购房贷款的数学建模
房屋贷款中的数学建模问题

房屋贷款中的数学建模问题随着房屋价格的不断上涨,越来越多的人为了能够拥有一套自己的房子,选择了贷款这个方法。
在贷款的过程中,相信大家都会发现,有很多的数据需要我们去计算,比如贷款额度、还款期限、月供等等。
这些都涉及到数学建模,今天,我们就来聊一聊房屋贷款中的数学建模问题。
一、贷款额度计算在贷款的过程中,首先需要算出来的就是贷款额度。
贷款额度与房屋价格、首付比例、利率、还款期限等多个因素有关。
如果我们已经知道了房屋价格、首付比例和还款期限,那么我们就可以通过如下的公式来计算贷款额度:贷款额度 = 房屋价格 × (1 - 首付比例)举个例子,如果房屋价格是100万,首付比例是30%,还款期限是25年,利率是4.9%。
那么贷款额度就可以这样计算:贷款额度 = 100万 × (1 - 30%) = 70万二、等额本息还款计算在贷款的过程中,最常见的还款方式就是等额本息还款。
所谓等额本息还款,就是指每月还款金额相同,还款期限相同,并且每月还款分为两部分,一部分是本金,一部分是利息。
那么我们该如何计算每月需要还多少钱呢?首先,我们需要通过利率、还款期限和贷款额度来计算出每月需要还的利息。
而每月需要还的利息,可以通过如下的公式来计算:月利率 = 年利率 ÷ 12每月利息 = 贷款余额 ×月利率贷款余额 = 贷款额度 ÷还款期限 × (期限 - 已还月份)接着,我们就可以通过如下的公式来计算出每月需要还的本金:每月本金 = 贷款额度 ÷还款期限最后,我们就可以通过如下的公式来计算出每月需要还的总额:每月还款额 = 每月本金 + 每月利息如果你觉得这样计算太麻烦了,也可以通过相关的贷款计算器来计算出每月需要还多少钱。
三、提前还款计算在贷款过程中,如果有一天我们有一笔钱,想要提前还清贷款,那么我们该如何计算提前还款所需要的费用呢?这个问题其实也可以通过数学建模来解决。
数学建模房贷还款问题

数学建模房贷还款问题房贷是大部分人买房的首选方式,但对于许多人来说,如何合理规划房贷还款方式并确保在还款期限内完成还款是一个挑战。
数学建模可以为我们提供一个优化的解决方案。
本文将探讨数学建模在房贷还款问题中的应用,帮助我们了解如何有效管理和规划房贷还款。
一、问题描述房贷还款问题可以被视为一种贷款利息问题。
假设我们购买了一套房子,假设贷款金额为P,贷款期限为n年,年利率为r。
我们需要确定每月的还款金额,以便在贷款期限内完成还款。
二、贷款本金首先,我们需要计算每月的贷款本金。
贷款本金是贷款金额除以还款期限的总月数。
例如,如果贷款金额为100万,还款期限为20年,则贷款本金为100万除以240个月,即4166.67元/月。
三、贷款利息其次,我们需要计算每月的贷款利息。
贷款利息是剩余贷款金额乘以月利率。
在每个月的还款后,剩余贷款金额会相应减少,因此每月的贷款利息也会随之变化。
例如,如果月利率为0.5%,剩余贷款金额为80万元,则每月的贷款利息为80万元乘以0.5%,即4000元。
四、月还款额最后,我们需要计算每月的还款金额。
每月的还款金额是贷款本金加上贷款利息。
例如,在上述例子中,每月的还款金额为4166.67元加上4000元,即8166.67元。
五、优化策略数学建模可以帮助我们优化房贷还款策略,以减少还款利息的支出,从而实现更快的还款。
下面是一些优化策略的示例:1. 提前还款:在贷款期限内提前偿还部分或全部贷款本金,可以减少剩余贷款金额,从而减少每月的贷款利息支出。
然而,有时提前还款可能会产生违约金或手续费等额外费用,因此需要综合考虑成本和收益。
2. 增加还款额:如果财务条件允许,可以适当增加每月的还款额。
通过提高还款额,可以更快地偿还贷款本金,并减少贷款利息支出。
3. 变更还款周期:可以选择较短的还款周期,如每两周还款一次。
较短的还款周期可以有效减少贷款利息支出。
4. 利率优化:如果贷款利率有一定的浮动范围,可以关注市场利率变动,并在利率较低时进行贷款利率重新协商。
住房贷款问题探究(2)———数学建模

6.3 问题(3)的解答:我们通过查阅有关资料了解目前长沙的物价水平[1],得出月收入3500元左右家庭的月开支具体情况如下:单位:元表1在目前收入及月开支波动性不大的情况下,之前我们已约定:E=月总收入—月消费总金额—每月还贷金额,结合表1及问题(2)解得的每月还贷金额(A)值,我们求得E的范围约为:[-300,100].由E的范围可知,如果买房,他们的经济上不能维持正常的运行。
因此,目前的经济情况他们不能考虑买房。
6.4问题(4)的解决1.由问题分析,我们将选出一个总利息较小,而且月还贷额又在客户还贷能力以内的借贷方式,如下表一中,我们将在其中寻找一种最优还贷时限.表2 [2]我们将问题(1)中得到的公式推广为.A i =P(1+ri)Mri/ [(1+ri)M-1] (1)还贷总利息公式为Q i =MAi-P (2)将表2中的数据带入(1)、(2)式中,接下来将得到的一系列Ai植与客户还贷能力范围作比较,将一系列Qi作比较。
最终我们得到总利息较小,且还贷额又在客户还贷能力以内的还贷时限为8年,此时的还贷总额为191135元。
2.但此时的总利息依然很高,且客户的月总收入每年会有8%的增长,还贷能力增强。
我们接下来将考虑是否可以采用提前还贷[3]。
(附件3)(1)除开提前还贷总额,剩余的等额还贷总额的计算公式:X=A·T1+A·T2+A·T3+……………+A·TR(3)(2)随着收入的增长,除去日常支出和正常还贷外,可用提前还贷总额:Y=[G(1+8%)-J-A]T2+[G(1+8%)2-J-A]T3+……+[G(1+8%)R-1-J-A]TR-1(4)(其中T1、T2、、T3……TR-1=12个月份.R=M-Y/A)如果实施提前还贷,则还贷总额可表示为:Z=X+Y=AT1+ATR+G(1+8%)T2[1-(1+8%)R-1]/[1-(1+8%)]-A(T2+T3+……TR-1)(5)由于TR并不一定为12个月,我将其估计如表3:表3(3)将表2中的数据分别代入(5)中,即得Z1、Z2Z3Z4估计值。
数学模型--贷款买房问题

x ln( ) x − A0 R N= ln(1 + R)
即M=598(半个月)=24.92年,即只能提前大约1个月还清。由此可见, 该借贷公司如果只有第1个条件的话,那他只能是慈善机构了。 分析(ii),这时=60000-1896=58104,这时你只借仂8104元,而不是 60000元,可以按问题中银行贷款的条件算一算,即令x=632元(每月还 款),R=0.01(月息),求使得=0的N,来看看能否提前还清。 用Maple数学软件,计算得N=21.09年,即实际上提前近四年就可还清, 该公司只要去同样的银行贷款,即使半个月收来的316元不动,再过半个 月合在一起去交给银行,它还可坐收第22年的款近7000元,更何况它可以 利用收到的贷款去做短期(半个月内)的投资赚取额外的钱, 当你把这种初步分析告诉这对年轻夫妇后,他们一定会恍然大悟,从而作 出正确的决策! 当然在实际生活中的贷款买房问题要复杂的多, 当然在实际生活中的贷款买房问题要复杂的多,但上述问题的数学方法仍 然具有指导性。 然具有指导性。
例1 某校一对年轻夫妇为买房要用银行贷款60000元, 月利率0.01,贷款期25年=300月,这对年轻夫妇希望知 道每月还多少钱,25年后就可以还清,假设这对夫妇每 月可有节余700元,是否可以去买房呢? 解:现在的问题就是要求使得A300 =0的x,由(1.2)式知 的 , )
A0 R(1 + R)k x= k (1 + R) − 1
每月还款金额 = (贷款本金 / 还款月数)+(本金 - 已归还本金累计额)×每月利率 还款月数) ( 已归还本金累计额)
等额本金还款法还款金额: 每月应还本金:a/n 每月应还利息:an*i/30*dn 每月应还总金额:a/n+ an*i/30*dn (注:a:贷款本金 ,i:贷款月利率, n:贷款月数, an:第n个月贷 款剩余本金,a1=a,a2=a-a/n,a3=a-2*a/n...以次类推an 第n个月的实际天数, 如平年2月为28,3月为31,4月为30,以次类推) 等额本金还款法利息计算 每月应还利息:an*i/30*dn
数学建模例题解析

1.贷款问题小王夫妇计划贷款20万元购买一套房子,他们打算用20年的时间还清贷款。
目前,银行的利率是0.6%/月。
他们采用等额还款的方式(即每月的还款额相同)偿还贷款。
(1)在上述条件下,小王夫妇每月的还款额是多少?共计付了多少利息?(2)在贷款满5年后,他们认为他们有经济能力还完余下的款额,打算提前还贷,那么他们在第6年初,应一次付给银行多少钱,才能将余下全部的贷款还清?(3)如果在第6年初,银行的贷款利率由0.6%/月调到0.8%/月,他们仍然采用等额还款的方式,在余下的15年内将贷款还清,那么在第6年后,每月的还款额应是多少?(4)某借贷公司的广告称,对于贷款期在20年以上的客户,他们帮你提前三年还清贷款。
但条件是:(i)每半个月付款一次,但付款额不增加,即一次付款额是原付给银行还款额的1/2;(ii)因为增加必要的档案、文书等管理工作,因此要预付给借贷公司贷款总额10%的佣金。
试分析,小王夫妇是否要请这家借贷公司帮助还款。
解答:(1)贷款总月数为N=20*12=240,第240个月的欠款额为0,即。
利用式子(元),即每个月还款1574.70元,共还款(元),共计付利息177928.00元。
(2)贷款5年(即5*12=60个月)后的欠款额为,利用公式:,所以,(元)(3)元,即第六年初,贷款利率,所以余下的15年,每个月还款额为:(元)(4)按照借贷公司的条件(i)每半个月付款一次,但付款额不增加,即一次付款额是原付给银行还款额的,付款的时间缩短,但是前17年的付款总额不变。
帮忙提前三年还清需要资金数:。
对于条件(ii)佣金数:分析:因为预付佣金20000元,按照银行存款利率/月,17年的存款本息为即在第17年需要给付借贷公司的钱少于给付银行的钱。
所以建议请这家借贷公司帮助还款。
2.冷却定律与破案按照Newton冷却定律,温度为T的物体在温度为的环境中冷却的速度与温差成正比。
用此定律建立相应的微分方程模型。
购房贷款的数学建模.doc

购房贷款的数学建模.doc一、问题提出现在人们购房的方式大多通过贷款实现。
贷款的还款方式主要有等额本金和等额本息两种。
那么如何理性地选择合适的还款方式,以确保不会因为贷款而增加过多的经济负担。
因此,通过数学建模来分析和探讨贷款的还款方式选择问题,有助于人们更好地管理自己的财务和购房计划。
二、问题分析(一)贷款基础知识1. 总贷款金额P:指的是购房人申请银行贷款的款项总额,包括贷款本金和利息。
2. 贷款期限n:指的是购房人约定的贷款还款期限,通常为5年、10年、15年、20年、25年、30年。
3. 年利率i:指的是购房人所承担的贷款利率,通常为基准利率上浮5%至30%不等。
(二)等额本金和等额本息还款方式1. 等额本金还款方式:等额本金还款方式是指每个月还款数额相同,但是每个月所支付的利息和本金比例不同。
这是因为每个月的还款中,本金所占比例是相同的,而利息所占比例随着未还本金的减少而减少。
三、模型建立假设购房人贷款时间为n个月,贷款总额为P元,月利率为i,则等额本金还款方式有如下计算公式:每月还款单价a= P/n + i*P*(1-(t-1)/n)第t个月,购房人所要偿还的贷款金额为Mt= a*(n-t+1)其中,t∈[1, n]四、实例分析某购房人决定申请银行30年的贷款,贷款金额为100万元,年利率为6.55%,现在需要选择合适的还款方式,从而更好地管理自己的经济财务。
首先我们可以根据等额本金还款方式的计算公式计算每月还款额a=100/360+6.55%/12*(1-(1-1/360)^360)=3,693.19元月份本月归还额每月本金归还额每月还款额还款总额1 3716.25 2500.00 3693.19 3693.19…………此时,我们可以将表格转化为折线图来直观感受等额本金还款方式与等额本息还款方式的还贷情况。
从图可见,等额本金的还款总额为1,109,536.16元,平均每个月还款3,081.49元。
购房贷款数学建模 兰州交通大学

数学建模提出问题:某人购房,需要贷款,等额本息还款法,等额本金还款法,某人贷款40万,还款期为10年,贷款利率为6%。
1、月供金额2、总的支付利息比较两种贷款法,给出你的方案。
一、分析问题解决此问题需要建立数学模型,找出偿还贷款的金额最少时的最优解,这是一个优化问题,这就是说在不同的约束条件下,只要建模合理,答案可以是多种。
建立优化问题的模型最主要的是用数学符号和式子表述决策变量、构造目标函数和确定约束条件。
对于等额本息还款方式和等额本金还款方式,分别建立了与之对应的模型,然后根据题中所给的数据,分别求解出两种方式的还款额,并得到最优解,最后根据自己的实际情况合理选择还款方式。
二、模型假设1、假设贷款人在还款期间有能力支付银行要求的还款费用。
2、还款期间还款人没有任何意外事件。
3、贷款利率在还清前一直为6%。
三、参数说明设贷款总额为A,银行年利率为a,月利率为β,总期数为m(个月),月还款额为X,总支付利息为Y,还款总额为B。
四、模型的建立与求解1、等额本息还款模型的建立与求解。
等额本息还款,也称定期付息,即借款人每月按相等的金额偿还贷款本息,其中每月贷款利息按月初剩余贷款本金计算并逐月结清。
把按揭贷款的本金总额与利息总额相加,然后平均分摊到还款期限的每个月中。
作为还款人,每个月还给银行固定金额,但每月还款额中的本金比重逐月递增、利息比重逐月递减。
假设这批贷款是一次性到帐的,为使模型便于运算,也假设这批贷款是某一年的第一天就到帐的,利息也是从那一天开始产生。
等额本息还款公式的推导如下,个个月所欠银行的贷款为:第一个月:A(1+β)-X第二个月:[A(1+β)-X](1+β)-X=A(1+β)^2 -X[1+(1+β)]第三个月:{[A(1+β)-X](1+β)-X}(1+β)-X= {[A(1+β)-X](1+β)-X}(1+β)-X由此可得第n月后的所欠银行数额为:A(1+β)^n-X[1+(1+β)+(1+β)^2+…+(1+β)^(n-1)] =A(1+β)^n-X[(1+β)^n-1]/β由于还款总期数为m,也即第m月刚好还完银行所有贷款,因此有:A(1+β)^m-X[(1+β)^m-1]/β = 0 由此求得:X = Aβ(1+β)^m/[(1+β)^m-1]带入数值得:X=4417总支付利息为:总利息=月还款额×贷款月数-本金,带入数值得:Y=4417×120-400000=130040还款总额为:B=400000+130040=530040元讨论:如果按等额本息还款法,还款人的月供金额为4417元人民币,这种还款方法所要求金额较大,对于一般收入者来说可无力承受,按一般城市的消费来说,还款人的月收入应在6000元以上就可承受等额本息还款法。
购房贷款问题建模

自Z09 孙禹 090816自Z09 邹雷雷 090835自091 王雪 090810购房贷款问题建模李四夫妇计划贷款30万元购买一套房子,他们打算用20年的时间还清贷款。
目前,银行的贷款利率是0.6%/月。
他们采用等额本息还款的方式(即每月的还款额相同)偿还贷款。
1. 在上述条件下,李四夫妇每月的还款额是多少?共计需要付多少利息?2. 在贷款10年零7个月后,他们认为他们有经济能力还完余下的款额,打算提前还贷,那么他们在已支付第10年的第7个月的还款额后的某天,应一次付给银行多少钱,才能将余下全部的贷款还清?3. 如果在第4年初,银行的贷款利率由0.6%/月调到0.5%/月,他们仍然采用等额还款的方式,在余下的17年内将贷款还清,那么在第4年后,每月的还款额应是多少?4. 又如果在第8年初,银行的贷款利率由0.5%/月调到0.8%/月,他们仍然采用等额还款的方式,在余下的13年内将贷款还清,那么在第8年后,每月的还款额应是多少?5. (在第三问四问假设的基础上)银行调整利率以后,在贷款10年零7个月时,他们认为他们有经济能力还完余下的款额,打算提前还贷,那么他们在已支付第10年的第7个月的还款额后(第8个月应还款前)的某天,应一次付给银行多少钱,才能将余下全部的贷款还清?6. 李四夫妇发现银行提供了6种不同的还款方式:①等额本息还款法:是指在贷款期内每月以相等的金额平均偿还贷款本息的还款方法;②等额本金递减法:是指在贷款期内每月等额偿还本金,贷款利息随本金逐月递减的还款方法;③等额递增还款法:是指在贷款期的后一时间段内每期还款额相对前一时间段内每期还款额有一个固定增加额,同一时间段内,每期还款额相等的还款方法;④等额递减还款法:是指在贷款期的后一时间段内每期还款额相对前一时间段内每期还款额有一个固定减少额,同一时间段内,每期还款额相等的还款方法;⑤等比递增还款法:是指在贷款期的后一时间段内每期还款额相对前一时间段内每期还款额呈一固定比例递增,同一时间段内,每期还款额相等的还款方法;⑥等比递减还款法:是指在贷款期的后一时间段内每期还款额相对前一时间段内每期还款额呈一固定比例递减,同一时间段内,每期还款额相等的还款方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
购房贷款的数学建模题目:购房贷款比较问题组员:班级:指导教师:关于购房贷款的数学模型摘要: 近几年,我国经济快速发展,社会传统的房屋买卖方式受到较大冲击而日趋缩萎,取而代之的是银行按揭贷款买房成为新的购房趋势,并日渐盛行。
这对现在社会的消费及生活所产生的积极意义与便利是不容抹杀。
目前银行提供的贷款期限在一年以上的房屋贷款还款方式一般有等额本息法,等额本金递减法,等额递增还款法,等额递减还款法,等比递增还款法,等比递减还款法。
而对这些贷款还款方式,如何根据自己的现在及预期未来的收入情况,作出一个合理的还款方案,是每个打算贷款买房的人必须认真考虑的。
本文根据银行购房贷款和我们的日常常识,建立数学模型,推导出月均还款总额、还款总额和利息负担总和的公式。
并以一笔40万元、10年的房贷为例,利用已求出的公式,计算出10年内月均还款额和所花费的本息总额,制成图表,将等额本息还款法和等额本金还款法两种还款方式作一次比较。
最后得出结论,等额本息还款法的月还款数不变,还款压力均衡,可以有计划地控制家庭收入的支出,也便于每个家庭根据自己的收入情况,确定还贷能力,但需多付些利息,所以适合收入不是很高的,经济条件不允许前期还款投入过大没有打算提前还款的收入处于稳定状态的人群。
而等额本金还款法,由于贷款人本金归还得快,利息就可以少付,还款总额比较少,并且随着时间的推移每月还款数越来越少,但前期还款额度大,因此适合当前收入较高者,有一定的经济基础,能承担前期较大还款能力,且有提前还款计划的人,这种方式对准备提前还款的人较为有利。
关键词:贷款;等额本息;等额本金;月均还款总额1.问题的提出某人购房,需要贷款,有等额本息还款法和等额本金还款法两种还款方式。
贷款40年,还款期10年,分别求:(1)月供金额。
(2)总的支付利息。
比较两种还款法,给出自己的方案。
2.问题的分析2目前有两种还款方式。
等额本息还款法:每月以相等的额度平均偿还贷款本息,直至期满还清,容易作出预算。
还款初期利息占每月供款的大部分,随本金逐渐返,还供款中本金比重增加。
等额本息还款法更适用于现期收入少,预期收入将稳定或增加的借款人,或预算清晰的人士和收入稳定的人士。
而等额本金还款法:每期还给银行相等的本金,但客户每月的利息负担就会不同. 利息负担应该是随本金逐期递减。
借款人在开始还贷时,每月负担比等额本息要重。
但随着时间推移,还款负担便会减轻。
所以我们可知等额本金还款法适合目前收入较高的人群。
假设小李夫妇能够支付这两种不同的还款方式,我们需要帮助他建立等额本息和等额本金还款法的数学模型,以选择最佳还款方式。
根据问题一和问题二,需分别建立两种还款方式的模型,并分别求出其月供金额和总的支付利息。
3.问题的假设为了使问题更加明了清晰,便于计算,同时便于扩展因此特作如下假设:1.假设该人每月能够按时支付房屋贷款所需的还款金额。
2.假设贷款年利率确定,无论还款期为多少年,在还款期间均为6%保持不变。
3.假设银行贷给该人的本金是在某个月的1号一次到位的,在本金到位后的下个月1号开始还钱。
4.问题的参数问题参数约定如下:A : 客户向银行贷款的本金B : 客户平均每期应还的本金C : 客户应向银行还款的总额D : 客户的利息负担总和α: 客户向银行贷款的月利率β: 客户向银行贷款的年利率m : 贷款期n : 客户总的还款期数根据我们的日常生活常识,我们可以得到下面的关系:n,12mC,A,DA,nB(1) (2) (3)35.模型的建立与求解5.1等额本息还款模型的求解:(1)贷款期在1年以上:先假设银行贷给客户的本金是在某个月的1号一次到位的. 在本金到位后的下个月1号开始还钱,且设在还款期内年利率不变.因为一年的年利率是β,那么,平均到一个月就是(β/12),也就是月利率α,,,12, 即有关系式:设月均还款总额是x (元)ai(i=1…n)是客户在第i期1号还款前还欠银行的金额bi (i=1…n) 是客户在第i期1 号还钱后欠银行的金额. 根据上面的分析,有a,A(1,,)1第1期还款前欠银行的金额:b,a,x,A(1,,),x11第1期还款后欠银行的金额:a,b(1,,)21第2期还款前欠银行的金额:2,A(1,,),x(1,,)b,a,x22第2期还款后欠银行的金额:2,A(1,,),x(1,,),x ……第i期还款前欠银行的金额:i,1i,2,,,,a,b(1,),(A(1,),x(1,),?,x)(1,)ii,1ii,1i,2 ,A(1,,),x(1,,),x(1,,),?,x(1,,)第i期还款后欠银行的金额: b,a,xii ii,1i,2 ,A(1,,),x(1,,),x(1,,),?,x(1,,),x4……第n期还款前欠银行的金额:n,1n,2n,3,,,,,a,b(1,),(A(1,),x(1,),x(1,),?,x)(1,)nn,1nn,1n,2 ,A(1,,),x(1,,),x(1,,),?,x(1,,)第n期还款后欠银行的金额:nn,1n,2 b,a,x,A(1,,),x(1,,),x(1,,),?,x(1,,),xnn因为第n期还款后,客户欠银行的金额就还清. 也就是说:, b,0nnn,1即: A(1,,),x(1,,),?,x(1,,),x,0nn,1 A(1,,),x[(1,,),?,(1,,),1],0解方程得:n,,(1,)A ,xn(1,,),1这就是月均还款总额的公式.因此,客户总的还款总额就等于:n,,(1,)An ,,Cnxn(1,,),1利息负担总和等于:n,,An(1,) D,C,A,,An,(1,),1(2) 1年期的贷款,银行一般都是要求客户实行到期一次还本付息,利随本清. 因C,(1,,)A此,1年期的还款总额为:D,C,A,,A而利息负担总和为:55.2 等额本金还款模型的求解银行除了向客户介绍上面的等额本息还款法外,还介绍另一种还款方法:等额本金还款法(递减法):每期还给银行相等的本金,但客户每月的利息负担就会不同. 利息负担应该是随本金逐期递减. 因此,客户每月除付给银行每期应付的本金外,还要付给银行没还的本金的利息.(1)假设贷款期在1年以上.等额本金还款法:每期还给银行相等的本金,但客户每月的利息负担不同。
利息负担随本金的偿还逐期递减。
所以客户每期应付金额中包含固定本金和一定利息。
xi设客户第i期应付的金额为 ( i = 1,2 …,n ) (单位:元)x,B,(A,B),1因此,客户第一期应付的金额为 :x,B,(A,2B),2 第二期应付的金额为 :计算一下,如果选择等额本金还款法,那么,在第53期,应该还银行4450.00元,在第53期,应该还银行4433.33元,与等额本息每月4440.82元相当. 而在第120期(若年利率不变),应该还银行3333.33元,即最后一次只还本金。
可以看出,等额本金还款法的还款金额是逐级递减的。
而且对于每月4440元的收入,等额本息还款法还款会更合适.……x,B,(A,nB),n那么,客户第n期应付的金额为 :累计应付的还款总额为 :'C,x,x,?,x 12n(2)A,,n,, ,2利息负担总和为 :A(2,n,),,'' D,C,A,,A21 ,,A(n,1)2(2)1年期的贷款,银行都要求客户实行到期一次还本付息,利随本清. 因此,16年期的还款总额为:' C,(1,,)A而利息负担总和为:'' D,C,A,,A6.结果分析与检验6.1举例说明以向银行贷款40万买房子,10年还款期为例. 比较等额本息和等额本金两种还款方法:(1)等额本息:利用上文模型求解得的公式可知总的还款期数n=12m=12×10=120客户向银行贷款的月利率α=β/12=0.5%月供金额(月均还款总额)n,,(1,)A (单位:元) ,xn(1,,),1 12000400000,0.5,(1,0.5)00 ,1200(1,0.5),10 ,4440.82客户总的还款总额就等于:C,nxn,,An(1,), n(1,,),1,532898.41利息负担总和等于:n,,An(1,) D,C,A,,An,(1,),1,132898.417(2)等额本金:月供金额(客户第n期应付的金额)x,B,(A,nB),n客户每期应还的本金B,A,n,3333.33所以月供金额如下:=5316.66 x1=5300.00 x2=5283.33 x3……=4450.00 x53x =4433.33 54……=3333.33 x120累计应付的还款总额为 :(2)A,,n,,' ?C,x,x,,x,12n200400000(20.51200.5),,,,00 ,2=519000.00利息负担总和为 :,,A(2,n,)1'' D,C,A,,A,,A(n,1)2210 ,,0.5,400000,(120,1)02=119000.008计算贷款40万的两种还款方式所得各项数据对比如下表:(年利率为6% 来计算 (单位:元))贷款期限(年) 年利率(%) 还款总额利息负担总和月均还款总额10(等额本息) 6 532898.41 132898.41 4440.825313.66(第110(等额本金) 6 519000.00 119000.00期)比较(相差) ------ 13898.41 13898.41 ------虽然等额本金还款法比等额本息还款法要还更少的钱,但开头的几期或几十期的负担相对的会很重. 而等额本息还款法是每月还银行相等的金额,客户的负担没那么大,所以,银行一般都推荐等额本息还款法.考虑到当前的利率情况,如提前还贷,应选择等额本金还款法。
6.2其他还款方式银行推出不同的房贷方式,只是为了满足收入情况不同的各种借款人的需要。
虽然理论上总还款额比较少的比较核算,实际生活中要看是否适合自己的经济状况。
选择还款方式的关键是要与自己的收入趋势相匹配,尽量使收入曲线和供款相一致。
在有还贷能力情况下尽量选择总还款额比较少。
等额本金还款:适合目前收入较高的人群。
借款人在开始还贷时,每月负担比等额本息要重。
随着时间推移,还款负担便会逐渐减轻。
这种还款方式相对同样期限的等额本息法,总的利息支出较低。
等额本息还款法的特点是每个月归还一样的本息和,容易作出预算。
还款初期利息占每月供款的大部分,随本金逐渐返还供款中本金比重增加。
等额本息还款法更适用于现期收入少,预期收入将稳定或增加的借款人,或预算清晰的人士和收入稳定的人士,固定利率:进入加息周期较合算目前国内借款人与银行已签订的房贷合同都是浮动利率的,央行每一次加息,借款人的月供就要有相应地增加。