方差.考查两数和与两数差的乘法公式(平方差公式)的应用,单独命题多见于填空题、选择题,难度偏低,也常与其他知识点综合考查,题型为解答题,难度中等.完胜关卡。
2.平方差公式PPT课件

(4)(5a+b)(5a-b)= 25a2-b2 (5)(n+3m)(n-3m)= n2-9m2
(6)(x+2y)(x-2y)= x2-4y2
计算下列各题
视察 & 发现
(1)(a+5)(a-5)= a2-25 视察以上算式及其运
算结果,你发现了什
(2)(m+3) (m-3)= m2-9 么规律?
(3)(3x+7)(3x-7)= 9x2-49
平方差公式
平方差公式的几何背景:
第一回忆我们曾经用 几何的意义即图形面积来解释整式乘法
运算法则,如:a(b+c)=ab+ac;
平方差公式
平方差公式的几何背景:
请同学们思考如何用几何图形的 面积来解释(a +b)(a-b)呢? 1、当a>b>0时,我们可能看成是以长为(a+b) , 宽为(a-b)的长方形的面积。
平方差公式
回顾 & 思考☞
多项式乘法 法则是:
用一个多项式的每一项 乘另一个多项式的每一项 再把所得的积相加。
(m+a)(n+b)= mn+mb+an+ab
如果m=n,且都用 x 表示,那么上式就成为:
(x+a)(x+b) = x2+(a+b)x+ab
这是上一节学习的 一种特殊多项式的乘法——
两个相同字母的 二项式的ห้องสมุดไป่ตู้积 .
如果 (x+a)(x+b)中的a、b再有某种特殊关系, 又将得到什么特殊结果呢? 这就是从本课起要学习的内容.
计算下列各题
视察 & 发现
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
活动探究一
a
b 图1-3
如图1-3,边长为a的大正方形中有一个边长为b 的小正方形.
活动探究一
a
b 图1-3
(1)请表示图1-3中阴影部分的面积
活动探究一
a
a
b
b
图1-3
图1-4
(2)小颖将阴影部分拼成了一个长方形,
如图1-4,这个长方形的长和宽分别是多
少?你能表示出它的面积吗?
用平方差公式进行计算: (1)103×97 ; (2)118×122 (100+3)(100-3) (120-2)(120+2)
练一练
计算: (1)704×696 ; (2)9.9 ×10.1
例4
计算: (1)a2(a+b)(a-b)+a2b2 (2)(2x-5)(2x+5)-2x(2x-3)
练一练
第一章 整式的乘除
5 平方差公式(第2课时)
山东省青岛市第六十三中学 纪琰玲
知识回顾
1、平方差公式: (a+b)(a-b)=a2-b2
2、公式的结构特点: 左边是两个二项式的乘积,即两数和与
这两数差的积;右边是两数的平方差。
3、应用平方差公式的注意事项:
1)注意平方差公式的适用范围
2)字母a、b可以是数,也可以是整式
计算: (1)(x+2y)(x-2y)+(x+1)(x-1) (2)x(x-1)- (x 1) (x 1)
33
自我检测
计算: 1) 2001×1999 -20002
2)(3mn+1)(3mn-1)-8m2n2
3) (1 x 2) (1 x 2) - 1 x(x+8)
2
2
4
• 计算 (21+1)(22+1)(24+1)(28+1)(216+1)(232+1)(264 +1)
活动探究一
a
a
b
b
图1-3
图1-4
(3)比较(1)(2)的结果,你能验证 平方差公式吗?
活动探究二
1、计算下列各组算式,并观察它们的共同
特点
7×9=
11×13=
79×81=
Hale Waihona Puke 8×8=12×12=
80×80=
2、从以上过程中,你发现了什么规律?
3、请用字母表示这一规律,你能说明它的 正确性吗?
例3
作业
1. 教材习题1.10
2. 拓展作业: 计算
(21+1)( 22+1)(24+1)(28+1)(216+1)(232+1)(264+1)
• 计算(用指数形式表示) • 1、(x-1)(x+1) (x2+1)(x4+1) (x8+1) (x16+1)
• • 2、(2+1) (22+1)(24+1) (28+1) (216+1)
• • 3、(x+1) (x2+1)(x4+1) (x8+1) (x16+1)
课堂小结
本节课你有哪些收获? 还有那些困惑?