三年级奥数简单枚举

合集下载

三年级.分类枚举doc

三年级.分类枚举doc

三年级:简单的枚举
A组:
例1:从小明家到学校有两条路可走,从学校到人民公园有4条路可走,从小明家经过学校到人民公园,有几种不同的走法?
例2:亮亮有不同的3件上衣,两条不同的裤子,3双不同的鞋子,最多可搭配成多少种不同的装束?
例3:用9、8、7这三个数字可以组成多少个没有重复数字的两位数?
例4:有4位小朋友,寒假中互相通一次电话,他们一共打了多少次电话?
例5:一个长方形的周长是22米,如果它的长和宽都是整米数,那么这个长方形的面积有多少种可能值?
B组:
1、小强从家到学校有3条路可走,从学校到少年宫有两条路可走,小强从家经过学校到少年
宫有几种走法?
2、小敏有3件不同的上衣,4条不同的裙子,问她共有多少种不同的穿法?
3、小红有3种不同的上衣,4条不同的裙子,两双不同的鞋子,最多可搭配成多少种不同的
装束?
4、用数字6、7、8可以组成多少个没有重复数字的三位数?分别是哪几个数?
5、用
6、3、1这三个数字可以组成多少个没有重复数字的两位数?
6、用8、6、5、2这四个数字可以组成多少个没有重复数字的三位数?
7、6个小队进行排球比赛,每两队比赛一场,共要进行多少次比赛?
8、有8位小朋友,要互通一次电话,他们一共打了多少次电话?
9、一个长方形的周长是30厘米,如果它的长和宽都是整粒米数,那么这个长方形的面积有
多少种可能值?
10、把15个玻璃球分成数量不同的4堆,共有多少种不同的分法?
11、一本科技书有100页,你知道这些页码中共有多少个数字1吗?。

三年级数学 奥数讲座 枚举法

三年级数学 奥数讲座 枚举法

三年级奥数讲座枚举法1. 如图9-1,有8张卡片,上面分别写着自然数1至8。

从中取出3张,要使这3张卡片上的数字之和为9。

问有多少种不同的取法?解答:三数之和是9,不考虑顺序。

1+2+6=9,1+3+5=9,2+3+4=9答:有3种不同的取法。

2. 从1至8这8个自然数中,每次取出两个不同的数相加,要使它们的和大于10,共有多少种不同的取法?解答:两数之和大于10,不考虑顺序。

8+7,8+6,8+5,8+4,8+3 7+6,7+5,7+4 6+5答:共有9种不同的取法。

3. 现在1分、2分和5分的硬币各4枚,用其中的一些硬币支付2角3分钱,一共有多少种不同的支付方法?解答:2角3分=23分 5×4+2×1+1×1=23,5×4+1×3=23,5×3+2×4=23,5×3+2×3+1×2=23,5×3+2×2+1×4=23答:一共有5种不同的支付方法。

4. 妈妈买来7个鸡蛋,每天至少吃2个,吃完为止,有多少种不同的吃法?需要考虑吃的顺序不同。

7,5+2,4+3,3+4,3+2+2,2+5,2+3+2,2+2+3 答:有8种不同的吃法。

5.有3个工厂共订300份《吉林日报》,每个工厂最少订99份,最多101份。

问一共有多少种不同的订法?解答:3个工厂各不相同,3数之和是300份,要考虑顺序。

99+100+101,99+101+100,100+99+101,100+100+100,100+101+99,101+99+100,101+100+99答:一共有7种不同的订法。

16. 在所有的四位数中,各个数位上的数字之和等于34的数有多少个?解答:4个数字之和是34,只有9+9+9+7=34,9+9+8+8=34,不同的数字放在不同位是组成的四位数不同,考虑顺序。

9997,9979,9799,7999;9988,9898,9889,8998,8989,8899 答:有10个。

小学三年级奥数--第七讲--枚举法(一)(学生版)

小学三年级奥数--第七讲--枚举法(一)(学生版)

第七讲枚举法(一)学习内容:用枚举法一一列举可能的情况学习目标:1、做到不重补漏,把复杂的问题简单化2、按照一定的规律,特点去枚举3、从思想上认识到枚举的重要性课题引入枚举法是一种常见的分析问题、解决问题的方法。

一般地,根据问题要求,一一枚举问题的解答,或者为了解决问题的方便,把问题分为不重复、不遗漏的有限种情况,一一枚举各种情况,并加以解决,最终达到解决整个问题的目的。

这种分析问题、解决问题的方法,称之为枚举法。

枚举法是一种常见的数学方法,当然枚举法也存在一些问题,那就是容易遗漏掉一些情况,所以应用枚举法的时候选择什么样的标准尤其重要。

运用枚举法解题的关键是要正确分类,要注意一下两点:一是分类要全,不能造成遗漏;二是枚举要清,要将每一个符合条件的对象都列举出来.知识点拨在数学问题中,有些需要计算总数或种类的趣题,因其数量关系比较隐蔽,很难找到“正统”的方式解答,让人感到无从下手。

对此,我们可以先初步估计其数目的大小。

若数目不是太大,就按照一定的顺序,一一列举问题的可能情况;若数目过大,并且问题繁杂,我们就抓住对象的特征,选择恰当的标准,把问题分为不重复、不遗漏的有限种情形,通过一一列举或计数,最终达到解决目的。

这就是枚举法,也叫做列举法或穷举法。

例题精讲例1、用数字1、3、4可以组成多少个不同的三位数?例2、用0,2,5,9可以组成多少个能被5整除的三位数?例3、从1数到100,一共数了多少个3?例4、有8张卡片,上面分别写着自然数1至8。

从中取出3张,要使这3张卡片上的数字之和为9。

问有多少种不同的取法?例5、现在1分、2分和5分的硬币各4枚,用其中的一些硬币支付2角3分钱,一共有多少种不同的支付方法?1、用数字0,2,5可以组成多少个不同的三位数?2、现有一张1元、两张5元和一张10元的人民币,一共可以组成多少种不同的币值?3、从1至8这8个自然数中,每次取出两个不同的数相加,要使它们的和大于10,共有多少种不同的取法?4、妈妈买来7个鸡蛋,每天至少吃2个,吃完为止,有多少种不同的吃法?1、现有一张1元、两张5元和一张10元的人民币,一共可以组成多少种不同的币值?2、用数字3,8,9可以组成多少个不同的三位数 ?3、从1~10中每次取两个不同的数相加,和大于10的共有多少种取法?4、用3张10元和2张50元一共可以组成多少面币值(组成的钱数)?家长签字:年月日。

小学三年级奥数专题十六:简单枚举

小学三年级奥数专题十六:简单枚举

小学三年级奥数专题十六:简单枚举
专题简析:一是分类要全,不能造成遗漏;二是枚举要清,必须有次序、有规律地进行枚举。

例题1:从小华家到学校有3条路可走,从学校到文峰公园有4条路可走。

从小华家到文峰公园,有几种不同的走法?
思路:为了帮助理解题意,可以画出示意图。

根据图中可知,从小明家经学校到文峰公园,走①路有4种不同走法,走②路有4种不同走法,走③路也有4种不同走法,共有4×3=12种不同走法。

试一试1:明明有2件不同的上衣,3条不同的裤子,4双不同的鞋子。

最多可搭配成多少种不同的装束?例题2:用红、绿、黄三种信号灯组成一种信号,可以组成多少种不同的信号?
思路:组成的信号有:红绿黄、红黄绿;绿红黄、绿黄红;黄红绿、黄绿红等6种。

可以把组成的信号看成是三个位置:第1个位置有3种选择,第2个位置有2种选择,第3个位置就只有1中选择。

所以排列方法一共有:3×2×1=6(种)
试一试2:用数字1、2、3,可以组成多少个不同的三位数?分别是哪几个数?
例题3:有4位小朋友,寒假中互相通一次电话,他们一共打了多少次电话?
思路1:每个小朋友都节打电话3次。

但两人之间只需打1次电话,互打就重复了。

因此一共打3×4÷2=6(次)
思路2:第1个小朋友打了3个电话,第2个小朋友打了2个电话,第3个小朋友打了1个电话,第4个小朋友不需要打电话。

因此一共打3+2+1=6(次)
试一试3:
(1)6个小队进行排球比赛,每两队比赛一场,共要进行多少次比赛?
(2)暑假里,三位小朋友互发一封问候邮件,他们一共发了多少封邮件?。

最新三年级奥数简单枚举教学提纲

最新三年级奥数简单枚举教学提纲

简单枚举1.从小华家到学校有3条路可以走,从学校到文峰公园有4条路可以走。

从小华家到文峰公园有几种不同的走法?2.从甲地到乙地有3条公路直达,从乙地到丙地有2条铁路直达,从甲地到丙地有多少种不同的走法?3.新华书店有3种不同的英语辅导书、4种不同的数学辅导书在销售,小明想买一本英语辅导书和一本数学辅导书,共有多少种不同的买法?4.明明有2件不同的上衣,3条不同的裤子,4双不同的鞋子,最多可以搭配成多少种不同的装束?5.一个长方形的周长是22米,如果他的长和宽都是整米数,那么这个长方形的面积有多少种可能?6.一个长方形的周长是30厘米,如果它的长和宽都是整厘米数,那么这个长方形的面积有多少种不同的可能?7.把15个玻璃球分成数量不同的4堆,共有多少种不同的分法?8.3个自然数的乘积是18,由这样的3个数所组成的数组有多少个?如(1,2,9)就是其中的一个,而且数组中的数字相同但顺序不同的算作同一数组,如(1,2,9)和(2,9,1)是同一数组。

9.4个小朋友在寒假中相互打一次电话,他们一共打了多少次电话?10.6个小队进行排球比赛,每两队比赛一场,共要进行多少场比赛?11.小芳出席由19人参加的联欢会,散会后每两人都要握一次手,它们一共握了多少次手?12.A,B,C,D,E这5个人一起回答一个问题,结果只有两个人答对了,所有可能的回答情况一共有多少种?13.一条铁路有10个车站。

如果每个起点站到终点站只用一种车票(中间至少相隔5个车站),那么这样的车票共有多少种?14.上海、北京、天津三个城市分别建有一个飞机场,它们之间通航一共需要多少种不同的机票?15.小王准备从青岛、北京、海南、桂林4个城市中选2个去旅游,有多少种不同的选择方法?如果小王想去其中的3个城市,又有多少种不同的选择方法?16.一条公路上共有8个站点,如果每个起点站到终点站只用一种车票(中间至少相隔3个车站),那么共有多少种不同的车票?17.小悦买了一些大福娃和小福娃,一共不到10个,且两种福娃的个数不一样多。

三年级奥数第18讲简单列举(教师版)

三年级奥数第18讲简单列举(教师版)

三年级奥数第18讲简单(jiǎndān)列举(教师版)教学目标用列举解决简单(jiǎndān)实际问题,能不重复(chóngfù)、不遗漏的找到符合要求的答案。

发展学生(xué sheng)思维的条理性和严密性。

知识梳理养鸡场的工人(gōng rén),小心翼翼地把鸡蛋从筐里一个一个往外拿,边拿边数筐里的鸡蛋拿光了,有多少个鸡蛋也就数清了,这种计数的方法就是枚举法。

一般地,根据问题要求,一一列举问题,并加以解决,最终达到解决整个问题的目的。

这种分析问题、解决问题的方法,称之为枚举法。

运用枚举法解决应用题时,必须注意无重复、无遗漏。

为此必须力求有次序、有规律地进行枚举。

典例分析例1、从小华家到学校有3条路可走,从学校到文峰公园有4条路可走。

从小华家到文峰公园,有几种不同的走法?【解析】为了帮助理解题意,我们可以画出如上示意图。

我们把小华的不同走法一一列举如下:根据列举(lièjǔ)可知,从小(cóngxiǎo)明家经学校到文峰公园,走①路有4种不同(bù tónɡ)走法,走②路有4种不同(bù tónɡ)走法,走③路也有4种不同(bù tónɡ)走法,共有4×3=12种不同走法。

例2、用红、绿、黄三种信号灯组成一种信号,可以组成多少种不同的信号? 【解析】要使信号不同,要求每一种信号颜色的顺序不同,我们可以把这些信号进行列举。

可以看出,红色信号灯排在第一个位置时,有两种不同的信号;绿色信号灯排在第一个位置时,也有两种不同的信号;黄色信号灯排在第一个位置时,也有两种不同的信号,因而共有3个2种不同排列方法,即2×3=6种。

例3、一个长方形的周长是22米,如果它的长和宽都是整米数,那么这个长方形的面积有多少种可能?【解析】由于长方形的周长是22米,可知它的长与宽之和为11米。

三年级奥数简单枚举

三年级奥数简单枚举

蔚然教育精品班导学案
年级:_ ___ 科目:教师第次课
导学目标与考点、重、难点分析:
运用枚举法解题的关键是要正确分类,要注意以下两点:一是分类要全,不能造成遗漏;二是枚举要清,要将每一个符合条件的对象都列举出来。

导学内容:
例题1从小华家到学校有3条路可走,从学校到文峰公园有4条路可走。

从小华家到文峰公园,有几种不同的走法?
例题2 用红、绿、黄三种信号灯组成一种信号,可以组成多少种不同的信号?
思路导航:要使信号不同,要求每一种信号颜色的顺序不同,我们可以把这些信号进行列举:
例题3一个长方形的周长是22米,如果它的长和宽都是整米数,那么这个长方形的面积有多
教务处签字:
年月日。

2012年春秋季三年级奥数教材1

2012年春秋季三年级奥数教材1

整理过格式2012春秋季三年级奥数参考教材!目录第一章组合与推理(一) (2)第一讲简单枚举 (2)第二讲等量代换 (8)第二章实践与应用(一) (17)第一讲用对应法解题 (17)第二讲盈亏问题 (22)第三讲和倍问题 (27)第四讲差倍问题(一) (31)第五讲差倍问题(二) (36)第六讲和差问题 (41)第三章空间与图形 (46)第一讲巧求周长(一) (46)第二讲巧求周长(二) (52)第三讲面积计算 (57)第四章数与计算 (62)第一讲错中求解 (62)第五章组合与推理(二) (67)第一讲简单推理(二) (67)第二讲最佳安排 (72)第三讲抽屉原理 (78)第六章实践与应用(二) (83)第一讲年龄问题 (83)第二讲用还原法解题 (87)第三讲用假设法解题 (92)第四讲平均数问题(一) (96)第五讲平均数问题(二) (100)第六讲一题多解 (105)奥数三年级下册期末综合测试 (110)三年级下册奥数比赛(预赛) (113)第一章组合与推理(一)第一讲简单枚举【专题简析】枚举是一种常见的分析问题、解决问题的方法。

一般地,要根据问题要求,一一列举问题解答。

运用枚举法解应用题时,必须注意无重复、无遗漏,因此必须有次序、有规律地进行枚举。

运用枚举法解题的关键是要正确分类,要注意以下两点:一是分类要全,不能造成遗漏;二是枚举要清,要将每一个符合条件的对象都列举出来。

【典型例题】【例1】从小华家到学校有3条路可以走,从学校到岐江公园有4条路可以走,从小华家到岐江公园,有几种不同的走法?【试一试】1. 从甲地到乙地,有3条公路直达,从乙地到丙地有2条铁路可以直达,从甲地到丙地有多少种不同的走法?2. 新华书店有3种不同的英语书,4种不同的数学读物销售,小明想买一种英语书和一种数学读物,共有多少种不同的买法?【例2】把4个同样的苹果放在两个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?【试一试】1.把5个同样的苹果放在两个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?2.把7个同样的苹果放在三个同样的盘子里,不允许有的盘子空着不放,问共有多少种不同的分法?【例3】从1~6这六个数字中,每次取2个数字,这两个数字的和都必须大于7,能有多少种取法?【试一试】1.从1~9这九个数字中,每次取2个数字,这两个数字的和都必须大于10,能有多少种取法?2.从1~19这十九个数字中,每次取2个数字,这两个数字的和都必须大于20,能有多少种取法?【例4】一个长方形的周长是22米,如果它的长和宽都是整米数,那么这个长方形的面积有多少种可能值?【试一试】1.一个长方形的周长是30厘米,如果它的长和宽都是整厘米数,那么这个长方形的面积有多少种可能值?2.把15个玻璃球分成数量不同的4堆,共有多少种不同的分法?【例5】有4位小朋友,寒假中互相通一次电话,他们一共打了多少次电话?【试一试】1.6个小队进行排球比赛,每两队比赛一场,共要进行多少次比赛?2.有8位小朋友,要互通一次电话,他们一共打了多少次电话?【※例6】一条铁路,共有10个车站,如果每个起点站到终点站只用一种车票(中间至少相隔5个车站),那么这样的车票共有多少种?【※试一试】1.上海、北京、天津三个城市分别设有一个飞机场,它们之间通航一共需要多少种不同的机票?2. 一条公路上,共有8个站点,如果每个起点到终点只用一种车票(中间至少相隔3个车站),那么共有多少种不同的车票?【※例7】在1~49中,任取两个和小于50的数,共有多少种不同的取法?【※试一试】1.在两位整数中,十位数字小于个位数字的共有多少个?2.从1~99这九个数中,每次取2个数,这两个数的和都必须大于100,能有多少种取法?课外作业家长签名:__________1.小熊有2件不同的上衣,3条不同的裤子,最多可以搭配多少种不同的装束?2.3个自然数的乘积是12,问由这样的3个数所组成的数有多少个?如(1,2,6)就是其中一个,而且数组中数字相同但顺序不同的算作同一数组,如(1,2,6)和(2,6,1)是同一数组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题4有4位小朋友,寒假中互相通一次电话,他们一共打了多少次电话?本次Βιβλιοθήκη 后作业(另附):教务处签字:
年月日
例题2用红、绿、黄三种信号灯组成一种信号,可以组成多少种不同的信号?
思路导航:要使信号不同,要求每一种信号颜色的顺序不同,我们可以把这些信号进行列举:
例题3一个长方形的周长是22米,如果它的长和宽都是整米数,那么这个长方形的面积有多少种可能?
思路导航:由于长方形的周长是22米,可知它的长与宽之和为11米。下面列举出符合这个条件的各种长方形:
蔚然教育精品班导学案
年级:_ ___科目:教师第次课
导学目标与考点、重、难点分析:
运用枚举法解题的关键是要正确分类,要注意以下两点:一是分类要全,不能造成遗漏;二是枚举要清,要将每一个符合条件的对象都列举出来。
导学内容:
例题1从小华家到学校有3条路可走,从学校到文峰公园有4条路可走。从小华家到文峰公园,有几种不同的走法?
相关文档
最新文档