数学建模实验指导书2011

合集下载

《数学建模》实验指导书.doc

《数学建模》实验指导书.doc
二、实验类型:设计
三、实验环境
计算机、软件Matlab7.0、Lindo5.0以上的环境
四、实验内容
1、求解线性规划问题:
2、某车间有甲、乙两台机床,可用于加工三种工件。假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400、600和500,且已知用三种不同车床加工单位数量不同工件所需的台时数和加工费用如下表。问怎样分配车床的加工任务,才能既满足加工工件的要求,又使加工费用最低?
车床类型
单位工件所需加工台时数
单位工件的加工费用
可用台时数
工件1
工件2
工件3
工件1
工件2
工件3

0.4
1.1
1.0
13
9
10
800

0.5
1.2
1.3
11
12
8
900
3、某工厂生产每件产品需经A,B,C三个车间,每个车间所需的工时数如下表所示,已知生产单位甲产品工厂可获利4万元,生产单位乙产品工厂可获利3万元,问该厂如何安排生产才能使每周获得的利润最大?
t0=0;tf=10;
[t,y]=ode45('eq3',[t0 tf],[0 0]);
T=0:0.1:2*pi;
X=10+20*cos(T);
Y=20+15*sin(T);
plot(X,Y,'-')
hold on
plot(y(:,1),y(:,2),'*')
在chase3.m中,不断修改tf的值,分别取tf=5, 2.5, 3.5,…,至3.15时,
X
-2
-1.7
-1.4
-1.1

数学建模(2011.3)

数学建模(2011.3)

机市场上最有效率和最为经济的机型。
价格作为市场调节的杠杆,是非常重要的一个因素,对研 发的一种新型客机如何定价?
引例
问题分析
定价策略涉及到诸多因素,考虑以下主 要因素: 价格、竞争对手的行为、出售客机的数 量、波音公司的客机制造量、制造成本、波 音公司的市场占有率等等因素。
假设与符号
1. 型号: 只有一种型号飞机,如707型;价格记为 p 2. 销售量:其销售量只受飞机价格p的影响,设 N为全球销售量 。根据市场历史的销售规律和需 求曲线,假设该公司销售部门预测得到:
3
C ( x ) 50 1 . 5 x 8 x 4
6. 利润:
R(p) = pxC(x)
上一页 下一页 主 页
数学模型
max R(p)= pxC(x) s.t. p,x0。x是p的函数 问题化简
R ( p ) px C ( x ) px ( 50 1 . 5 x 8 x
x
3
x
2
x 1 1 x
2
x 1
1 x
3. 点迭代法
迭代举例-Matlab实现程序
第二/三步 迭代+初始值
设定初值 x0=1, xn+1 = (xn),n =0,1,… 用 MATLAB 编程(died2.m) X(1)=1;y(1)=1;z(1)=1;(初始点) for k=1:20 x(k+1)=x(k)^3-x(k)^2-1; %1 (x) y(k+1)=(y(k)^2+y(k)+1)^(1/3); %2 (y) z(k+1)=1+1/z(k)+1/z(k)^2; %3 (z) end X,y,z

数学模型实验指导书

数学模型实验指导书
过程:
1.分析雪堆的融化过程;
2.建立雪堆融化的微分方程模型;
3.利用所给数据,确定参数;
4.确定初始条件,求解方程(模型).
5.扩展讨论:雪堆形状不同时的建模和求解方法(供参考,不作要求)
问题二:现有一只兔子、一匹狼,兔子位于狼的正西100米处,假设兔子与狼同时发现对方并一起起跑,兔子往正北60米处的巢穴跑,而狼在追兔子。已知兔子、狼是匀速跑且狼的速度是兔子的两倍。问兔子能否安全回到巢穴?
要求:先求出房屋总价格、首付款额、月付还款额三者的符号解;再求出当S=120m2,P=5200元/ m2,r=5.58%时三者的数值解。
过程:(1)给出模型假设及建立相应的差分方程;
(2)利用递推公式法求解差分方程的符号解;
(3)利用Matlab求解差分方程的符号解;
(4)求出当S=120m2,P=5200元/ m2,r=5.58%时三者的数值解;
理解一阶、二阶微分法在建模过程中的应用,熟悉利用MATLAB软件求解微分方程的方法。注意模型的普遍性和模型的广泛性。
二、实验内容:
问题一:一个半球体状的雪堆,其体积V的融化速率与半球面面积S成正比,比例系数K>0.假设在融化过程中雪堆始终保持半球体状,已知初始半径为r0的雪堆在开始融化的3小时内,融化了其原体积的7/8,问该雪堆全部融化需要多少时间?
图4 某城市单行线车流量
(1)建立确定每条道路流量的线性方程组;
(2)使用MATLAB求线性方程组;
(3)分析哪些流量数据是多余的;
(4)为了唯一确定未知流量, 需要增添哪几条道路的流量统计;
问题二:某地有一座煤矿, 一个发电厂和一条铁路. 经成本核算, 每生产价值1元钱的煤需消耗0.3元的电; 为了把这1元钱的煤运出去需花费0.2元的运费; 每生产1元的电需0.6元的煤作燃料; 为了运行电厂的辅助设备需消耗本身0.1元的电, 还需要花费0.1元的运费; 作为铁路局, 每提供1元运费的运输需消耗0.5元的煤, 辅助设备要消耗0.1元的电. 现煤矿接到外地6万元煤的订货, 电厂有10万元电的外地需求, 问: 煤矿和电厂各生产多少才能满足需求

《数学建模》实验指导书(修改)

《数学建模》实验指导书(修改)

《数学建模》实验指导书(修改)《数学建模》实验指导书实验⼀:matlab函数拟合学时:4学时实验⽬的:掌握⽤matlab进⾏函数拟合的⽅法。

实验内容:实例2:根据美国⼈⼝从1790年到1990年间的⼈⼝数据(如下表),确定⼈⼝指数增长模型(Logistic模型)中的待定参数,估计出美国2010年的⼈⼝,同时画出拟合效果的图形。

表1 美国⼈⼝统计数据实验⼆:⽤Lindo求解线性规划问题学时:4学时实验⽬的:掌握⽤Lindo求解线性规划问题的⽅法,能够阅读Lindo结果报告。

实验内容:实例2:求解书本上P130的习题1。

列出线性规划模型,然后⽤Lindo求解,根据结果报告得出解决⽅案。

使⽤Lindo的⼀些注意事项1.“>”与“>=”功能相同2.变量与系数间可有空格(甚⾄回车),但⽆运算符3.变量以字母开头,不能超过8个字符4.变量名不区分⼤⼩写(包括关键字)5.⽬标函数所在⾏是第⼀⾏,第⼆⾏起为约束条件6.⾏号⾃动产⽣或⼈为定义,以“)”结束7.“!”后为注释。

8.在模型任何地⽅都可以⽤“TITLE”对模型命名9.变量不能出现在⼀个约束条件的右端10.表达式中不接受括号和逗号等符号11.表达式应化简,如2x1+3x2-4x1应写成-2x1+3x212.缺省假定所有变量⾮负,可在模型“END”语句后⽤“FREE name”将变量name的⾮负假定取消13.可在“END”后⽤“SUB”或“SLB”设定变量上下界。

例如:“sub x1 10”表⽰“x1<=10”14.“END”后对0-1变量说明:INT n或INT name15.“END”后对整数变量说明:GIN n或GIN name实验四:⽤Lingo求解⾮线性规划问题学时:2学时实验⽬的:掌握⽤Lingo求解⾮线性规划问题的⽅法。

实验内容:求解书本上P132的习题6、7。

列出⾮线性规划模型,然后⽤Lingo求解,根据结果报告得出解决⽅案。

数学建模实验教学大纲

数学建模实验教学大纲

数学建模实验教学⼤纲《数学建模》实验教学⼤纲课程名称:数学建模课程编号:011850课程类别:专业基础选修课学时/学分:32/2开设学期:第4、5学期开设单位:数学与统计学院适⽤专业:数学与应⽤数学说明⼀、课程性质专业任选课⼆、教学⽬标通过上机实验, 对⼀些数学模型进⾏实际计算, 可以达到熟悉数学软件, 提⾼解决问题的能⼒. 要求学⽣先理解问题, 弄懂模型, 对软件有⼀定了解, 然后上机操作编程和利⽤专门软件计算. 数模实验是进⾏数学建模的实践性环节, 学⽣以三⼈为⼀组组成兴趣⼩组进⾏研究. 经过⼀段时间的探讨, 完成⼀篇数模论⽂, 包括模型的假设、建⽴和求解、计算⽅法的设计和计算机实现、结果的分析和检验、模型的改进等⽅⾯内容.三、学时分配表四、实验⽅法与要求建议实验课教师不再讲授, 主要靠学⽣⾃学, 教师可以适当指导. 学⽣上机时⼀边学习Matlab 软件介绍, ⼀边仿照例题的格式进操作和运⾏并针对实验内容完成实验操作.五、考核⽅式及要求1.考核⽅式:考试;考查2.成绩评定:计分制:百分制;五级分制;两级分制成绩构成:总评成绩由平时考核成绩、中期考核成绩和期末考核成绩综合评定本⽂实验⼀⼈⼝的预测⼀、实验性质:实验类别:专业⽅向/选修实验类型:综合性计划学时:2学时实验分组:⼆、实验⽬的:1.了解数据拟合的基本原理;会⽤matlab 求解数据拟合问题;2.要求学⽣了解Matlab 软件的基本操作、基本功能、基本运算和作图.三、实验的基本内容和要求:1.熟习Matlab 软件的作图;2. 掌握利⽤Matlab 软件解决拟合问题的⽅法;3.对上机实验的内容写出算法步骤, 记录和分析计算结果, 写出实验报告. 四、实验仪器设备及材料:计算机, Matlab数学软件五、实验操作要点:1.上机时⼀边学习Matlab 软件介绍⼀边仿照例题的格式进操作和运⾏;2.对具体问题建⽴的模型进⾏求解.六、实验教学建议:实验课教师不再讲授, 主要靠学⽣⾃学, 教师可以适当指导.实验⼆炼油⼚的⽣产计划⼀、实验性质:实验类别:专业⽅向/选修实验类型:综合性计划学时:2学时实验分组:⼆、实验⽬的:1. 了解线性规划模型的建⽴⽅法;2. 会⽤Matlab 软件求解线性规划问题.三、实验的基本内容和要求:1. 要求学⽣掌握Matlab 软件的操作;2. 利⽤Matlab 软件求解炼油⼚的⽣产计划;3. 对上机实验的内容写出算法步骤, 记录和分析计算结果, 写出实验报告.四、实验仪器设备及材料:计算机, Matlab数学软件五、实验操作要点:1.上机时⼀边学习Matlab 软件介绍⼀边仿照例题的格式进操作和运⾏;2.对具体问题建⽴的模型进⾏求解.六、实验教学建议:实验课教师不再讲授, 主要靠学⽣⾃学, 教师可以适当指导.实验三⼈寿保险的影响因素⼀、实验性质:实验类别:专业⽅向/选修实验类型:综合性计划学时:2学时实验分组:⼆、实验⽬的:1.了解统计回归的基本原理;2. 掌握线性回归与⾮线性回归.三、实验的基本内容和要求:1. 会⽤matlab 求解统计回归问题;2. 要求学⽣进⼀步了解Matlab 软件的操作;3. 对上机实验的内容写出算法步骤, 记录和分析计算结果, 写出实验报告.四、实验仪器设备及材料:计算机, Matlab数学软件五、实验操作要点:1.上机时⼀边学习Matlab 软件介绍⼀边仿照例题的格式进操作和运⾏;2.利⽤Matlab 软件求解⼈寿保险的影响因素.六、实验教学建议:实验课教师不再讲授, 主要靠学⽣⾃学, 教师可以适当指导.实验四⽔塔流量的估计⼀、实验性质:实验类别:专业⽅向/选修实验类型:综合性计划学时:2学时实验分组:⼆、实验⽬的:1. 掌握模型的建⽴⽅法;2. 掌握值⽅法三、实验的基本内容和要求:1. 表述⽔塔流量问题的分析过程;2. 利⽤插值计算⽔塔的流量;利⽤曲线拟合计算⽔塔的流量;3. 对上机实验的内容写出算法步骤, 记录和分析计算结果, 写出实验报告四、实验仪器设备及材料:计算机, Matlab数学软件五、实验操作要点:⾸先在上机前写出源程序, 上机时进⼊matlab 语⾔运⾏环境输⼊源程序, 然后调试和运⾏.六、实验教学建议:实验课教师不再讲授, 主要靠学⽣⾃学, 教师可以适当指导.实验五微分⽅程实验⼀、实验性质:实验类别:专业⽅向/选修实验类型:综合性计划学时:2学时实验分组:⼆、实验⽬的:1. 认识微分⽅程的建模过程;2. 认识微分⽅程的数值解法.三、实验的基本内容和要求:1. 熟练应⽤Matlab的符号求解⼯具箱求解常微分⽅程;2. 掌握机理分析建⽴微分⽅程的⽅法和步骤;3. 提⾼Matlab的编程应⽤技能.四、实验仪器设备及材料:计算机, Matlab数学软件五、实验操作要点:1.上机时⼀边学习Matlab 软件介绍⼀边仿照例题的格式进操作和运⾏;2.对具体问题建⽴的模型进⾏求解.六、实验教学建议:实验课教师不再讲授, 主要靠学⽣⾃学, 教师可以适当指导.指导书与参考资料:[1]. 姜启源, 谢⾦星等.数学模型(第三版)[M].北京:⾼等教育出版社, 2003.8[2]. 张志涌等Matlab教程(2009年修订)[M].北京:北就航空航天⼤学出版社2009.8.[3]. 周义仓, 赫孝良.数学建模实验[M].西安:西安交通⼤学出版社, 1999.8.执笔:王汝军审核:朱睦正制(修)订时间:2011-10-20。

数学模型实验指导书

数学模型实验指导书

数学规划在工程技术、经济管理、科学研究和日常生活等许多领域中,人们经常遇到的一类决策问题是:在一系列客观或主观限制条件下,寻求使关注的某个或多个指标达到最大(或最小)的决策。

例如,结构设计要在满足强度要求条件下选择材料的尺寸,使其总重量最轻;资源分配要在有限资源约束下制定各用户的分配数量,使资源产生的总效益最大;运输方案要在满足物资需求和装载条件下安排从各供应点到各需求点的运量和路线,使运输总费用最低;生产计划要按照产品工艺流程和顾客需求,制定原料、零件、部件等订购、投产的日程和数量,尽量降低成本使利润最高。

上述这种决策问题通常称为优化问题。

人们解决这些优化问题的手段大致有以下几种:1.依赖过去的经验判断面临的问题。

这似乎切实可行,并且没有太大的风险,但是其处理过程会融入决策者太多的主观因素,常常难以客观地加以描述,从而无法确认结果的最优性。

2.做大量的试验反复比较。

这固然比较真实可靠,但是常要花费太多的资金和人力,而且得到的最优结果基本上离不开开始设计的试验范围。

用数学建模的方法建立数学规划模型求解最优决策。

虽然由于建模时要作适当的简化,可能使得结果不一定完全可行或达到实际上的最优,但是它基于客观规律和数据,又不需要多大的费用,具有前两种手段无可比拟的优点。

如果在此基础上再辅之以适当的经验和试验,就可以期望得到实际问题的一个比较圆满的回答,是解决这种问题最有效、最常用的方法之一。

在决策科学化、定量化的呼声日益高涨的今天,用数学建模方法求解优化问题,无疑是符合时代潮流和形势发展需要的。

数学规划模型一般有三个要素:一是决策变量,通常是该问题要求解的那些未知量,不妨用n维向量x=(x1,x2,…,x n)T表示;二是目标函数,通常是该问题要优化(最小或最大)的那个目标的数学表达式,它是决策变量x的函数,这里抽象地记作f(x);三是约束条件,由该问题对决策变量的限制条件给出,即x允许取值的范围x∈Ω,Ω称可行域,常用一组关于x的不等式(也可以有等式)g i(x)≤0(I=1,2,…,m)来界定。

2011数学建模资料

2011数学建模资料

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):交巡警服务平台的设置与调度优化模型摘要交巡警是在我国兴起不久的一种全新的警种,为了在突发事件或者重大突发事件中得到充分的调度,使之能在第一时间到达事故现场,交巡警服务平台必须设置合理。

本文通过对该城市交巡警服务平台的设置和调度的合理性的分析,得出了最佳优化方案,其算法适合于其他城市交巡警服务平台的规划。

针对于分配平台管辖范围、应对突发事件的调度、平台工作量的不均衡、优化全市服务平台设置方案、设置最佳围堵方案这五个问题,我们建立了两个模型:网络中各点间最短距离的矩阵求法(Floyd算法)模型和指派模型。

针对问题一,建立Floyd算法模型,求出A区中各节点间的最短距离,分别按照距离优先、发案率优先的原则得出了分配管辖范围不同的方案,最后通过层次分析法得出了最优方案。

针对问题二,建立了指派模型。

利用模型一获得的附表3的数据,建立数学模型求得最优调度方案。

2011高教社杯全国大学生数学建模竞赛

2011高教社杯全国大学生数学建模竞赛

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):同济大学参赛队员(打印并签名) :1. 冯建设2. 赵云波3. 刘雄飞指导教师或指导教师组负责人(打印并签名):日期: 2011 年 9 月 11日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号)城市表层土壤重金属污染分析摘要:本文中,城市表层土壤金属污染分析需要综合不同区域,不同金属的综合影响,根据随机的数据采样点,通过统计与插值的分析方法进行处理。

首先可以考虑对采样点进行网格化的数据处理,然后通过Kriging 方法进行空间散乱点的插值处理。

通过对函数的插值结果的观察,与原始采样数据的空间分布相比较,可以发现二者具有较好的吻合度,结果令人满意。

对城区内不同区域重金属污染程度的综合评价,要对各重金属评价指标分别加权。

利用熵权法来确定各重金属评价指标的权重系数,熵权法的实际意义在这里体现得尤为明显,根据熵权法得到的相关系数均为正值,这一点也验证了熵权法在寻找个金属污染物权重时的正确性,然后由综合权重进行线性加和,得到各个区域的综合评定指标,同时根据金属含量背景值进行等级标准的划分,从而确定不同区域的污染程度,结果与实际完全符合,说明熵权法的运用是正确的,从在建立重金属污染的传播特征模型,先假设了污染源的位置,然后考虑根据扩散定律建立模型,根据一维扩散方程建立模型,但是这样的话在数据处理上必须首先根据采样点浓度特征大致确定污染源的位置,然后建立方程,根据采样数据提取信息求解,由于采样点较多,本问题的处理可能会遗漏部分有用信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模实验指导书
数学建模实验项目一 初等模型
一、 实验目的与意义:
1、练习初等问题的建模过程;熟悉数学建模步骤
2、练习Matlab 基本编程命令;
二、 实验要求:
1、较能熟练应用Matlab 基本命令和函数;
2、注重问题分析与模型建立,了解建模小论文的写作过程;
3、提高Matlab 的编程应用技能。

三、 实验学时数:4学时
四、 实验类别:综合性
五、 实验内容与步骤:
练习:
基本命令 :循环、绘图、方程(组)求解
作业:
1、某大学青年教师从31岁开始建立自己的养老基金,他把已有的积蓄10000元也一次性地存入,已知月利率为0.001(以复利计),每月存入700元,试问当他60岁退休时,他的退休基金有多少?又若他退休后每月要从银行提取1000元,试问多少年后他的基金将用完?
2、试对公平席位分配问题进行编程求解。

3、编程求解差分方程的阻滞增长模型1(1)k k k x bx x +=-,分别令b 从1.8逐渐增加,考察序列k x 收敛、2倍周期收敛、4倍周期收敛……,直至一片混乱的情况,试以b 为横坐标,收敛点为纵坐标作图。

(与7.3节图8比较)。

数学建模实验项目二 数学规划
一、实验目的与意义:
1、认识数学规划的建模过程;
2、认识数学规划的各种形式和解法。

二、实验要求:
1、熟练应用Matlab 、lindo 、lingo 求解工具箱求解数学规划;
2、掌握建立数学规划的方法和步骤;
3、提高Matlab 、lindo 、lingo 的编程应用技能。

三、实验学时数:4学时
四、实验类别:综合性
五、实验内容与步骤:
练习:
1、奶制品生产销售计划问题的再讨论。

2、自来水输送问题。

3、货机装运问题。

4、选课策略问题。

5、第四章 习题4的模型求解及灵敏度分析。

6、第四章 习题6的模型求解及灵敏度分析。

作业:
1、市场上有n 种资产i s (i=1,2……n )可以选择,现用数额为M 的相当大的资金作一个时期
的投资。

这n 种资产在这一时期内购买i s 的平均收益率为i r ,风险损失率为i q ,投资越分散,
总的风险越小,总体风险可用投资的i s 中最大的一个风险来度量。

购买i s 时要付交易费,(费率
i p ),当购买额不超过给定值i u 时,交易费按购买i u 计算。

另外,假定同期银行存款利率是0r ,既无交易费又无风险。

(0r =5%) 已知n=4时相关数据如下:
试给该公司设计一种投资组合方案,即用给定达到资金M ,有选择地购买若干种资产或存银行生息,使净收益尽可能大,使总体风险尽可能小。

试用不同程序对你建立的模型求解
数学建模实验项目三 微分方程模型
一、 实验目的与意义:
1、认识微分法的建模过程;
2、认识微分方程的数值解法。

二、 实验要求:
1、熟练应用Matlab 的符号求解工具箱求解常微分方程;
2、掌握机理分析建立微分方程的方法和步骤;
3、 提高Matlab 的编程应用技能。

三、 实验学时数:4学时
四、 实验类别:综合性
五、 实验内容与步骤:
练习:
1、传染病模型的求解与(SIR 模型)的数值试验.
2、食饵-捕食者模型中参数取不同数值的求解。

3、鱼塘中鱼群生长模型及其求解(第五章习题 14)。

作业:
1、 某天中午11:00时,在一个住宅内发现一具受害者尸体。

法医于11:35赶到现场,立即测得死者体温是30.8℃,一个小时以后再次测得体温为29.0℃,法医还注意到当时室温是28.0℃,请你建立一个数学模型来推断出受害者的死亡时间。

2、在一个封闭的大草原里生长着狐狸和野兔,设t 时刻它们的数量分别为y(t)和x(t),已知满足以下微分方程组
y xy dt dy 9.0001.0-= x xy dt dx 402.0+-= (1)建立上述微分方程的轨线方程;
(2)在什么情况下狐狸和野兔数量出现平衡状态?
(3) 建立另一个微分方程来分析人们对野兔进行捕猎会产生什么后果?对狐狸进行捕猎又会产生什么后果?
数学建模实验项目四概率统计模型
一、实验目的与意义:
1、加强对概率统计问题的建模过程的认识;
2、进一步熟悉数学建模的全过程。

二、实验要求:
1. 能熟练应用概率统计模型的建模过程去分析问题、解决问题;
2. 熟悉Matlab统计工具箱。

三、实验学时数:4学时
四、实验类别:综合性
五、实验内容与步骤:
练习:
1、牙膏的销售量的模型建立与销售预测。

2、软件开发人员的薪金模型建立与验证。

3、酶促反应问题的建模与验证。

作业:
1
置信,但现在已成为事实。

试建立数学模型并根据表中数据推算出2020年世界人口的数量。

并对世界人口进行中长期预测。

(置信度95%).
3、某零件上有一段曲线,为了在程序控制机床上加工这一零件,需要求这段曲线的解析表达式,在曲线横坐标x处测得纵坐标y共11对数据如下:
求这段曲线的纵坐标y关于横坐标x的二次多项式回归方程.。

相关文档
最新文档