工程力学天大出版第七章答案

合集下载

(完整版)工程力学课后详细答案

(完整版)工程力学课后详细答案

第一章静力学的基本概念受力图第二章 平面汇交力系2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 223R RX RY F F F KN=+= 方向沿OB 。

2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。

(a ) 由平衡方程有:0X =∑sin 300AC AB F F -=0Y =∑cos300AC F W -=0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=0Y =∑sin 700AB F W -=1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300AC AB F F -=0Y =∑sin 30sin 600AB AC F F W +-=0.5AB F W= (拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑sin 30sin 300AB AC F F -=0Y =∑cos30cos300AB AC F F W +-=0.577AB F W= (拉力)0.577AC F W= (拉力)2-4 解:(a )受力分析如图所示:由x =∑ 22cos 45042RA F P -=+15.8RA F KN∴=由Y =∑ 22sin 45042RA RB F F P +-=+7.1RB F KN∴=(b)解:受力分析如图所示:由x =∑3cos 45cos 45010RA RB F F P ⋅--=0Y =∑1sin 45sin 45010RA RB F F P ⋅+-=联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN= (压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD P F F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力)列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '= 0Y =∑05RD F Q =联立方程后解得: 5RD F Q =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得: 22RA F Q =2RB F Q P=+(3)取BCE 部分。

大学《工程力学》课后习题解答-精品

大学《工程力学》课后习题解答-精品

大学《工程力学》课后习题解答-精品2020-12-12【关键字】情况、条件、动力、空间、主动、整体、平衡、建立、研究、合力、位置、安全、工程、方式、作用、结构、水平、关系、分析、简化、倾斜、支持、方向、协调、推动(e)(c)(d)(e)’CD2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445 N ,F 2=535 N ,不计杆重,试求两杆所受的力。

解:(1) 取节点(2) AC 与BC 2-3 水平力F A 和D 处的约束力。

解:(1) 取整体(2) 2-4 在简支梁,力的大小等于20KN ,如图所示。

若解:(1)(2)求出约束反力:2-6 如图所示结构由两弯杆ABC 和DE 构成。

构件重量不计,图中的长度单位为cm 。

已知F =200 N ,试求支座A 和E 的约束力。

解:(1) 取DE (2) 取ABC2-7 在四连杆机构ABCD 试求平衡时力F 1和F 2解:(1)取铰链B (2) 取铰链C 由前二式可得:F FF ADF2-9 三根不计重量的杆AB,AC,AD在A点用铰链连接,各杆与水平面的夹角分别为450,,450和600,如图所示。

试求在与O D平行的力F作用下,各杆所受的力。

已知F=0.6 kN。

解:(1)间汇交力系;(2)解得:AB、AC3-1 已知梁AB 上作用一力偶,力偶矩为M ,梁长为l ,梁重不计。

求在图a ,b ,c 三种情况下,支座A 和B 的约束力解:(a) (b) (c) 3-2 M ,试求A 和C解:(1) 取 (2) 取 3-3 Nm ,M 2解:(1)(2) 3-5 大小为AB 。

各杆 解:(1)(2)可知:(3) 研究OA 杆,受力分析,画受力图:列平衡方程:AB A3-7 O1和O2圆盘与水平轴AB固连,O1盘垂直z轴,O2盘垂直x轴,盘面上分别作用力偶(F1,F’1),(F2,F’2)如题图所示。

工程力学答案第7章

工程力学答案第7章

工程力学(第2版)第7章 弯 曲题 库: 主观题7-1 长度为250mm ,截面尺寸为0.8mm 25mm h b ⨯=⨯的薄钢板卷尺,由于两端外力偶的作用而弯成中心角为030的圆弧。

已知弹性模量52.110MPa E =⨯。

试求钢尺横截面上的最大正应力。

解:由题知302250mm 360πρ⋅= ,故480mm ρ= 卷尺最外层纤维应变最大,且为4max 0.428.3310480hερ-===⨯ 由拉压胡克定律可知 54max max 2.1108.3310176MPa E σε-==⨯⨯⨯=即钢尺横截面上的最大正应221(0.250.23)760.573kN /m 4q π=-⨯=力为176MPa .知识点:1.梁横截面的应力。

参考页: P145。

学习目标: 2(掌握梁横截面上的应力计算方法,会利用应力计算公式计算正应力) 难度: 1.0提示一:该题考察知识点:1. 梁横截面上的应力计算。

提示二:无 提示三:无 提示四(同题解) 题解:1、利用正应力计算公式计算正应力。

7-2 一外径为250mm ,壁厚为10mm ,长度l=12m 的铸铁水管,两端搁在支座上,管中充满着水,如图所示。

铸铁的容量3176kN /m γ=,水的容重3210kN /m γ=。

试求管内最大拉、压正应力的数值。

解:每米铸铁水管的重量 每米水柱的重量22220.2310.231100.415kN /m 44q y ππ=⨯⨯⨯=⨯⨯⨯=故水管所受均布荷载120.988kN /m q q q =+=在水管中部有弯矩最大值22max 110.9881217.784kN m 88M ql ==⨯⨯=⋅最大弯曲正应力为3max max343217.7841040.7MPa 2300.25[1()]250z M W σπ⨯⨯===⨯⨯-故管内最大拉、压正应力的数值为,max ,max 40.7MPa t c σσ==。

知识点:1.梁横截面的应力。

工程力学天大出版第七章答案演示教学

工程力学天大出版第七章答案演示教学

此文档仅供收集于网络,如有侵权请联系网站删除第七章 剪 切7−1 在冲床上用圆截面的冲头,需在厚t =5mm 的薄钢板上冲出一个直径d =20mm 的圆孔来,钢板的剪切强度极限为320MPa 。

求(1)所需冲力F 之值。

(2)若钢板的挤压强度极限为640MPa ,问能冲出直径为d =20mm 的圆孔时,钢板的最大厚度t 应为多少?解:(1)根据钢板的剪切强度条件[]F τA SSτ=≤,得 []6320100.0050.02100.5kN S S F A τπ≥=⨯⨯⨯=因此,所需冲力F 为100.5kN 。

(2)根据钢板的挤压强度条件[]bsbs bs bsF A σσ=≤,得 []62bs bs bs 640100.024201.1kNF A σπ≤≤⨯⨯÷=根据钢板的剪切强度条件[]F τA SSτ=≤,如果钢板不被剪坏,应满足[]SS F A dt πτ=≥[]36201.1100.01m 0.0232010S F t d πτπ⨯≥==⨯⨯因此,能冲出直径为d =20mm 的圆孔时,钢板的最大厚度t 应为10mm 。

7−2 两块厚度t =10mm ,宽度b =60mm 的钢板,用两个直径为17mm 的铆钉搭接在一起(见图),钢板受拉力F =60kN 。

已知铆钉和钢板的材料相同,许用切应力[τ]=140MPa ,许用挤压应力[σbs ]=280MPa ,许用拉应力[σ]=160MPa 。

试校核该连接的强度。

解: 为保证接头强度,需作出三方面的校核。

(1) 铆钉的剪切强度校核每个铆钉所受到的力等于F /2。

根据剪切强度条件式(7−2)得习题7−1图习题7−2图此文档仅供收集于网络,如有侵权请联系网站删除()[]2323τ/2/430101710/4266.1MPa S SF A F πd πτ-==⨯=⨯⨯⨯=≤满足剪切强度条件。

(2) 铆钉的挤压强度校核 上、下侧钢板与每个铆钉之间的挤压力均为F bs =F /2,由于上、下侧钢板厚度相同,所以只校核下侧钢板与每个铆钉之间的挤压强度,根据挤压强度条件式7−4得[]333bs F σA F /2d t301017101010288.2MPa bs bs bs σ--==⋅⨯=⨯⨯⨯⨯=≤满足挤压强度条件。

(完整版)工程力学课后习题答案

(完整版)工程力学课后习题答案

工程力学练习册学校学院专业学号教师姓名第一章静力学基础 1第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。

(a)(b)(c)2 第一章静力学基础(d)(e)(f)(g)第一章静力学基础 3 1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)4 第一章静力学基础1-3 画出图中指定物体的受力图。

所有摩擦均不计,各物自重除图中已画出的外均不计。

(a)第一章静力学基础 5 (b)(c)(d)6 第一章静力学基础(e)第一章静力学基础7 (f)(g)8 第二章 平面力系第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。

梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。

如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。

题2-1图∑∑=︒+︒==︒-︒=PF F FF F F B A yA B x 30sin 30sin ,0030cos 30cos ,0解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如第二章 平面力系 9图所示。

转动绞车,物体便能升起。

设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。

当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。

题2-2图∑∑=-︒-︒-==︒-︒--=030cos 30sin ,0030sin 30cos ,0P P F FP F F F BC yBC AB x解得: PF P F AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。

电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。

工程力学第7章答案

工程力学第7章答案

⼯程⼒学第7章答案第7章简单的弹性静⼒学问题7-1 有⼀横截⾯⾯积为A 的圆截⾯杆件受轴向拉⼒作⽤,若将其改为截⾯积仍为A 的空⼼圆截⾯杆件,其他条件不变,试判断以下结论的正确性:(A )轴⼒增⼤,正应⼒增⼤,轴向变形增⼤;(B )轴⼒减⼩,正应⼒减⼩,轴向变形减⼩;(C )轴⼒增⼤,正应⼒增⼤,轴向变形减⼩;(D )轴⼒、正应⼒、轴向变形均不发⽣变化。

正确答案是 D 。

7-2 韧性材料应变硬化之后,材料的⼒学性能发⽣下列变化:(A )屈服应⼒提⾼,弹性模量降低;(B )屈服应⼒提⾼,韧性降低;(C )屈服应⼒不变,弹性模量不变;(D )屈服应⼒不变,韧性不变。

正确答案是 B 。

7-3 关于材料的⼒学⼀般性能,有如下结论,试判断哪⼀个是正确的:(A )脆性材料的抗拉能⼒低于其抗压能⼒;(B )脆性材料的抗拉能⼒⾼于其抗压能⼒;(C )韧性材料的抗拉能⼒⾼于其抗压能⼒;(D )脆性材料的抗拉能⼒等于其抗压能⼒。

正确答案是 A 。

7-4 低碳钢材料在拉伸实验过程中,不发⽣明显的塑性变形时,承受的最⼤应⼒应当⼩于的数值,有以下四种答案,试判断哪⼀个是正确的:(A )⽐例极限;(B )屈服强度;(C )强度极限;(D )许⽤应⼒。

正确答案是 B 。

7-5 根据图⽰三种材料拉伸时的应⼒—应变曲线,得出的如下四种结论,试判断哪⼀种是正确的:(A )强度极限)3()2()1(b b b σσσ>=,弹性模量E(1)>E(2)>E(3),延伸率δ(1)>δ(2)>δ(3)⽐例极限;(B )强度极限)2()1()3(b b b σσσ<<,弹性模量E(2)>E(1)>E(3),延伸率δ(1)>δ(2)>δ(3)⽐例极限;(C )强度极限)3()1()2(b b b σσσ>>,弹性模量E(3)>E(1)>E(2),延伸率δ(3)>δ(2)>δ(1)⽐例极限;(D )强度极限)3()2()1(b b b σσσ>>,弹性模量E(2)>E(1)>E(3),延伸率δ(2)>δ(1)>δ(3)⽐例极限;正确答案是 B 。

天津大学版工程力学习题集答案解析部分

天津大学版工程力学习题集答案解析部分

---------------------考试---------------------------学资学习网---------------------押题------------------------------ACMql=2m。

4kN/m,处的约束力。

已知=8kN·m,3-10求图示多跨梁支座=、qqMAC C B BFF BCl 2l2 2llla)((b)qMM AA CBFF CAl2 2ll(c)10 图习题3-??l?3?2l?qM?0,F?0CB BC(b))取梁所示。

列平衡方程为研究对象。

其受力如图(解:1l322?4?9ql9kN??18F?C44所示。

列平衡方程)取整体为研究对象。

其受力如图(c)(2?0l??Fq?3F?0,F?CyA kN?64?2ql3??18?3?F??F?CA?0?5l??3l3.?,?0MM?M?F4l?q CAA22m?32kN5?4?2?1045lF?MM??4?10.ql8??18??2?.CAF ACCDC,05=所示。

设(a)用铰链组合梁11-3及连接而成,受力情况如图kN Mq m。

求各支座的约束力。

=50kNkN/m=25,力偶矩·MFqACB11m2m22m(a)MF q q′F C D AC C B FFFF C2m 2m1m1m DA B 2m(b) (c)一一图-11 习题3CD为研究对象。

其受力如图(c)所示。

列平衡方程(1)取梁解:?M?0,F?4?q?2?1?M?0 DC2q?M2?25?50??25kNF?D44?M?0,?F?4?q?2?3?M?0CD6q?M6?25?50??F?25kN C44ACFF=25kN。

列平衡方程(b)所示,其中′(2)取梁=为研究对象。

其受力如图CC ???2?0?F?2?F?1?q?2M?0,?1?F CBA?F?2q?2F25???25250?2C??F??25kN(?)A22???4?0F?2?F?1?q?2?3?M0,?F CBA?F?6q?4F25?4?650??25C F???150kNB226?1作图示杆件的轴力图。

工程力学(张定华主编)课后答案 第7章

工程力学(张定华主编)课后答案 第7章

第七章平面弯曲内力1.试求图示梁指定截面上的剪力和弯矩。

设q,a均为已知。

2.试求图示梁指定截面上的剪力和弯矩。

设q,a均为已知。

3.试求图示梁指定截面上的剪力和弯矩。

设q,a均为已知。

4.试求图示梁指定截面上的剪力和弯矩。

设q,a均为已知。

M max。

设q,l均为已知。

M max。

设l,Me均为已知。

M max。

设l,F均为已知。

8.试列出图示梁的剪力方程和弯矩方程,画剪力图和弯矩图,并求出F S和,maxM max。

设q,F,l均为已知。

9.试列出图示梁的剪力方程和弯矩方程,画剪力图和弯矩图,并求出F S和,max M max。

设q,l均为已知。

和10.试列出图示梁的剪力方程和弯矩方程,画剪力图和弯矩图,并求出F S,max M max。

设q,l,F,M e均为已知。

11.不列剪力方程和弯矩方程,画出图示各梁的剪力图和弯矩图,并求出F S,max 和M max。

解:(1)由静力平衡方程得:F A=F,M A= Fa,方向如图所示。

(2)利用M,F S,q之间的关系分段作剪力图和弯矩图。

(3)梁最大绝对值剪力在AB段内截面,大小为2F。

梁最大绝对值弯矩在C截面,大小为2Fa。

12.不列剪力方程和弯矩方程,画出图示各梁的剪力图和弯矩图,并求出F S,max 和M max。

解:(1)由静力平衡方程得:F A=3q l/8(↑),F B=q l/8(↑)。

(2)利用M,F S,q之间的关系分段作剪力图和弯矩图。

(3)梁的最大绝对值剪力在A右截面,大小为3q l/8。

梁的最大弯矩绝对值在距A端3l/8处截面,大小为9q l2/128。

13.不列剪力方程和弯矩方程,画出图示各梁的剪力图和弯矩图,并求出F S,max 和M max。

解:(1)由静力平衡方程得:F B=2qa,M B=qa2,方向如图所示。

(2)利用M,F S,q之间的关系分段作剪力图和弯矩图。

(3)梁的最大绝对值剪力在B左截面,大小为2qa。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
第七章 剪 切
7−1 在冲床上用圆截面的冲头,需在厚t =5mm 的薄钢板上冲出一个直径d =20mm 的圆孔来,钢板的剪切强度极限为320MPa 。


(1)所需冲力F 之值。

(2)若钢板的挤压强度极限为640MPa ,问能冲出直径为d =20mm 的圆孔时,钢板的最大厚度t 应为多少?
解:(1)根据钢板的剪切强度条件[]F τA S
S
τ=
≤,得 []6320100.0050.02100.5kN S S F A τπ≥=⨯⨯⨯=
因此,所需冲力F 为100.5kN 。

(2)根据钢板的挤压强度条件[]bs
bs bs bs
F A σσ=
≤,得 []62bs bs bs 640100.024201.1kN
F A σπ≤≤⨯⨯÷=
根据钢板的剪切强度条件[]F τA S
S
τ=≤,如果钢板不被剪坏,应满足
[]
S
S F A dt πτ=≥
[]3
6
201.1100.01m 0.0232010S F t d πτπ
⨯≥==⨯⨯ 因此,能冲出直径为d =20mm 的圆孔时,钢板的最大厚度t 应为10mm 。

7−2 两块厚度t =10mm ,宽度b =60mm 的钢板,用两个直径为17mm 的铆钉搭接在一起(见图),钢板受拉力F =60kN 。

已知铆钉和钢板的材料相同,许用切应力[]=140MPa ,许用挤压应力[bs ]=280MPa ,许用拉应力[]=160MPa 。

试校核该连接的强度。

解: 为保证接头强度,需作出三方面的校核。

(1) 铆钉的剪切强度校核
每个铆钉所受到的力等于F /2。

根据剪切强度条件式(7−2)得
t
F
习题7−1图
F
F t
F
F 习题7−2图
b
.
()
[]
23
2
3τ/2/4
30101710
/42
66.1MPa S S
F A F πd πτ-==⨯=
⨯⨯⨯=≤
满足剪切强度条件。

(2) 铆钉的挤压强度校核 上、下侧钢板与每个铆钉之间的挤压力均为F bs =F /2,
由于上、下侧钢板厚度相同,所以只校核下侧钢板与每个铆钉之间的挤压强度,根据挤压强度条件式7−4得
[]
3
33bs F σA F /2d t
30
1017101010288.2MPa bs bs bs σ--==
⋅⨯=
⨯⨯⨯⨯=≤
满足挤压强度条件。

(3) 钢板的抗拉强度校核
由于上、下侧钢板厚度相同,故验算下侧钢块即可,画出它的受力图及轴力图(图c ,d)。

截面n −n 截面n −n 为危险截面。

对于截面n −n :
()()42A b md t 0.060.0170.01 4.310m -=-=-⨯=⨯
N 3
4
F σA
60104.310
139.5MPa [σ]
-=
⨯=⨯=< 满足抗拉强度条件。

综上所述,该接头是安全的。

7−3 图示一混凝土柱,其横截面为0.2×0.2m 2的正方形,竖立在边长为a =1m 的正方例题7−1图
F/2 F
匀分布的,混凝土的许用切应力为[]=1.5MPa ,问为使柱不会穿过混凝土板,板应有的最小厚度t 为多少?
解:以柱下部分为脱离体, 基础板对脱离体的合力为:
3
11100100.20.24kN 11
F F A A ⨯==⨯⨯=⨯
脱离体共有4个剪切面,每个剪切面的面积为0.2t 。

每个剪切面上的剪力为:
33
112341001041024kN
44
S S S S F F F F F F -⨯-⨯====== 为使柱不会穿过混凝土板,应满足剪切强度条件
[]F τA S
S
τ=
≤,得 []
40.2S
S F A t τ=⨯≥
[]36
24104
80mm 40.2 1.51040.2
S F t τ⨯⨯≥==⨯⨯⨯⨯⨯, 为使柱不会穿过混凝土板,板应有的最小厚度t 为80mm 。

7−4两块主板覆以两块盖板的钢板连接,用铆钉对接如图所示。

主板厚度t 1=10mm ,盖板厚度t 2=6mm 。

铆钉的许用切应力[]=115MPa ,板的许用挤压应力[bs ]=280MPa 。

若接头拉力F =300kN ,采用直径d =17mm 的铆钉时,求每边所需铆钉的个数。

解:设对接口一侧有n 个铆钉,则每个铆钉受力如图7−8所示。

(1) 由剪切强度条件
][4
/2/2S S τπd n F A F τ≤==

习题7−4图
F F
t 2
t 2 t F S1
F S2
F
F 1
3
226
2230010 5.75[]0.01711510F n πd τπ⨯⨯≥==⨯⨯⨯个
(2) 由挤压强度条件
bs bs bs 1
/σ[σ]bs F F n
A dt =
=≤ []3
6
1bs 30010 6.30.0170.0128010
F
n dt σ⨯≥==⨯⨯⨯个 选择对接口一侧有7个铆钉。

7−5一对规格为75mm ×50mm ×8mm 的热轧角钢,用螺栓将其长肢与节点板相连。

已知作用力F =128kN ,角钢和节点板的材料都是Q235钢;节点板厚=10mm ,螺栓的直径d =16mm ,螺栓连接的许用切应力[]=130MPa ,许用挤压应力[bs ]=300MPa ,角钢的许用拉应力[]=170MPa ,试确定此连接需要的螺栓数目。

解(1) 由剪切强度条件
2/n
[τ]π/4
S S F F A d τ=
=≤
2L75×50×8 F
F
习题7−5图
习题7−4解图
(b )
b
F
F
m n p
m n p
n
m F F /7
F /7 F /7
F F /7
F /7
F /7 F /7 2F/7
(c)
5F/7
F
F N 图

3
226
4412810 4.897[]0.01613010F n πd τπ⨯⨯≥==⨯⨯⨯个
(2) 校核挤压强度
bs bs bs /σ[σ]bs F F n A d δ
=
=≤ []3
6
bs 12810 2.670.0160.0130010
F
n d δσ⨯≥==⨯⨯⨯个 此连接需要的螺栓数目为5个。

7−6如图两矩形截面木杆,用两块钢板连接。

截面的宽度b =250mm ,高度为h ,沿拉杆顺纹方向受轴向拉力F =50kN ,木材的顺纹许用切应力[]=1MPa ,顺纹许用压应力[ c ]=10MPa ,求接头处所需的尺寸δ和L 。

解:(1) 由剪切强度条件
/2[τ]S S F F A Lb
τ=
=≤ 得
36
/25010/2
0.1m []0.2510F L b τ⨯≥==⨯
(2) 由挤压强度条件
bs bs bs bs /2
σ[σ]F F A b δ
=
=≤ []
3
6
bs 5010/2
0.01m 0.251010
F b δσ⨯≥
=
=⨯⨯
习题7−6图
L
L
δ
F
F
h。

相关文档
最新文档