稀土配合物发光的类型概述
稀土材料功能概述

稀土发光材料、稀土荧光粉、用途功能技术介绍自古以来,人类就喜欢光明而害怕黑暗,梦想能随意地控制光,现在我们已开发出很多实用的发光材料。
在这些发光材料中,稀土元素起的作用很大,稀土的作用远远超过其它元素。
一、稀土发光材料物质发光现象大致分为两类:一类是物质受热,产生热辐射而发光,另一类是物体受激发吸收能量而跃迁至激发态(非稳定态)在反回到基态的过程中,以光的形式放出能量。
以稀土化合物为基质和以稀土元素为激活剂的发光材料多属于后一类,即稀土荧光粉。
稀土元素原子具有丰富的电子能级,因为稀土元素原子的电子构型中存在4f轨道,为多种能级跃迁创造了条件,从而获得多种发光性能。
稀土是一个巨大的发光材料宝库,在人类开发的各种发光材料中,稀土元素发挥着非常重要的作用。
自1973年世界发生能源危机以来,各国纷纷致力于研制节能发光材料,于是利用稀土三基色荧光材料制作荧光灯的研究应运而生。
1979年荷兰菲利浦公司首先研制成功,随后投放市场,从此,各种品种规格的稀土三基色荧光灯先后问世。
随着人类生活水平的不断提高,彩电已开始向大屏幕和高清晰度方向发展。
稀土荧光粉在这些方面显示自己十分优越的性能,从而为人类实现彩电的大屏幕化和高清晰度提供了理想的发光材料。
稀土荧光材料与相应的非稀土荧光材料相比,其发光效率及光色等性能都更胜一筹。
因此近几年稀土荧光材料的用途越来越广泛,年用量增长较快。
根据激发源的不同,稀土发光材料可分为光致发光(以紫外光或可见光激发)、阴极射线发光(以电子束激发)、X射线发光(以X射线激发)以及电致发光(以电场激发)材料等。
二、光致发光材料—灯用荧光粉灯用发光材料自70年代末实用化以来,促使稀土节能荧光灯、金属卤化物灯向大功率、小型化、低光衰、高光效、高显色、无污染、无频闪、实用化、智能化、艺术化方向发展。
主要用于各类不同用途的光源,如照明、复印机光源、光化学光源等。
其中三基色荧光粉(由红、绿、蓝三种稀土的荧光粉按一定比例混合而成)制成的节能灯,由于光效高于白炽灯二倍以上,光色也好,受到世界各国的重视。
稀土配合物发光性能的实验研究(精)

稀土配合物发光性能的实验研究
稀土配合物所发出的荧光有稀土离子发光强度高、颜色纯正,又有有机化合物所需激发能量低、荧光效率高、易溶于有机溶剂的优点,为人们探索新的发光能源、发光材料提供了新的思路。
本文将对稀土配合物作为发光材料进行研究,合成出系列光效率高的光致发光材料Eu_(1-x)Tb_x(BA)_3Phen。
选用发光效率较高的铕离子,同时引入可以敏化铕离子的铽离子,有机配体选择苯甲酰丙酮(BA)和邻菲罗琳(1,10-phen),制备稀土有机发光材料。
本文应用紫外-可见吸收光谱、激发光谱、荧光光谱、和Z-扫描实验等实验手段,系统研究了稀土有机配合物的光谱性质、相互敏化的过程与机理、能量传递过程和非线性光学性质。
结果表明,目标稀土配合物Eu_(1-x)Tb_x(BA)_3Phen是一种发光性能良好的稀土配合物。
【关键词相关文档搜索】:光学; 稀土配合物; 双核; Eu1-xTbx(BA)3Phen; 敏化
【作者相关信息搜索】:新疆大学;光学;葛文萍;王睿;。
稀土配合物的发光原理

稀土配合物的发光原理稀土配合物是一类由稀土离子与有机配体形成的化合物。
它们在化学、物理、材料科学等领域中具有广泛的应用,其中最引人注目的是它们在发光领域中的应用。
稀土配合物不仅被用作荧光材料以增强光的亮度和色彩,还被应用于光电器件和生物成像中。
要了解稀土配合物的发光原理,首先需要理解稀土离子的能级结构和能量跃迁过程。
稀土离子的能级结构与一般的过渡金属离子有所不同。
在稀土系列中,由于电子的内层排布方式,稀土离子在外层电子排布上与其他元素有明显差异。
稀土离子的电子配置使其有多个能级,这些能级之间的距离较小,从而导致稀土配合物在可见光区域和近红外区域发射光。
稀土配合物发光的过程可以分为两个步骤:激发和自发发射。
首先是激发步骤。
当稀土配合物暴露在外部光源下时,其能级结构中的电子可以通过吸收光子的能量而被激发到高能级。
只有当光子的能量与稀土离子能级之间的能量差相等或接近时,才能有效地激发电子。
因此,外部光源的波长对于激发电子起到关键作用。
常见的激发光源包括紫外线灯、激光器和白炽灯等。
其次是自发发射步骤。
在激发过程中,被激发到高能级的电子会在极短的时间内回到其最稳定的、低能级状态。
这个过程中,电子会释放出能量,部分能量以光的形式发射出来。
这就是稀土配合物所发出的荧光或磷光。
不同的稀土元素具有不同的电子能级,因此具有不同的发光波长和颜色。
稀土配合物发光的机理主要包括基态吸收-激发态发射、电荷转移过程和能量转移过程。
首先,基态吸收-激发态发射是最常见的发光机制。
当稀土配合物吸收光能时,电子从基态吸收到激发态,然后自发地返回基态并发射荧光或磷光。
这种机制广泛应用于许多稀土配合物中,如氧化物、硝酸盐和有机配合物等。
其次,电荷转移过程也是一种重要的发光机制。
在某些配合物中,有机配体与稀土离子之间发生电子转移,将电子从有机配体转移到稀土离子上。
这种电荷转移过程在有效的配位环境下可以实现,从而激发稀土离子发射光。
最后,能量转移过程也可以导致稀土配合物发光。
稀土配合物发光与材料

与金属离子配位的水分子、溶剂分子会削弱稀 土金属配合物的发光性能。
测定配合物的溶液荧光时要避免使用配位能力 较强的溶剂,以免溶剂分子取代原有配体。
如果加入与稀土金属离子配位能力更强的较大配体或 螯合配体以取代水分子或溶剂分子,发光性能将增强。
所以对于稀土离子,常采用2种或2种以上的 配体形成三元或多元配合物。
630nm, 645 ~ 670nm, 685 ~ 725nm
10000 8000
5D 7F
0
0
5D 7F
0
2
Relative Intensity/a.u.
6000 4000
17200
17225
17250
17275
Wavenumber/cm-1
5D 7F
0
1
2000
5D 7F
0
4
0 14000
14500
稀土配合物发光 与材料
发光:当分子或固体材料从外界接收一定 的能量之后,发射出一定波长和能量的光的 现象。
常见的几种发光类型
发光类型 光致发光 电致发光 阴极发光 摩擦发光 化学发光 生物发光 X-射线发光 声致发光 热致发光 溶剂发光
激发源 光子 电场 电子流 机械能 化学反应能 生物化学反应能 X-射线 超声波 热能 光子
应用 等离子体显示器 发光二极管,电致发光显示器 彩色电视机,监测器材
分析化学
X-射线放大器
检测器
1 光致发光
金属离子发光配合物中的金属离子多为稀土 金属离子。 稀土离子荧光寿命:~ms。 Sm(6.26), Eu(9.67), Tb(9.02), Dy(1.85) 磷光:寿命长。
稀土配合物的发光机理
稀土配合物发光材料

稀土配合物发光材料摘要:本文首先介绍了稀土离子具有优良的光学、电学和磁学性质,尤其发光性能受到人们的广泛关注。
接着讲述了稀土光致发光配合物的研究进展,阐述了稀土配合物光致发光的基本原理。
在此基础上讨论了稀土配合物光致发光性能影响因素。
考虑到稀土荧光配合物的寿命短,寻找合适的配体通过天线效应制备稳定长寿命,这是未来发展的趋势。
然后介绍了稀土光致发光配合物在很多领域的应用。
为了让读者更好的理解稀土光致发光配合物,我们讲述了稀土铕和铽配合物电致发光的研究进展。
关键词:稀土离子,光致发光,配体,天线效应,稀土铕和铽配合物1.前言稀土离子作为一类特殊的无机离子具有优良的光学、电学和磁学性质,因此研究稀土配位化合物就显得尤为重要。
在这些性质中,稀土配合物的发光性能一直受到人们的广泛研究,并且目前在发光分子器件、荧光探针、电致发光器件等应用方面已成为人们关注的热点。
研究表明:配体向稀土离子的能量传递是实现稀土配合物发光的关键。
而多足配体具有合成简单、结构可调和共轭敏化基团可换等优点,便于调整配体的功能基团以实现配合物更好的荧光性质。
本综述报道了稀土光致发光配合物的发光原理、影响因素、研究进展及应用。
当分子或固体材料从外界接受一定的能量(外部刺激)之后,发射出一定波长和能量的现象称之为发光。
根据外部刺激(激发源)的方式可以把发光分为光致发光、电致发光、阴极发光、摩擦发光等。
下面我们将主要介绍研究较多的稀土有机配合物的光致发光。
从发光原理来讲,无论是何种外界刺激都是使分子从基态激发到激发态,而这种激发态不是一种稳定的状态,需要通过某种途径释放出多余的能量后回到稳定的基态,如果这个释放能量的途径是以辐射光子的形式来实现的就会产生发光现象。
2.稀土光致发光配合物的研究进展稀土配合物的光致发光现象早在上世纪40-50年代就已陆续地被观察到了,1942年,Weissmantl首先发现不同的β-二酮类铕(Ⅲ)配合物吸收紫外光后,出现了铕(Ⅲ)离子的特征线状发射。
稀土材料的电荷转移与发光性质研究

稀土材料的电荷转移与发光性质研究稀土元素是指元素周期表中镧系元素,包括了镧、铈、镨、钕、钷、铕、钐、铽、镝、钬、铒、铥、镱、镥等15个元素。
这些元素由于其特殊的能级结构和电子结构,具有独特的光学、磁学和电学性质,因此广泛应用于光学、电子学、磁性材料、催化剂、永磁材料、放射性同位素等领域。
其中,稀土材料在光学领域的应用尤其广泛。
稀土材料激发后能够发出可见光和近红外光,这种发光现象被称为稀土荧光。
稀土材料的荧光是由电子从基态向激发态的能级跃迁引起的。
在晶体中,其中的稀土离子可以被激发到高能级激发态,这可能是通过吸收能量的方式实现的,例如电子束和激光束。
通过外部能量输入,稀土离子会从基态跃迁到激发态,这种跃迁可以是从3d和4f能级向高能级的5d和6s能级跃迁,也可以是从4f能级向高能级的5p能级跃迁。
稀土材料的荧光有很多特殊的性质,这些性质是由稀土元素的电子结构所决定的。
一般来说,稀土材料的荧光可分为两种类型:单电子跃迁和多电子跃迁。
单电子跃迁单电子跃迁通常发生在稀土材料中的镝、铽、铑、镱和铥离子。
这些离子的荧光主要由4f-4f跃迁引起,即4f能级的电子跃迁到同一能级的另一个电子状态。
这种跃迁的能量差通常在1-2电子伏特之间。
4f能级的电子跃迁到4f能级的另一个电子状态时,由于这些能级之间的距离非常小,所以单电子跃迁的发生效率较低。
多电子跃迁多电子跃迁通常发生在稀土材料中的钕、铕、铒、铈、钷、镝和钬离子。
这些离子的荧光主要由4f-5d或4f-6s跃迁引起,即4f能级的电子跃迁到5d或6s能级的电子状态。
这种跃迁的能量差通常在2-5电子伏特之间。
由于稀土材料中的离子数目非常多,因此多电子跃迁的发生效率较高。
稀土材料发光的颜色和强度可以通过稀土元素的晶体质量、晶体结构、外部条件如温度、压力等控制。
除此之外,对于稀土材料中的激子和次级电子的影响,通过相应的电荷转移和自旋换向现象也可以调控发光性质。
电荷转移和自旋交换稀土元素中的电子结构具有独特的特性,即存在f电子壳层内电荷转移和自旋交换的过程。
稀土发光材料的分类

稀土发光材料的分类
1. 有机稀土发光材料,哎呀,这就好比是夜空中闪烁的星星!想想那些会发光的玩具,很多就是用了有机稀土发光材料呀。
像我们常见的荧光棒。
2. 无机稀土发光材料,嘿,这不就是科技界的小明星嘛!你看那些漂亮的节能灯,里面不就有它的身影嘛,比如稀土荧光灯。
3. 稀土掺杂发光材料,哇塞,这就像是给材料注入了神奇的魔法!好比给蛋糕加上了最漂亮的装饰,能让材料焕发出独特的光彩。
像一些特殊的防伪标志就是用的稀土掺杂发光材料呢。
4. 稀土配合物发光材料,嘿呀,这可真是个神奇的存在!就像是一场完美的团队合作,产生让人惊叹的效果。
比如在一些生物检测中就会用到它哦。
5. 纳米稀土发光材料,哎呀呀,这可是材料世界里的小精灵呀!就好像是微观世界里的璀璨宝石。
像一些高级的显示屏幕中就有纳米稀土发光材料在发挥作用。
6. 固态稀土发光材料,哇哦,这可是不折不扣的实力派!如同坚固的堡垒一般。
常见的一些荧光粉就是固态稀土发光材料呢。
7. 稀土上转换发光材料,嘿,这家伙可有着神奇的本领呢!就像是能把不可能变为可能,能将低能量的光转化为高能量的光。
比如在一些特殊的光通信领域就用到了它呀。
我觉得稀土发光材料真的是太神奇、太重要了,给我们的生活带来了这么多的惊喜和便利!。
稀土聚合物发光材料

稀土聚合物发光材料李建宇(北京工商大学化工学院 北京 100037)摘 要近年来稀土聚合物发光材料显现出广泛的应用前景,它主要包括两类材料:稀土配合物-聚合物发光材料和长余辉发光塑料。
本文介绍掺杂型稀土配合物-聚合物材料用于有机电致发光和荧光塑料的研究状况;评述键合型稀土配合物-聚合物发光材料的几种合成方法;并对长余辉发光塑料作简要概述。
关键词 稀土 聚合物 复合材料 发光材料 由于稀土元素具有独特的电子层结构,稀土化合物表现出许多优异的光、电、磁功能,尤其是稀土元素具有一般元素所无法比拟的光谱学性质,稀土发光材料格外引人注目。
稀土发光材料广泛应用于照明、显示和检测三大领域,形成了工业生产和消费市场规模,并正在向其他新兴技术领域拓展,因而稀土聚合物发光材料应运而生,目前它主要分为两类:稀土配合物-聚合物发光材料和长余辉发光塑料。
1 稀土配合物-聚合物发光材料稀土配合物在发光与显示领域表现出独特的荧光性能,但是往往又因其自身固有的在材料性能方面的缺陷限制了它的应用。
制成发光稀土配合物-聚合物复合材料,可以改善它的应用性能,拓宽它的应用范围。
制备方法分为两种:掺杂法和键合法。
前者实用、简便,但稀土配合物与高分子基质之间相容性差,不可避免地出现相分离和荧光猝灭等现象;后者克服了掺杂型材料中稀土配合物与高分子基质亲和性小、材料透明性和力学性能差等缺点,为获得宽稀土含量、高透光率的稀土高分子功能材料提供了可能,但制备工艺比较复杂。
111 掺杂型稀土配合物-聚合物发光材料掺杂型稀土配合物-聚合物发光材料,即是直接将发光稀土配合物作为添加成分掺杂于高分子基质中,大多数稀土聚合物发光材料都是这样制备的,在许多领域得到应用。
11111 有机电致发光材料有机电致发光(organic electroluminescence,OE L)是目前国际上的一个研究热点,它具有高亮度、高效率,低压直流驱动,可与集成电路匹配,易实现彩色平板大面积显示等优点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
稀土配合物发光的类型概述
稀土配位化合物的研究是稀土化学中最活跃的前沿领域之一。
稀土发光配合物是一类具有独特性能的发光材料。
发光现象
当某种物质受到诸如光的照射、外加电场或电子束轰击等的激发后,只要该物质不会因此而发生化学变化,它总要回复到原来的平衡状态。
在这个过程中,一部分能量会通过光或热的形式释放出来。
如果这部分能量是以可见光或近可见光的电磁波形式发射出来的,就称为发光现象。
这种能量的发射过程具有一定的持续时间。
对于发光现象的研究,从对它的光谱的研究(斯托克斯定则,1852年)开始,直到“发光”这一概念的提出(C H.魏德曼,1888年),人们只注意到了发光同热辐射之间的区别。
1936年,CH.瓦维洛夫引入了发光期间这一概念(即余辉),并以此作为发元现象的另一个王要的判据,至此发光才有了确切的定义。
发光现象的两个主要的特征是:任何物体在一定温度下都有热辐射,发光是物体吸收外来能量后所发出的总辐射中超出热辐射的部分。
当外界激发源对物体的作用停止后,发光现象还会持续一定的时间,称为余辉。
历史上人们曾以发光持续时间的长短把发光分为两个过程:把物质在受激发时的发光称为荧光,而把激发停止后的发光称为磷光。
一般常以持续时间10-8s为分界,持续时间短于10—8s的发光被称为荧光,而把持续时间长于10—8s的发光称为磷光。
现在,除了习惯上还保留和沿用这两个名词外,已不再用荧光和磷光来区分发光过程。
因为任何形式的发光都以余辉的形式来显现其衰减过程,而衰减时间可以极短(<10—8s),也可能很长(十几小时或更长)。
发光现象有着持续时间的事实,说明物质在接受激发能量和产生发光的过程中,存在着一系列的中间状态。
发光类型
1.对于各种发光现象,可按其被激发的方式进行分类:光致发光、电致发光、阴极射线发
光、x射线及高能粒子发光、化学发光和生物发光等。
(1)光致发光。
光致发光是用光激发发光体引起的发光现象。
它大致经过吸收、能量传递及光发射三个阶段。
光的吸收及发射都发生于能级之间的跃迁,都经过激发态。
而能量传递则是由于激发态的运动。
(2)电致发光。
可将电能直接转换成光能的现象是电致发光(eIectroIuminescence)。
过去又因这是在电场作用下产生的发光,还曾使用过“场致发光”的术语。
(3)阴极射线发光。
发光物质在电子束激发下所产生的发光,被称做阴极射线发光(cathodeluminescenee)。
通常电子束激发时,电子所具有的能量是很大的,都在几千电子伏以上,甚至达几万电子伏。
和光致发光的情况相比,这个能量是巨大的。
因此,阴极射线发光的激发过程和光致发光不一样,这是一个很复杂的过程。
在光致发光的过程中,一个激发光于被发光物质吸收后,通常最多只能产生一个发光辐射的光子。
但是,单从能量的观点来
看,一个高速电子的能量是光子能量的几千倍或更多,这足以产生干百个发光辐射光子。
事实上,高速的电子入射到发光物质后,将离化原子中的电子,并使它们获得很大的动能,成为高速的次级(发射)电子。
而这些高速的次级电子又可以产生次级电子,最终,这些次级电子会激发发光物质产生发光。
(4)x射线及高能粒子发光。
在X射线、γ射线、α粒子、β粒子等高能粒子激发下,发光物质所产生的发光被称做x射线及高能粒子发光。
发光物质对x射线和高能粒子能量的吸收包括三个过程:带电粒子的减速、高能光子的吸收和电子—正电子对的形成。
x射线和γ射线是不带电的粒子流,也可以叫做高能光子流。
一般地说,x光子主要产生光电效应;比x光子能量更大的γ光子,三种效应都会产生。
这些效应都会产生大量的次级电子,而这些次级电子又会进一步激发或离化发光物质而产生发光。
粒子和β粒子等高能粒子入射到发光物质后,会发生晶格原子的离化,产生次级电子。
这就是发光物质在高能带电粒子激发下的能量吸收过程。
当这些激发或离化状态重新回到平衡态时,就产生了发光。
(5)化学发光。
由化学反应过程中释放出来的能量激发发光物质所产生的发光,被称作化学发光。
(6)生物发光。
在生物体内,由于生命过程的变化,其相应的生化反应释放的能量激发发光物质所产生的发光被称作生物发光。
2. 根据稀土离子配合物的荧光特性可将其分为四类:
(1)La3+,Gd3+,Lu3+和Y3+的配合物:无稀土离子荧光,主要呈现较强的配体荧光和磷光,发射为带谱。
Ia3+(4fo),Gd(4f7),Lu3+(4f14),Y3+(3d10)都为全空、半满或全满的稳定电子结构,不易被激发,在配体的三重态附近一般没有相应的发射能级,所以不能发生从三重态到稀土离子的能量传递。
配合物吸收的全部能量都以较强的分子荧光和磷光形式耗散。
(2)Pr3+,Nd3+,Ho3+,Er3+,TIn3+和Yb3+的配合物:该组稀土离子的4f电子层为非半满或全满状态,基本都有顺磁性。
弱的分子荧光表明配体的单重态到三重态的系间窜越过程比较有效。
因为顺磁性稀土离子产生磁场起伏使单重、三重态位能面交叉从而导致系问窜越过程的增强。
弱的分子磷光是因为从配体到离子f态的无辐射能量传递很大。
稀土离子的发生效率很低是因为这些离子具有很多能量相近能级,使其易发生能级间的无辐射跃迁。
(3)Eu3+,Tb3+,Dy3+和Sm3+的配合物:具有较强的离子荧光和弱的配体荧光和磷光。
这些离子的发生能级与配体的三重态能级接近,三重态到离子的能量传递更加有效。
另外,离子在配体三重态和基态之间不存在密集的能级,非辐射能量跃迁几率大为减少,因而这些离子的特征发射光谱较易观测到。
因此,这些离子的配合物特别是Eu3+和Tb3+离子配合物荧光特性引起了广泛的兴趣。
(4)Eu2+,Ce3+和Yb3+的配合物:表现为稀土离子的f—d跃迁,发射光谱为宽带,峰位容易受到配体和溶剂的影响。
由于稀土离子的f—f跃迁是宇称禁戒的,由f—f跃迁引起的紫外吸收很弱,而有机配体的单重态跃迁是自旋允许的,它的紫外吸收很强,因此,欲制备性能良好的发光体,必须使它们与具有吸光系数较高的有机配体结合在一起,形成稀土配合物,并借助配体的强紫外吸收和有效的分子内能量传递。
但并非所有可能的跃迂都能产生发光,还必须考虑环境、对称性和能级匹配的影响。
Sato和wada系统研究了Tb3+和Eu3+与(β—二酮的配合物的三重态能级和分子内能量传递之间的关系,认为当最低激发三重态与稀土离子的共振能级在达到一定的能级差时,可以产生最佳荧光量子效率。
如果这个能级差太小,则由于稀土离子激发态的热激活使荧光量子效率降低;当三重态能级比稀土离子的激发态能级高出很多时,则由于配体的磷光光谱与稀土离子的吸收谱重叠太小,使配体三重态到稀土离子的能量重叠效率
降低,导致稀土配合物的荧光量子效率降低。