小学数学广角——植树问题公式
小学数学四年级数学广角三种公式解决植树问题

三种公式解决植树问题在公务员考试中,有一类植树问题,这种题目没有什么花哨的解题技巧,而是利用对应的公式便可以很容易的解答,那么,接下来就帮考生总结一下植树问题所用到的公式以及怎么应用。
一、植树问题公式:线性植树:棵数=总长÷间隔+1环形植树:棵数=总长÷间隔楼间植树:棵数=总长÷间隔-1二、例题讲解例1、有一条大街长20米,从路的一端起,每隔4米在路的两侧各种一棵树,则共有多少棵树?()A.5棵B.4棵C.6棵D.12棵解析:我们看这道例题,这是线性植树问题,套用公式棵数=总长÷间隔+1,即棵数=20 ÷4+1=6棵,这是路的一侧,那么两侧都应该种上树,所以总共应种6×2=12棵,所以答案选择D选项。
例2、一个四边形广场,它的四边长分别是60米,72米,96米,84米,现在四边上植树,四角需植树,且每两棵树的间隔相等,那么至少要种多少棵树?()A.22棵B.25棵C.26棵D.30棵解析:题目中的情况属于环形植树问题。
每两棵树的间隔相等,那么至少要种多少棵树,就需要使得每两棵树之间的间隔最大就可以了,那么就是要求四边长的一个最大公约数,60,72,96,84的最大公约数是12,那么套用公式棵数=总长÷间隔,棵数=(60+72+9 6+84)÷12=26棵,所以选择C选项。
例3、两棵杨树相隔165米,中间原本没有任何树,现在在这两个树之间等距离种植32棵桃树,第1棵桃树到第20棵桃树之间的距离是多少米?()A.90B.95棵C.100棵D.ABC都不对解析:题目中的情况属于楼间植树问题。
总长为165米,总共种了32棵桃树,那么可以求出每两棵桃树之间的间隔,套用公式棵数=总长÷间隔-1,32=165÷间隔-1,间隔=5米,那么第1棵桃树到第20棵桃树之间总共包括19个间隔,所以距离为19×5=95米,所以答案选择B选项。
《植树问题》数学广角

随着人们对自然界的认识越来越深入,植树问题的理论体系也将不断完善和发 展,如引入新的数学工具和方法,解决更复杂的问题等。
应用领域的拓展
随着社会经济的发展和城市化进程的加速,植树问题的应用领域也将不断拓展 ,如与生态修复、环境保护等领域的结合,为解决全球性的环境问题提供新的 思路和方法。
04
CATALOGUE
非线性植树问题
定义与模型建立
定义
非线性植树问题是指树苗之间的间距不完全 相等,需要用非线性数学模型进行描述的问 题。
模型建立
对于非线性植树问题,通常需要建立非线性 方程或方程组来描述树苗之间的距离关系。
求解方法括迭代法、解析法、数值模拟法等。
分类讨论思想
总结词
分类讨论思想是将整体划分为部分,并对每个部分进行 讨论的思想方法。
详细描述
在植树问题中,分类讨论思想是将整个植树问题划分为 不同的部分,例如根据树的排列方式、间隔距离等因素 进行分类。通过对每个部分进行讨论,可以全面地考虑 植树问题的各种情况,从而更全面地解决问题。分类讨 论思想在植树问题中具有非常重要的作用,可以帮助我 们更加清晰地认识问题和解决问题。
公式
若在直线上的特定点上植第一棵树,则该点左边的树的数量为(m-1),右边的树 的数量为n-(m-1)。
实例解析
实例
在长为100米的直线上等距离种植4棵树,相邻两棵树之间的距离为10米。若在 25米处植第一棵树,求在该点左边和右边的树的数量。
解析
在该点左边的树的数量为(25-1)/10=2,右边的树的数量为4-(25-1)/10=1。因 此,在该点左边有2棵树,右边有1棵树。
06
CATALOGUE
植树问题的拓展与延伸
数学广角植树问题

填一填:
1、在一条80米长的公路一边植树(两端要 栽),如果每隔10米种一棵,一共需要树苗 ( 9 )棵。如果每隔8米种一棵,一共有 ( 10)个间隔。 2、从王村到李村一共设有5根高压电线杆, 相邻两根的距离平均是200米。王村到李村 大约有( 800 )米。
想一想:
9个小朋友围成一圈做游戏, 每两个人之间的距离是1米, 这一圈的长度是多常?
数学广角:
植树问题
有情况!~
招聘启示:
羊村将进行环境美化,诚聘环境设 计师一名。要求设计植树方案一份,择
优录取;奖励管理绿茵一块!
慢羊羊村长
导学提纲(一): 羊村有一段20米长的小路,如果 在小路一侧种树。请按照每隔5米种一棵 的要求设计一份方案植树方案,并说明
设计理由。
两端都栽:
1 2 2 3 3 4 4 5 5 6 6 7
谢 谢 指 导
冲线之后高呼胜利
向世界宣布
让世界认识中国
反馈训练:算一算
• 中间共有10个栏,栏间距离为9(9.14)米; • 你能算出从第一栏架到最后一个栏架有多少 米吗?
9米
答:从第一栏架到最后一个栏架一共81 米。
10-1=9(个) 9×9=81(米)
选一选:
1、5路公共汽车行驶路线全长12千米,相邻 两站的距离是1千米。一共有几个站?正确的 列式是( ② )。 ①12÷1 ②12÷1+1 ③12÷1-1 2、同学们排队做操,每两个同学之间间隔2 米,一列队伍有16个同学,这列队伍全长多 少米?正确的列式是( ③ )。 ① 16×2 ② 16×2-1 ③(16-1)×2 ④(16+1)×2
间隔数 60÷3=20(个) ······· 20-1=19(棵) ·······一边栽的棵 19×2=38(棵) 树 答:一共要栽38棵树。
第7讲 数学广角——植树问题-五年级上册数学讲义(含答案)

第7讲数学广角——植树问题(思维导图+知识梳理+例题精讲+易错专练)一、思维导图二、知识点梳理知识点一:植树问题(1)两端都栽树的问题在一条线段上植树(两端都栽树)的问题:总距离÷株距=间隔数,植树棵树=间隔数+1(2)两端都不栽树的问题在一条线段上植树(两端都不栽树)的问题:总距离÷株距=间隔数,植树棵树=间隔数-1(3)在一条首尾相接的封闭曲线上植树的问题在一条首尾相接的封闭曲线上植树的问题:棵数=间隔数=总距离÷株距三、例题精讲考点一:数学广角——植树问题【典型一】将一根木棒锯成4段需要6分钟,则将这根木棒锯成7段需要()分钟。
A.7 B.10 C.12 D.14【分析】将一根木棒锯成4段需锯的次数是(4-1)次,需要6分钟,锯一次用的时间就是6÷(4-1)分钟,将这根木棒锯成7段需要锯的次数是(7-1)次,然后根据乘法的意义进行解答。
【详解】锯一次用的时间是:6÷(4-1)=6÷3=2(分钟)据7段需用的时间是:(7-1)×2=6×2=12(分钟)故答案为:C【点睛】本题属于植树问题,锯的次数=段数-1是本题的关键。
【典型二】学校要在周长为60米的圆形花坛一周每隔5米摆放一盆栀子花,可以摆放( )盆,每2盆栀子花之间摆放2盆长寿花,需要( )盆。
【分析】根据题意,可以把圆形花坛可知看作封闭图形,所以摆栀子花的盆数等于间隔数;用花坛的周长除以间隔的米数,即可求出一共需要摆多少盆栀子花。
每2盆栀子花之间摆放2盆长寿花,因为摆长寿花的间隔数与摆栀子花的间隔数相等,用间隔数乘2即可求出需要多少盆长寿花。
【详解】60÷5=12(盆)12×2=24(盆)【点睛】在一个封闭图形里面植树,封闭图形的周长除以间隔距离就是植树棵数。
【典型三】画图,用“〇”表示。
(1)在下面正三角形的每条边上摆4盆花,怎样摆需要的花最少?(2)12名同学在操场上做游戏。
数学广角——,植树问题整理与复习

数学广角——植树问题整理与复习整理:刘新民一、基础知识整理植树问题的基本数量关系:棵距×间隔数=总距离。
一般分两种情况:(一)、在一条线段上一边植树,有三种情况:1、两端都植的解题方法:棵数=间隔数+1(开头的树);棵距=总距离÷(棵数-1);总距离=棵距×(棵数-1);总距离÷棵距=间隔数2、一端植,另一端不植的解题方法:棵数=间隔数;总距离÷棵距=间隔数;总距离=间隔数×棵距3、两断都不植的解题方法:棵数=间隔数-1(末尾的树);总距离=棵距×(棵数+1);棵距=总距离÷(棵数+1);总距离÷棵距=间隔数解决植树问题的关键要弄清以下两点:1、是否两旁都要植树,如果两边都植树还要乘2。
2、理清棵数与间隔数之间的关系。
(二)、在封闭图形上植树也有两种情况:1、在曲线图形上植树的解题方法:棵数=间隔数;总距离÷棵距=间隔数;总距离=间隔数×棵数2、在多边形上植树的解题方法:棵数=每边上的树×边数-顶点数注意:在封闭图形上植树相当与在一条线段上植树中一端植一端不植的情况。
二、例题讲解:例1:在一条100米的跑道的一侧从头到尾每隔5m插一面红旗,一共需要准备多少面红旗?分析与解答:这道题属于在一条线段一边植树两端都植的问题,所以红旗的面数=间隔数+1,关键求出间隔数,由于间隔数=总距离÷棵距=100÷5=20(个),那么一共需要准备的红旗数=20+1=21(面)例2:某市政公司要在一条公路两旁等距离安装路灯(两端都不安装),每两盏路灯相隔25m,一共装了40盏灯。
这条路长多少米?分析与解答:解答这道题应先求出每边装的路灯数,即每边装了40÷2=20(盏),又由于两端不装,那么间隔数应该比路灯数多1,即间隔数=20+1=21(个),再根据“总距离=间隔数×棵距”来算出这条路长,所以这条路长=25×21=525(m)例3:南门幼儿园要在长88m,宽40m的长方形的操场四周栽树,要求四角各栽一棵,并且每相邻两棵树的距离是4m。
人教版小学五年级上册数学课件 《植树问题》数学广角PPT

答:这条马路一共多16 长 164米。
类型三:两端都不 栽
复习训练三:两端都不栽
总距离÷株距=间隔数
棵树=间隔数-1
17
两端都不栽
1 、 甲、乙两地相距80千米,每隔4千米设 一个站牌,甲、乙两地之间(甲、乙两地 除外)一共设有多少个站牌?
18
两端都不栽
1 、 甲、乙两地相距80千米,每隔4千米设 一个站牌,甲、乙两地之间(甲、乙两地 除外)一共设有多少个站牌?
11
两端都植树
4 、 把65棵树栽在一条长640米的水渠一侧 ,两端都栽。每相邻两棵树之间的距离是 多少米?
640÷(65-1)=640÷64=10 (米)
答:每相邻两棵树之间的距离
是10米。
12
两端都植树
练习1∶ 1.在一条马路一边从头至尾植树36棵,每相邻 两棵树之间隔8米,这长马路有多长?
1100÷5=220(棵)
答:一共要种220棵柳 树
22
封闭图形植树
2 、 一个三角形花坛的每边上各摆六盆花, 至少需要摆几盆花
23
封闭图形植树
2 、 一个三角形花坛的每边上各摆六盆花, 至少需要摆几盆花
(6-2)×3+3=15(盆) 答:至少需要摆15盆花
24
封闭图形植树
3 、 学校举行方阵队列表演,五一班同学排 成七行七列去掉。如果去掉一行一列,要 去掉多少人?还剩多少人?
80÷4-1=19(个)
答:一共设有19个站 牌
Байду номын сангаас19
类型四:封闭图形 植树
复习训练四:封闭图形植树
总距离÷株距=间隔数
棵树=间隔数
20
封闭图形植树
植树问题公式

【植树问题公式】(1)不封闭线路的植树问题:间隔数+1=棵数;(两端植树)路长÷间隔长+1=棵数。
或间隔数-1=棵数;(两端不植)路长÷间隔长-1=棵数;路长÷间隔数=每个间隔长;每个间隔长×间隔数=路长。
(2)封闭线路的植树问题:路长÷间隔数=棵数;路长÷间隔数=路长÷棵数=每个间隔长;每个间隔长×间隔数=每个间隔长×棵数=路长。
(3)平面植树问题:占地总面积÷每棵占地面积=棵数植树问题教学反思植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的内容。
“植树问题”就是向学生渗透复杂问题从简单入手的思想。
在本节课的教学中,根据教学内容的特点和学生的实际情况创设情境进行教学。
1.从五个手指之间有几个间隔入手,让学生先通过直观的观察初步感知“棵树=间隔数+1”的规律。
然后联系生活实际创设情境,接着出示比较简单的问题。
让学生以小组合作的方式设计栽树的方案,让学生在设计的方案中找到规律。
即两端都栽“棵树=间隔数+1”,一端栽一端不栽“棵树=间隔数”,两端都不栽“棵树=间隔数-1”,这个创造性的学习成果,使学生的思维得到了升华,主动探索的创新精神得到了培养。
同时让学生在学习中体会数学的乐趣。
学生找到规律后再解决这类问题就简单多了。
2.让学生找一找生活中的一些与“植树问题”相似的问题,让学生近一步体会现实生活中的许多不同事件。
如路旁的路灯、公路中的斑马线、楼梯的台阶、栏杆的铁柱等都含有与“植树问题”相同的数量关系。
它们都可以利用“植树问题”的规律来解决它,感悟数学建模的重要意义。
3.在练习的设计上紧扣中心,让学生利用本节课所学的知识解决类似问题,这样起到一个巩固的作用。
小学四年级数学广角植树问题及间隔的应用

植树问题及间隔的应用【知识点与方法】间隔,我们肯定不陌生,在我们生活中很常见。
在数学里同样有很多关于间隔的问题,奥数里最常见的就是——植树、锯木头和时钟等间隔问题。
我们先从生活中最常见的间隔——植树问题讨论。
植树问题分为两大类:封闭线路植树与不封闭线路的植树。
我们可以通过画图来总结一下:(同学们可以举一反三,其实像很多关于插旗的问题和植树是相同的道理)总长=间距×间隔数;间隔数=总长÷间距;1.封闭线路(圆形、椭圆形)植树:棵树=间隔数2.不封闭线路植树:①路的两端都植树:棵树=间隔数+1;②路的一端植树,另一端不植树:棵树=间隔数;③路的两端都不植树:棵数=间隔数-1锯木问题:段数=次数+1;次数=段数-1总时间=每次时间×次数方阵问题:方阵的基本特点是:①方阵不论在哪一层,每边上的人(或物)数量都相同.每向里一层,每边上的人数就少2。
②每边人(或物)数和四周人(或物)数的关系:四周人(或物)数=[每边人(或物)数-1]×4;每边人(或物)数=四周人(或物)数÷4+1。
整个方阵的总数目是:边长×边长锯木头、敲时钟、爬楼梯问题:锯木头的问题一定要注意,所用的时间与几段木头是没有关系的,而是与锯几次有关系;同样关于时钟上的间隔问题,也是与敲几次钟没有关系,而是几次敲钟之间的间隔有关系。
【例题精选】例1.从公园通往湖心的小岛有一条长900米的小路,在小路的两侧,从头到尾每隔15米栽1棵树,需要多少棵数?课堂练习题:有一条公路长900米,在公路的一侧从头到尾每隔10米栽一根电线杆,可栽多少根电线杆?例2.有12名小学生站成一排,要求在每两名小学生中间放2盆花,需要摆放几盆?课堂练习题:1.一段长200厘米的木条,要锯成10厘米长的小段,需要锯几次?2.蚂蚁爬树枝,每上一节需要10秒钟,问从第1节爬到第13节需要多少分钟?例3-1.某城市举行马拉松长跑比赛,从体育馆出发,最后再回到体育馆,全长42千米,沿途等距离设茶水站7个,求每两个相邻的茶水站的距离?例3-2.马路的一边每相隔9米栽有一棵柳树.张军乘汽车5分钟共看到501棵树.问汽车每小时走多少千米?课堂练习题:1.一个圆形池塘,它的周长是150米,每隔3米栽种一棵树。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
植树问题的公式
1 非封闭线路上的植树问题主要可分为以下三种情形:
(1)如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
(2)如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
(3)如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2.封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数。