(整理)CH8(5)偏导数的几何意义.

合集下载

偏导数的物理几何意义

偏导数的物理几何意义

偏导数的物理几何意义偏导数是多元函数微分学中的重要概念,它描述了函数在其中一点沿着一些坐标轴的变化率。

在物理学中,偏导数有着重要的几何和物理意义。

以下是偏导数的物理几何意义的详细解释:1.变化率:函数的一阶偏导数描述了函数在其中一点的变化率。

在物理学中,这可以理解为物理量在该点的变化率。

例如,在空间中考虑一个以时间t为参数的三维位置矢量函数r(t)=(x(t),y(t),z(t)),其中x、y和z分别是位置矢量在x、y和z轴的分量。

三个分量的一阶偏导数分别是x的速度、y的速度和z的速度,它们描述了位置矢量在每个轴上的变化率。

2.切线和切平面:二元函数的两个偏导数代表了函数图像上的切线和切平面。

在物理学中,这对于描述曲线和曲面的切线和切平面是非常重要的。

例如,在二维平面上考虑一个函数z=f(x,y),其中x和y是平面上的坐标变量。

函数的偏导数∂z/∂x和∂z/∂y分别表示函数图像上的沿着x轴和y轴方向的切线斜率。

这意味着我们可以借助偏导数来找到函数图像上的切线和切平面,从而描述函数在其中一点的局部行为。

3. 法向量:在多元函数的高阶偏导数中,Hessian矩阵的特征向量对应的特征值具有重要的物理和几何意义。

特别地,Hessian矩阵是一个对称矩阵,它描述了函数图像局部的二次曲率信息。

Hessian矩阵的特征向量对应的特征值是曲面在该点法向量的方向和曲率。

例如,在二维平面上考虑一个函数z = f(x, y),其中x和y是平面上的坐标变量。

Hessian矩阵的特征向量对应的特征值描述了曲面在该点的法向量方向和曲率大小,这对于描述曲面的形态和弯曲性质具有重要作用。

4.极值点:在多元函数中,偏导数可以帮助我们找到函数的极值点。

在物理学中,这对于优化和最优化问题的求解是非常重要的。

例如,考虑一个具有多个变量的能量函数E(x,y,z),其中x、y和z是能量函数的自变量。

函数的偏导数∂E/∂x,∂E/∂y和∂E/∂z可以帮助我们找到能量函数的极小值点,这在工程和科学应用中广泛用于优化问题和最优化算法。

《偏导数的概念》课件

《偏导数的概念》课件

偏导数的几何意义
偏导数在几何上表示函数曲面在某一 点处的切线斜率。
对于二元函数z=f(x,y),其在点(x0,y0) 处的偏导数即为该点处曲面切线的斜 率。
偏导数的计算方法
通过求导法则进行计算:链式法则、乘积法则、商的法则、复合函数求导 法则等。
对于多元函数的偏导数,需要分别对各个自变量求导,然后根据具体问题 选择合适的方向进行计算。
商的乘积。
乘积法则
对于两个函数的乘积,其偏导数为各 自函数的偏导数的乘积加上各自函数 对另一变量的导数的乘积。
反函数法则
对于反函数的偏导数,等于原函数在 该点的导数的倒数。
03
CATALOGUE
偏导数在几何中的应用
曲线的切线
总结词
偏导数可以用来求曲线的切线。
详细描述
在几何学中,曲线的切线是曲线在某一点的邻近线段的行为。通过偏导数,我 们可以找到曲线在某一点的切线斜率,从而确定切线的方向和位置。
描述热量在物体中的传递和扩散过程。
电场与磁场
总结词
偏导数在电场和磁场的研究中也有着重要的应用,它可 以帮助我们理解和描述电场和磁场的变化规律。
详细描述
电场和磁场是物理学中两个重要的物理量,它们描述了 电荷和电流产生的场。在研究电场和磁场时,我们常常 需要用到偏导数来描述它们的变化规律。通过偏导数, 我们可以计算出电场和磁场在不同位置的值,从而更好 地理解和描述电场和磁场的变化规律。
THANKS
感谢观看
边际分析
边际分析
偏导数提供了对经济变量边际变化的度量,即当其他条件保持不变时,某一变量变化一 个单位所引起的另一变量的变化量。
边际成本和边际收益
在决策分析中,偏导数用于计算边际成本和边际收益,帮助企业了解产品定价、产量决 策的合理性。

偏微分方程与偏导数的几何意义及其应用

偏微分方程与偏导数的几何意义及其应用

偏微分方程与偏导数的几何意义及其应用偏微分方程(Partial Differential Equations, 简称PDEs)是数学中重要的一个分支,它描述了多元函数的各个方向的变化率,具有广泛的应用于自然科学和工程领域。

本文将探讨偏微分方程和偏导数的几何意义,以及在物理学、流体力学和电动力学等领域的常见应用。

一、偏微分方程的几何意义1. 偏导数的几何意义偏导数描述了函数在某个指定方向上的变化率。

在二元函数中,对于函数f(x, y),f对于x的偏导数(∂f/∂x) 表示函数沿x方向的变化率,而f对于y的偏导数(∂f/∂y) 表示函数沿y方向的变化率。

对于高维函数,类似地,偏导数可以描述函数在各个方向上的变化率。

2. 偏微分方程的几何意义偏微分方程描述了函数在空间中的变化和分布规律。

一些重要的偏微分方程,如热传导方程、抛物线方程、椭圆方程和双曲线方程等,通过描述函数在物理空间中的波动、扩散和稳定性等现象,使我们能够从几何角度更好地理解和分析系统的行为。

二、偏微分方程的应用1. 物理学中的应用偏微分方程在解释和解析物理现象中起到了重要的作用。

例如,波动方程可以描述机械波传播、声波和光波的传播;热传导方程可以用来解释热量在材料中的传递过程;薛定谔方程可以描述量子力学中的微观粒子行为。

通过将物理现象建模成偏微分方程,可以预测和模拟复杂系统的行为,促进科学研究的发展。

2. 流体力学中的应用偏微分方程在流体力学中广泛应用于描述流体的运动和行为。

例如,纳维尔-斯托克斯方程描述了流体的运动和粘度,可以用于解释液体和气体的流动行为;欧拉方程描述了不可压缩流体的流动,可以分析水流和风力等现象。

通过求解这些偏微分方程,我们可以优化设计水力系统、气象预测以及模拟天然和人工湍流等问题。

3. 电动力学中的应用偏微分方程也广泛应用于电动力学问题中。

例如,麦克斯韦方程组描述了电磁感应、电场和磁场之间的相互作用,可以解释电磁波的传播行为和光的传播;泊松方程和拉普拉斯方程描述了电势分布,可以用于解决电场的引力和磁场的保持。

偏导数知识点公式总结

偏导数知识点公式总结

偏导数知识点公式总结一、偏导数的概念1.1 偏导数的定义偏导数是多元函数对其中一个自变量的导数。

对于一个函数 $f(x_1, x_2, ..., x_n)$,它的偏导数 $\frac{\partial f}{\partial x_i}$ 表示在$x_i$方向上的变化率。

偏导数的定义可以表示为:$$\frac{\partial f}{\partial x_i} = \lim_{\Delta x_i \to 0} \frac{f(x_1, x_2, ..., x_i + \Delta x_i, ..., x_n) - f(x_1, x_2, ..., x_i, ..., x_n)}{\Delta x_i}$$1.2 偏导数的图示解释偏导数可以通过函数曲面的切线来解释。

对于函数 $z = f(x, y)$,在点$(x_0, y_0, z_0)$处的偏导数 $\frac{\partial f}{\partial x}$可以理解为曲面在$x$方向的斜率,即曲面在$x$方向上的变化率。

同样地,$\frac{\partial f}{\partial y}$表示曲面在$y$方向上的变化率。

这样的解释有助于我们更直观地理解偏导数的含义。

二、偏导数的性质2.1 对称性对于二元函数 $f(x, y)$,它的偏导数满足对称性,即$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$。

这一性质表明,在计算混合偏导数时,可以不必考虑自变量的顺序。

2.2 连续性在函数的定义域内,若偏导数存在且连续,则函数规定可微。

这一性质是偏导数与函数连续性的关系,对于函数的导数性质有着重要的影响。

2.3 性质总结:和与积对于函数 $u = u(x, y)$ 和 $v = v(x, y)$,它们的偏导数具有和与积的运算法则。

偏导数的物理几何意义

偏导数的物理几何意义

偏导数的物理几何意义一偏导数的定义在研究一元函数时.我们从研究函数的变化率引入了导数概念.对于多元函数同样需要讨论它的变化率.但多元函数的变化量不只一个,因变量与自变量的关系要比一元函数复杂的多.所以我们首先考虑多元函数关于其中一个自变量的变化率,以二元函数=为例,如果只有自变量变化,而自变量y固定(即看作常量),这时它就是的一元函数,这函数对x的导数,就称为二元函数z对于的偏导数,即有如下定义定义设函数z= 在点的某一邻域内有定义,当y固定在,而在处有增量时,相应的函数有增量- ,如果(1)存在,则称此极限为函数= 在点处对的偏导数,记做, , ,或例如,极限(1)可以表为=类似的,函数z= 在点处对的偏导数定义为记做, , 或如果函数= 在区域D内每一点( )处对的偏导数都存在,那么这个偏导数就是的函数,它就称为函数= 对自变量的偏导函数,记做, , ,或类似的,可以定义函数= 对自变量的偏导函数,记做, , ,或由偏导数的概念可知, 在点处对的偏导数显然就是偏导函数在点处的函数值,就像一元函数的导函数一样,以后在不至于混淆的地方也把偏导函数简称为偏导数.至于求= 的偏导数,并不需要用新的方法,因为这里只有一个自变量在变动,另外一个自变量看作是固定的,所以仍旧是一元函数的微分法问题,求时,只要把暂时看作常量而对求导;求时,则只要把暂时看作是常量,而对求导数.偏导数的概念还可以推广导二元以上的函数,例如三元函数在点( )处对的偏导数定义为=其中( )是函数的定义域的内点,它们的求法也仍旧是一元函数的微分法问题例求的偏导数解= ,=二偏导数的几何意义二元函数= 在点的偏导数的几何意义设为曲面= 上的一点,过点作平面,截此曲面得一曲线,此曲线在平面上的方程为= ,则导数,即偏导数,就是这曲线在点处的切线对轴的斜率.同样,偏导数的几何意义是曲面被平面所截得的曲线在点处的切线对的斜率三偏导数的几何意义我们知道,如果一元函数在某点具有导数,则它在该点必定连续,但对于多元函数来说,即使各偏导数在某点都存在,也不能保证函数在该点连续.这是因为各偏导数存在只能保证点P沿着平行于坐标轴的方向趋于P 时,函数值趋于,但不能保证点P按任何方式趋于P 时,函数值都趋于.例如,函数= ={在点(0,0)对的偏导数为同样有但是我们在前面的学习中知道这函数在点(0,0)并不连续四二阶混合偏导数设函数= 在区域D内具有偏导数= , =那么在D内, 都是的函数.如果这里两个函数的偏导数也存在,则它们是函数= 的二阶偏导数,按照对变量求导次序的不同有下列四个二阶偏导数:,,其中第二,第三个偏导数称为混合偏导数例2 设,求, , ,,从例子中,我们看到两个二阶混合偏导数相等,即, =我们再看用maple作求的图形第一个图形为第二个图形为从图中我们看到两个连续的偏导函数,它们是相等的这不是偶然的,事实上我们有下述定理定理如果函数= 的两个二阶混合偏导数及在区域D里连续,那么在该区域内这两个二阶混合偏导数必定相等换句话说,二阶混合偏导数在连续的条件下与求导的次序无关。

偏导数的几何意义

偏导数的几何意义

偏导数得几何意义ﻫ实验目得:通过实验加深学生对偏导数定义得理解掌握偏导数得几何意义并从直观上理解二阶混合偏导数相等得条件ﻫ背景知识:一偏导数得定义在研究一元函数时、我们从研究函数得变化率引入了导数概念、对于多元函数同样需要讨论它得变化率、但多元函数得变化量不只一个,因变量与自变量得关系要比一元函数复杂得多、所以我们首先考虑多元函数关于其中一个自变量得变化率,以二元函数= 为例,如果只有自变量变化,而自变量y固定(即瞧作常量),这时它就就是得一元函数,这函数对x 得导数,就称为二元函数z对于得偏导数,即有如下定义定义设函数z= 在点得某一邻域内有定义,当y固定在,而在处有增量时,相应得函数有增量- ,如果(1)存在,则称此极限为函数=在点处对得偏导数,记做, ,,或例如,极限(1)可以表为=类似得,函数z=在点处对得偏导数定义为记做,,或如果函数= 在区域D内每一点( )处对得偏导数都存在,那么这个偏导数就就是得函数,它就称为函数= 对自变量得偏导函数,记做, ,,或类似得,可以定义函数= 对自变量得偏导函数,记做,,,或由偏导数得概念可知,在点处对得偏导数显然就就是偏导函数在点处得函数值,就像一元函数得导函数一样,以后在不至于混淆得地方也把偏导函数简称为偏导数、至于求=得偏导数,并不需要用新得方法,因为这里只有一个自变量在变动,另外一个自变量瞧作就是固定得,所以仍旧就是一元函数得微分法问题,求时,只要把暂时瞧作常量而对求导;求时,则只要把暂时瞧作就是常量,而对求导数、偏导数得概念还可以推广导二元以上得函数,例如三元函数在点()处对得偏导数定义为=其中()就是函数得定义域得内点,它们得求法也仍旧就是一元函数得微分法问题例求得偏导数解= ,=二偏导数得几何意义二元函数= 在点得偏导数得几何意义设为曲面= 上得一点,过点作平面,截此曲面得一曲线,此曲线在平面上得方程为= ,则导数,即偏导数,就就是这曲线在点处得切线对轴得斜率、同样,偏导数得几何意义就是曲面被平面所截得得曲线在点处得切线对得斜率三偏导数得几何意义我们知道,如果一元函数在某点具有导数,则它在该点必定连续,但对于多元函数来说,即使各偏导数在某点都存在,也不能保证函数在该点连续、这就是因为各偏导数存在只能保证点P沿着平行于坐标轴得方向趋于P 时,函数值趋于,但不能保证点P按任何方式趋于P 时,函数值都趋于、例如,函数= ={在点(0,0)对得偏导数为同样有但就是我们在前面得学习中知道这函数在点(0,0)并不连续四二阶混合偏导数设函数= 在区域D内具有偏导数=, =那么在D内,都就是得函数、如果这里两个函数得偏导数也存在,则它们就是函数= 得二阶偏导数,按照对变量求导次序得不同有下列四个二阶偏导数:,,其中第二,第三个偏导数称为混合偏导数例2 设,求, ,,,从例子中,我们瞧到两个二阶混合偏导数相等,即,=我们再瞧用maple作求得图形第一个图形为第二个图形为从图中我们瞧到两个连续得偏导函数,它们就是相等得这不就是偶然得,事实上我们有下述定理定理如果函数=得两个二阶混合偏导数及在区域D里连续,那么在该区域内这两个二阶混合偏导数必定相等换句话说,二阶混合偏导数在连续得条件下与求导得次序无关。

偏导数的几何意义.doc

偏导数的几何意义.doc

Ax偏导数的儿何意义实验目的:通过实验加深学生对偏导数定义的理解掌握偏导数的几何意义并从直观上理解二 阶混合偏导数相等的条件背景知识:一偏导数的定义在研究一无函数吐我们从研究函数的变化率引入了导数概念.对于多元函数同样需要讨论 它的变化率.但多元函数的变化量不只一个,因变量与自变最的关系要比一元函数复杂的多. 所以我们首先考虑多元函数关于其中一-个自变量的变化率,以二元函数z= /(了疗)为例, 如果只有自变量工变化,而自变量y 固定(即看作常量),这时它就是X 的一元函数,这函数 对X 的导数,就称为二元函数Z 对于才的偏导数,即有如下定义定义设函数z= *')在点的某一•邻域内有定义,当y 固定在V 。

,而工在工。

处有增量• A*时,相应的函数有增量/(x 0 4-Ax,^) _ /(x 0,^0)f(x 0 +Ax,y 0)-f(x 0,y 0) lim ---------------------------------如果 Ax (1)存在,则称此极限为函数z=在点”°疗°)处对汗的偏导数,记做例如,极限(1)可以表为 f(x 0 +Ax,y 0)-f(x 0,y 0) hgy°)蚣。

类似的,函数z= ,(兀、)在点(冲疗°)处对歹的偏导数定义为尚 栈尚九(%必)dzlim 敏T O Rxo,Vo +Ay)・地,dz记做分5 X■命如果函数2= 了3疗)在区域D内每一点(&')处对工的偏导数都存在,那么这个偏导数就是工溜的函数,它就称为函数Z = /(工1)对自变量式的偏导函数,记做 & 堂凯瓦,气或九(")类似的,可以定义函数z= /(兀力对自变量W的偏导函数,记做dz山偏导数的概念可知,/3'力在点(如儿)处对工的偏导数九成。

/)显然就是偏导函数九3',)在点成°疗°)处的函数值,就像-•元函数的导函数-•样,以后在不至于混淆的地方也把偏导函数简称为偏导数.至于求z=的偏导数,并不需要用新的方法,因为这里只有一个自变量在变动,另外dz一个自变量看作是固定的,所以仍旧是一元函数的微分法问题,求欲时,只要把*暂时看作常最而对工求导;求莎时,则只要把式智时看作是常量,而对V求导数.偏导数的概念还可以推广导二元以上的函数,例如三元函数〃 = /(兀MZ)在点(、,yz)处对式的偏导数定义为岫Rx +Ax, y ,z)・Rx ,y ,z)九(X'V’z) = A XT O A X其中(X'W'Z)是函数〃 = /3,V,z)的定义域的内点,它们的求法也仍旧是一元函数的微分法问题例求z = / sin 2y的偏导数dz解瓦=2xsin 2〉,dzdy _ 2/COS2〉二偏导数的几何意义二元函数z= '3,)在点3o,Wo)的偏导数的几何意义疗° J3o,〉o)) u o77*(工疗)[心r、』y-y^\耳口设为曲面z = J、…上的一点,过°点作平面/ 气截此曲面得•曲线,此曲线在平面^=^0上的方程为Z = /(X,%),则导数小/3'")"・命即偏导数兀(%必),就是这曲线在"。

偏导数的几何意义

偏导数的几何意义

偏导数的几何意义导数是微积分的重要概念,描述了函数的变化率和切线的斜率。

而函数可以是多变量的,也就是包含多个自变量的函数。

在多变量函数中,我们常常使用偏导数来描述函数在某个指定变量处的变化率。

本文将会探讨偏导数的几何意义以及其在实际应用中的重要性。

一、偏导数的定义和计算方法首先,我们来了解一下偏导数的定义。

对于多变量函数f(x1,x2,...,xn),我们可以将其中一个自变量视为固定值,而对其他自变量求导。

这就得到了偏导数。

偏导数可以记作∂f/∂xi,其中∂表示对单个变量求导。

计算偏导数的方法与对单变量函数求导的方法类似。

对于多变量函数f(x1,x2,...,xn),我们将其中的其他自变量视为常数,然后对指定的自变量进行求导。

例如,对于函数f(x,y)=x^2+y^2,在x处求偏导数时,我们将y视为常数,对x进行求导,得到2x;而在y处求偏导数时,我们将x视为常数,对y进行求导,得到2y。

二、1. 偏导数与斜率的关系偏导数可以看作是多变量函数图像上某点处的切线斜率。

在二维平面中,对于函数f(x,y),偏导数∂f/∂x和∂f/∂y分别表示了函数在x和y 方向上的变化率。

因此,它们可以用来确定函数图像上某点处的切线斜率。

当在点(x0,y0)处求对x的偏导数时,结果表示了函数曲面在(x0,y0)点处关于x轴的切线斜率。

同理,对y的偏导数可表示函数曲面在(x0,y0)点处关于y轴的切线斜率。

2. 偏导数与方向导数的关系方向导数是一种描述函数在给定方向上变化率的概念。

对于多变量函数f(x1,x2,...,xn),它的方向导数在点(x0,y0,...,zn)处的方向u处定义为:Duf(x0,y0,...,zn) = ∇f(x0,y0,...,zn)·u其中∇f(x0,y0,...,zn)表示函数在点(x0,y0,...,zn)处的梯度向量,u表示方向向量。

梯度向量可以看作是偏导数组成的向量,即:∇f(x0,y0,...,zn) = ( ∂f/∂x0, ∂f/∂y0,..., ∂f/∂zn )因此,可以将方向导数与偏导数联系起来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§8-5 多元函数微分学的几何应用
A 级同步训练题:
一、客观题:
1、 曲面z=F(x,y,z)的一个法向量为( )
(A ){1,,-'''z y x F F F } ; (B ){1,1,1-'-'-'z y z F F F }; (C ){,,,z y x F F F '''} ; (D ){1,,y z F F '-'-}.
2、 旋转抛物面z=x 2+2y 2-4在点(1,-1,-1)处的法线方程为( )
(A )
114121-+=+=-z y x ; (B )11
4121-+=
-+=-z y x ; (C )114121-+=+=--z y x ; (D )1
14121--=
-=-+z y x . 3、曲线2
,ln ),1sin(t z t y t x ==-=在对应于1=t 点处的切线方程是( )
(A)
11
11-=
=z y x ; (B) 21
111-=
-=z y x ; (C) 2
111-=
=z y x ; (D) 2
11z y x ==. 4、曲线x=t 3,y=t 2
,z=t 在点(1,1,1)的切向量s =。

5、x 2-y 2+z 2=3在点(1,1,1)的切平面方程为
二、求曲面πππ
=-+z
x
y
y x 在点处的切平面和法线方程 。

三、求曲线3
2
,,t z t y t x ===上的点,使曲线在该点处的切线平行于平面16=-z y 。

四、求曲线19,1,123
2
--=+=--=t t z t y t t x 上的点,使曲线在该点处的切线垂直于
平面0432=+--z y x 。

五、求曲面z=x 2+y 2在(1,2,2)处的切平面与法线方程。

B 级同步训练题:
一、客观题:
1、 设曲面xy z =上点的切平面平行于平面,
则点到已知平面的距离等于( )
(A )
;(B ) ;(C )
21
24 ; (D ).
2、曲面)cos(y x x e
z yz
++=在点⎪⎭

⎝⎛1,0,2π处的法线方程为( )
(A )
1
1
2
122-=
+
=
-
z y x π
π
π
; (B )1
1
212
2--=
+
=
-
-z y x π
ππ
; (C )
1
1
2
122-=
-
=
-
-
z y x π
ππ
; (D )1
1
2
12
2--=
-
=
-
-z y
x π
ππ
. 3、设曲面2
2
y x z -=在点)3,2,1(-处的切平面为,则点到的距离为( ) (A )21- ;(B )21 ;(C )
21
9 ;(D )21
9-
.
4、若曲线t z t y t x tan ,sin ln ,cos ln ===在对应于点处的切线与平面交角的正弦值是( ) (A)
6
1; (B) 6
1-
; (C) 0; (D) 1.
5、设都是可微函数,则曲线在点处的法平面方程为________
6、若曲线⎩⎨⎧=++=--3
20
2
2222z y x z y x 在点处的切向量与轴正向成钝角,则它与轴正向夹角的余弦_______
7、设函数具有一阶连续偏导数,且
1)1,1,1(,1)1,1,1(,3)1,1,1(=---=--=--w v u F F F ,曲面过点)1,1,1(--P ,则曲面过点的法线与平面的交角为_______ 。

8、设曲线2,12,122
2
+=-=+=t z t y t x 在对应点处的法平面为,则点)2,2,1(-到的距离______
二、求函数z y x u 32+-=在点(1,1,1)处沿球面外法线方向的方向导数。

三、求曲线t z t y t x ===,2,2
3
上的点,使曲线在该点处的切线平行于平面1=++z y x 。

四、求曲线上的点,使曲线在该点处的法平面平行于平面,并写出曲线在该点处的切线方程。

五、在柱面上求一曲线,使该曲线经过点,且在任一点处的切向量与轴的夹角等于与轴的夹
角。

六、设M (1,0,0)为曲面),(y x f e z
=上的一点,且2)0,1(='
x f ,2)0,1(-='y f ,求曲面在点M 处的切平面。

七、证明曲线)cos(),sin(,mt n z mt n y mt x ===上任意一点的切线与平面的夹角都相同
(其中0,0≠≠n m )。

辅导与参考答案: A 级同步训练题:
一、客观题:
1、(A )
2、(B )
3、(C)
4、{}1,2,3
5、01=-+-z y x 二、解:对应的切平面法向量{}πππππππππln ),ln 1(),ln 1(-++=n
切平面方程0)ln 2(ln ))(ln 1(=+-⋅-++ππππz y x , 法线方程
π
π
ππππln ln 1ln 1--=
+-=+-z y x 。

三、解:设所求的点对应于,对应切线方向向量
{}2
001,2,3S t t = ,2001230S n t t ⋅=-=
解得:和40=t ,和)64,16,4(。

四、解:设所求的点对应于,对应的切线方向向量
{}20022,1,39S t t =--,
解得:,所求点为(-1,3,-11)。

五、解:1,2,2,),,(2
2
-===-+=z y x F y F x F z y x z y x F
在点(1,2,2)处{}1,4,2-=n
切平面为0842=--+z y x ;法线为
1
2
4221--=
-=-z y x 。

B 级同步训练题:
一、客观题:
1、(C )
2、(D )
3、(C )
4、(A)
5、
6、41
1-
7、 8、
6
1
二、解:{}{}2,2,221,1,1n x y z ==,
()
()
()
32
1
1,1,11,1,11,1,1=-==z u
y u
x u
∂∂∂∂∂∂,
3
2313312311=+⋅-⋅=n u ∂∂。

三、解:设所求的点对应于,对应的切线方向向量
{}2003,4,1S t t =,2003410S n t t ⋅=++=;
310-=t 和10-=t ,所求点为:⎪⎭

⎝⎛--31,92,271和)1,2,1(--。

四、解:对应的法平面法向量
平行于平面法向量
,和;
所求点为:和,
切线方程: 和 。

五、解:设曲线的参数方程为
{}sin ,cos ,()S R t R t z t '=-,
S 与轴夹角余弦;
S 与轴夹角余弦,
由,得
由曲线过点,得
所求曲线为: 。

六、解:z
z y y x x z
e F
f F f F e y x f z y x F -='='=-=,,,),(),,(,
{}0222,1,2,2=-----=z y x n 切平面为
七、
八、证:对任意,{}{},cos(),sin()1,cos(),sin()S m mn mt mn mt m n mt n mt =-=
yOz 平面法向量{}1,0,0i =
,cos()S i ∧
⋅=
()S i ∧
⋅= 。

相关文档
最新文档