传感器大作业
哈工大测试大作业——传感器综合运用——题目四全解

传感器综合运用一、设计题目如图所示工件,在生产线的30°滑道上自上而下滑落,要求在滑动过程中检测工件厚度,并且计数。
图中4mm尺寸公差带为10μm。
图1.测量工件二、厚度检测传感器的选择电容传感器是把被测的机械量,如位移、压力等转换为电容量变化的传感器。
它的敏感部分就是具有可变参数的电容器。
其最常用的形式是由两个平行电极组成、极间以空气为介质的电容器(见图)。
若忽略边缘效应,平板电容器的电容为εA/δ,式中ε为极间介质的介电常数,A为两电极互相覆盖的有效面积,δ为两电极之间的距离。
δ、A、ε三个参数中任一个的变化都将引起电容量变化,并可用于测量。
因此电容式传感器可分为极距变化型、面积变化型、介质变化型三类。
极距变化型一般用来测量微小的线位移或由于力、压力、振动等引起的极距变化。
面积变化型一般用于测量角位移或较大的线位移。
介质变化型常用于物位测量和各种介质的温度、密度、湿度的测定。
与电阻式或电感式传感器相比,电容传感器具有四大优点:(l)分辨力高,常用于精密测量;(2)动态响应速度快,可以直接用于某些生产线上的动态测量;(3)从信号源取得的能量少,有利于发挥其测量精度;(4)机械结构简单,易于实现非接触式测量。
因此电容传感器在精密测量中占有重要的地位。
此外,电容器传感器还具有结构简单,价格便宜,灵敏度高,零磁滞,真空兼容,过载能力强,动态响应特性好和对高温、辐射、强振等恶劣条件的适应性强等优点。
因此,在本题中选择电容传感器作为厚度检测传感器。
三、电容传感器的检测原理电容式传感器可分为面积变化型、极距变化型、介质变化型三类,下面将分述其检测原理。
1、面积变化型电容传感器这一类传感器输出特性是线性的,灵敏度是常数。
这一类传感器多用于检测直线位移、角位移、尺寸等参量。
测量装置如图2所示。
图2.变面积式电容传感器其电容量计算公式为:002121212()22ln()ln()ln()x l l l l l C C C C r r r r r r lπεπεπε-∆∆∆∆=-=-=-=- 式中 L -外圆筒与内圆柱覆盖部分的长度21,r r -外圆筒内半径与内圆柱外半径 灵敏度0212ln()C C l r r l πε∆=-=-∆2、极距变化型电容传感器极距变化型电容传感器一般用来测量微小的线位移或由于力、压力、振动等引起的极距变化。
传感器大作业

1 电容式油量表工作原理当油箱中无油时,电容传感器的电容量为CX0,调节匹配电容使C0=CX0,并使电位器RP的滑动臂位于0点,即RP的电阻值为0。
此时,电桥满足CX0/C0=R4/R3的平衡条件,电桥输出为零。
伺服电动机不转动,油量表指针偏转角0=0。
当油箱中注满油时,液位上升至h处,CX=CX0+ΔCX,而ΔCX与h成正比,此时,电桥失去平衡,电桥的输出电压UX放大后驱动伺服电动机,经减速后带动指针偏转,同时带动RP的滑动臂移动,从而,使RP阻值增大。
当RP阻值大到一定值时,电桥又达到新的平衡状态,UX=0,于是,伺服电动机停转,指针停留在转角为0处。
由于指针及可变电阻的滑动臂同时为伺服电动机所带动,因此,RP的阻值与0之间存在着确定的对应关系,即0正比于RP的阻值,而RP的阻值又正比于液位的高度h。
因此,可直接从刻度盘上读得液位高度h。
该装置采用了零位式测量方法,所以,放大器的非线性及温漂对测量精度影响不大。
2 . 超声波传感器的工作原理人们能听到声音是由于物体振动产生的,它的频率在20HZ -20KHZ 范围内,超过20KHZ称为超声波,低于20HZ的称为次声波。
常用的超声波频率为几十KHZ-几十MHZ。
超声波是一种在弹性介质中的机械振荡,有两种形式:横向振荡(横波)及纵和振荡(纵波)。
在工业中应用主要采用纵向振荡。
超声波可以在气体、液体及固体中传播,其传播速度不同。
另外,它也有折射和反射现象,并且在传播过程中有衰减。
在空气中传播超声波,其频率较低,一般为几十KHZ,而在固体、液体中则频率可用得较高。
在空气中衰减较快,而在液体及固体中传播,衰减较小,传播较远。
利用超声波的特性,可做成各种超声传感器,配上不同的电路,制成各种超声测量仪器及装置,并在通迅,医疗家电等各方面得到广泛应用。
超声波传感器主要材料有压电晶体(电致伸缩)及镍铁铝合金(磁致伸缩)两类。
电致伸缩的材料有锆钛酸铅(PZT)等。
传感器大作业要求

二、要求: 1、选题要有主题,题目宜小不宜大,综述、调查 类文章要有广度,设计类要有深度。 2、图文并茂,4千字以上。 、图文并茂,4 3、格式:标题、摘要、关键词、正文(包括学习 体会)、参考文献。 4、字体:参考学术期刊 5、交打印稿时间:2010. 12. 29 上课时间。 、交打印稿时间:2010. 6、电子文档发送到:CGQDZY1012@ 、电子文档发送到:CGQDZY1012@ 7、传感器实验报告和作业没交齐的同学没有期末 成绩。
传感器大作业要求: 传感器大作业要求:
一、选题: 1、综述类: 《关于**传感器的研究报告》 关于**传感器的研究报告》 **传感器的分类、性能指标、测量电路、价 **传感器的分类、性能指标、测量电路、价 格对比、应用范围、运用举例… 格对比、应用范围、运用举例…。 2、调查类: 《关于**传感器的调查报告》 关于**传感器的调查报告》 **传感器的发展现状(优缺点、应用范围、 **传感器的发展现状(优缺点、应用范围、 价格对比…);发展趋势( 价格对比…);发展趋势(采用了哪些新技 术、新材料、新方法… 术、新材料、新方法…)。
3、设计类: 《关于**传感器的应用设计》 关于**传感器的应用设计》 设计背景(在什么场合需要应用哪些传感 器?);设计方案(采用什么测量控制系 统容(**传感器结构、特点、 工作原理介绍,设计达到的性能指标,测 量与控制系统介绍(系统结构图设计,系 统测量控制电路设计)。 4、自选题: 《关于**新型传感器的介绍》 关于**新型传感器的介绍》
(完整版)传感器大作业汇总,推荐文档

3.电容测量电路设计 1. 测量电路
本设计采用二极管T形网络(双T电桥)如下图所示。
它是利用电容器充放电原理组成的电路。其中e是高频电源,提供幅值电压为E的对称方波;C1和 C2为差动电容传感器;D1和D2为两只理想二极管;R1和R2为固定电阻,且R1=R2;RL 为负载电阻(或 后接仪器仪表的出入电阻)。
3 电容测量电路设计............................................................................6
3.1 测量电路 ................................................................................................6
1.1 设计原理 ......................................................................................................2 1.2 系统框图 ......................................................................................................2
(2) 式中, ε为容器内气体的等效介电常数, 单位为F/ m。因此, 当传感器内液位由零增加到H 时, 其电容的变化量ΔC 可由式(1) 和式(2) 得
(3) 由式(3)式可知, 参数ε0 , ε, R1 , R0 都是定值。所以电容的变化量ΔC 与液位变化量H 呈 近似线性关系。因为参数ε0 , ε, R1 , R0 , L 都是定值, 由式(2) 变形可得:CH = a0 + b0 H ( a0 和b0 为常数) (4)。可见, 传感器的电容量值CH 的大小与电容器浸入液体的深度H 成线性关系。 由此, 只要测出电容值便能计算出水位。
【精品】武汉理工大学传感器大作业

压电式传感器--缪芸华33物流1101班压电式传感器是一种能量转换型传感。
它既可以将机械能转换为电能,又可以将电能转化为机械能。
它的工作原理是基于某些晶体受力后,在其表面产生电荷的压电效应。
压电式传感器刚度大、固有频率高,一般都在几十千赫以上,配上适当的电荷放大器,能在低至接近0Hz,高达10Hz的范围内工作,尤其适合于测量迅速变化的参数;其测量值可到上百吨力,又能分辨出小到几克力。
近年来压电测试技术发展迅速,特别是电子技术的迅速发展,使压电式传感器的应用越来越广泛。
一、工作原理某些电介质在沿一定方向上受到外力的作用而变形时,其内部会产生极化现象,同时在它的两个相对表面上出现正负相反的电荷。
当外力去掉后,它又会恢复到不带电的状态,这种现象称为正压电效应。
当作用力的方向改变时,电荷的极性也随之改变。
相反,当在电介质的极化方向上施加电场,这些电介质也会发生变形,电场去掉后,电介质的变形随之消失,这种现象称为逆压电效应,或称为电致伸缩现象.二、测量的物理量及范围1。
测量物理量压电传感元件是力敏感元件,所以它能测量最终能变换为力的那些物理量,例如力、压力、速度、加速度、振动等许多非电量的测量,可做成力传感器、压力传感器、振动传感器等,在医药、军工、机械、土木等领域都有很多应用。
2.测量范围2。
1由于外力作用而在压电材料上产生的电荷只有在无泄漏的情况下才能保存,即需要测量回路具有无限大的输入阻抗,这实际上是不可能的,因此压电式传感器不能用于静态测量.压电材料在交变力的作用下,电荷可以不断补充,以供给测量回路一定的电流,故适用于动态测量。
所以压电传感器主要用于测变压力和加速度。
2.2 压电式传感器在测量低压力时线性度不好,这主要是传感器受力系统中力传递系数为非线性所致,即低压力下力的传递损失较大.所以不能用压电传感器测量变化缓慢的应力值。
但是,可以在力传递系统中加入预加力,称预载.这除了消除低压力使用中的非线性外,还可以消除传感器内外接触表面的间隙,提高刚度。
传感器大作业报告完整版

传感器大作业技术报告学院:电气与电子工程学院专业:11电子信息工程设计者:刘建喜李梦丽张锐(电子1班)王定员(电子2班)指导老师:***目录目录 (2)一、温控的设计思路 (4)1.1设计思路 (4)1.1.1设计框图 (4)1.1.2总电路图 (4)二、硬件部分 (5)2.1报警部分 (5)2.1.1报警模块 (5)2.1.2报警模块PCB板示意图 (5)2.2显示部分 (6)2.2.1显示模块电路图 (6)2.2.2显示模块PCB板示意图 (8)三、参考文献 (9)摘要无线温度数据采集系统不需要固定的传输网络支持,可以快速安置,稳定可靠,维护方便,解决了一些因传输和环境所造成的困难,在工业和科学研究中有着重要的使用价值,是数据采集系统发展的必然趋势。
论文详细说明了无线温度采集装置的硬件与软件设计。
温度传感器选择美国DALLAS公司的数字智能温度传感器DS18B20。
该系统实现了温度采集,并通过射频的方式将采集到的温度数据传送到监控节点。
监控节点上具备无线接收装置和液晶显示设备,将接收到的温度数据显示出来,供监控人员观察。
同时还设有报警系统,该系统具有体积小、精度高、实时性强的特点,可投放于人无法立足的恶劣环境中,完成重要温度数据的采集。
关键词:温度传感器;DS18B20;无线;液晶显示;报警一、温控的设计思路1.1设计思路1.1.1设计框图1.1.2总电路图温 度传 感 器 最 小 系 统 模 块报 警 模 块显 示 模 块二、硬件部分2.1报警部分2.1.1报警模块2.1.2报警模块PCB板示意图本次系统的温度监控报警模块使用的是一个NPN型三级管作为蜂鸣器的驱动,控制蜂鸣器的报警,同时控制报警灯的闪烁。
2.2显示部分2.2.1显示模块电路图•本次的液晶显示模块主要用来实时的显示出机箱环境的温度以及风扇的转速。
考虑实用经济的方面的因素,现有两种方案可选择:•方案一:采用12864:液晶,该液晶自带中文字库,能够显示出中文来,因此该液晶能够同时的显示中文,数字,英文,符号等内容来。
传感器大作业

北京邮电大学传感器大作业题目:霍尔转速器姓名:#####学院:电子工程学院班级:学号:日期:2013年6月10日一、被测量分析转速是发动机重要的工作参数之一,也是其它参数计算的重要依据。
在工农业生产和工程实践中,经常会遇到各种需要测量转速的场合,例如在发动机、电动机、卷扬机、机床主轴等旋转设备的试验、运转和控制中,常需要测量和显示其转速。
要测速,首先要解决的是采样问题。
测量转速的方法分为模拟式和数字式两种。
模拟式采用测速发电机为检测元件,得到的信号是模拟量。
早期直流电动机的控制均以模拟电路为基础,采用运算放大器,非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难。
数字式通常采用光电编码器、圆光栅、霍尔元件等为检测元件,得到的信号是脉冲信号。
随着微型计算机的广泛应用,单片机技术的日新月异,特别是高性能价格比的单片机的出现,转速测量普遍采用以单片机为核心的数字式测量方法,使得许多控制功能及算法可以采用软件技术来完成,智能化微电脑代替了一般机械式或模拟式结构,并使系统能达到更高的性能。
采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。
二、霍尔传感器的发展历史及其现状霍尔传感器是根据霍尔效应制作的一种磁场传感器。
霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。
后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。
霍尔效应是研究半导体材料性能的基本方法。
通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。
三、传感器设计思路系统由传感器、信号预处理电路、处理器、显示器和系统软件等部分组成。
传感器部分采用霍尔传感器,负责将电机的转速转化为脉冲信号。
传感器大作业超声波测距离设计报告

传感器与检测技术大作业报告项目:基于AT89C51的超声波测距传感器目录一系统实现原理及功能 (2)实现功能 (2)二、系统设计方案 (3)硬件设计 (3)主要芯片功能介绍 (4)系统软件设计 (6)二、误差分析 (7)三、实验心得 (8)四、参考文献 (8)一系统实现原理及功能当单片机控制超声波传感器向某一方向发射波束的同时,单片机内部开始计时。
在传播过程中,超声波遇障碍物后反射回波。
传感器接收到第一个反射波后,停止计时。
由于超声波在空气中的传播速度是340m/s,根据计时时间及公式S=340t/2,即可得到发射点距障碍物的距离S。
实现功能本系统实现要求测量距离范围为0.1~3米,精度误差在1厘米以内,并用LCD1602显示所测距离。
二、系统设计方案硬件设计该系统硬件部分由发送模块、接收模块、显示模块、时间处理模块及电源模块组成。
发送模块主要由74LS04和超声波发射器组成;接收模块主要由超声波接收探头和CX20106A 组成;显示模块则有液晶显示器LCD1602及其辅助电路组成;时间处理模块是整个系统的中枢神经由AT89C51及其辅助电路组成。
1、发射部分采用反向器74HC04和超声波换能器T 构成震荡器、放大驱动电路。
电路简单,噪声小,稳定性高。
电路简单稳定,噪声小。
图1 超声波发射模块 图2 接收模块电路2、接收部分采用集成电路CX20106A 。
它是一款红外线检波接收的专用芯片,载波频率38KH Z 与测距的超声波40KH Z 较为接近,可以利用它制作超声波检测接受电路,且电路简单。
可满足项目中关于距离和精度的要求,电路简洁实用,易于调试,且价格低。
3、计时部分采用单片机芯片STC89C51内部定时器,无需额外器件花销,且计时准确,受干扰小。
图三主控及几计时模块4、显示部分显示部分使用LCD1602液晶显示板来完成显示的功能。
它可以显示两行,每行16个字符,采用单+5V电源供电,外围电路配置简单。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
洛阳理工学院《检测与转换技术》期末大作业题目:酒精测试仪专业:自动化姓名:高志远学号: B12041214日期: 2014.11.22随着中国经济的高速发展,人民生活水平的迅速提高,中国逐渐步入“汽车社会”酒后驾驶行为所造成事故越来越多,对社会的影响也越来越大,酒精正在成为越来越凶残的“马路杀手”。
越来越多的交通事故在我们的身边发生,让人心痛,经济的发展,每个人都希望人的安全意识也该发展。
此外,由交通事故造成的经济损失也相当惊人。
据事故调查统计,超过半数的车祸与饮酒有关。
在全国各地加强查处酒后驾驶的力度,以减少由酒后驾驶造成的恶性交通事故。
要查处就涉及到检测人体内的酒精含量和使用设备来进行检测的问题。
本文设计了一种用于公共场所具有检测及超限报警功能的酒精浓度智能测试仪。
其设计方案基于89C51单片机,MQ-3酒精浓度传感器。
系统将传感器输出信号通过A/D转换电路调理后,经由单片机进行数据处理,最后由4位LCD数码管显示酒精浓度值。
并且根据不同的环境设定不同的阈值,对超过的阈值进行自动报警来提示危害。
从而让驾车的人知道自己该在什么情况下可以开车,这是一个在现代生活很实用,很负责的一个设计。
开车司机只要将嘴对着传感头使劲吹气,仪器就能发上显示出酒精浓度的高低,从而判断该司机是否酒后驾车,避免事故的发生。
当然,最好的办法是在车内安装这种测试仪,司机一进入车内检测仪就检测司机的酒精含量,如果超出允许值,系统控制引擎无法启动,这样就可从根本上解决酒后驾车问题。
酒精测试仪在生产中也有重要的应用,比如,在一些环境要求严格的生产车间,用这种酒精浓度探测仪,可随时检测车间内的酒精气体浓度,当酒精气体浓度高于允许限定值时要及时通风换气,做到安全生产。
当然,依照同样的原理也可设计检测其他气体的探测仪,与我们的生活息息相关的是检测有毒气体。
1.方案设计1.1概述:该设计方案基于89C51单片机,MQ-3酒精浓度传感器。
系统将传感器输出信号通过A/D转换电路调理后,经由单片机进行数据处理,最后由4位LCD数码管显示酒精浓度值。
并且根据不同的环境设定不同的阈值,对超过的阈值进行自动报警来提示危害。
1.2 考虑酒精浓度是由传感器把非电量转换为电量,传感器输出的是0-5伏的电压值并且电压值稳定,外部干扰小等。
因此,可以直接把传感器输出电压值经过ADC0804采集数据送入单片机进行处理。
酒精浓度监测仪的硬件电路设计主要包括:传感器测量电路、89C51单片机系统、A/D转换电路、自动报警电路、LED 数码管显示电路。
酒精浓度测试仪总体设计电路框图如图系统总框图如下:2.工作原理:2.1传感器的选择:本系统直接测量的是呼气中的酒精浓度,再转换为血液中的酒精含量浓度,故采用气敏传感器。
考虑到周围空气中的气体成分可能影响传感器测量的准确性,所以传感器只能对酒精气体敏感对其他气体不敏感,故选用MQ3型气敏传感器。
其有很高的灵敏度、良好的选择性、长期的使用寿命和可靠的稳定性。
MQ3型气敏传感器由微型Al2O3陶瓷管和SnO2敏感层、测量电极和加热器构成的敏感元件固定在塑料或不锈钢的腔体内,加热器为气敏元件的工作提供了必要的工作条件。
传感器的标准回路有两部分组成。
其一为加热回路,其二为信号输出回路,它可以准确反映传感器表面电阻值的变化。
传感器的表面电阻RS的变化,是通过与其串联的负载电阻RL上的有效电压信号VRL输出面获得的。
负载电阻RL可调为05-200K。
加热电压Uh为5v。
上述这些参数使得传感器输出电压为0-5V。
MQ3型气敏传感器的结构和外形、标准回路、传感器阻值变化率与酒精浓度、外界温度的关系图如图所示。
为了使测量的精度达到最高,误差最小,需要找到合适的温度,一般在测量前需将传感器预热5分钟。
MQ-3型气敏传感器的敏感部分是由金属氧化物(二氧化锡)的N型半导体微晶烧结层构成。
当其表面吸附有被测气体酒精分子时,表面导电电子比例就会发生变化,从而其表面电阻会随着被测气体浓度的变化而变化。
由于这种变化是可逆的,所以能重复使用。
MQ-3 结构和外形如下图:MQ-3 结构图如下:传感器阻值变化率与酒精浓度、外界温度之间的关系:检测电路如图2-4所示,当电源开关S断开时,传感器加热电流为零,实测A,B之间电阻大于20MΩ。
S接通,则f,f之间电流由开始时155mA降至153mA 而稳定。
加热开始几秒钟后A,B之间电阻迅速下降至10KΩ以下,然后又逐渐上升至120KΩ以上后并保持着。
此时如果将酒精溶液样品靠近MQ-3传感器,我们立即可以看到数字万用表显示值马上由原来大于120KΩ降至10KΩ以下。
移开小瓶过1分钟左右后,A,B之间电阻恢复至大于120KΩ。
这种反应可以重复试验,但要注意使空气恢复到洁净状态。
经实验的反复检测,MQ-3传感器可以正常工作使用,对不同浓度的酒精溶液有不同的变化,响应时间和恢复时间都正常,可以开始作信号采样模块电路的设计。
MQ-3检测电路MQ-3气体传感器的特点:* 对乙醇蒸汽有很高的灵敏度和良好的选择性* 快速的响应恢复特性* 长期的寿命和可靠的稳定性* 简单的驱动回路灵敏度的调整:MQ-3 型气敏元件对不同种类,不同浓度的气体有不同的电阻值。
因此,在使用此类型气敏元件时,灵敏度的调整是很重要的。
建议用200ppm的乙醇蒸汽校准传感器。
当精确测量时,报警点的设定应考虑温湿度的影响。
2.2最小系统的实现:在本次设计中我们采用89C51来实现一个单片机系统能运行起来的需求最小的系统,电路图见下图:2.3 数据采集设计:信号的采样模块电路下图所示。
MQ-3的加热电阻两端即H引脚接至+5V直流稳压电源,用于电阻丝对敏感体电阻的加热。
MQ-3的两个A引脚相连,作为敏感体电阻的一个电极。
MQ-3的两个B引脚也连接在一起,作为敏感体电阻的另一个电极。
将电极断A接到电源正极,电极端B接两个200KΩ电位器并联的电阻。
MQ-3型气敏传感器与电位器并联构成分压电路,采样点为电位器的分压。
的N型半导体微晶烧结层构MQ-3型气敏传感器的敏感部分是由金属氧化物SnO2成。
当其表面吸附有被测气体酒精分子时,表面导电电子比例就会发生变化,从而其表面电阻会随着被测气体浓度的变化而变化。
由于这种变化是可逆的,所以能重复使用。
当气敏传感器的敏感体电阻阻值发生改变时,对应的电位器的分压值也会发生相应的变化,即一个电压值对应着一个被测酒精气体浓度。
对酒精气体浓度的采样就可以转化为对电位器分压的采样。
在采样硬件电路中实际要考虑到MQ-3的实际技术参数,即加热电阻和敏感体电阻的大小,该部分应与电源正极相连。
负载电阻要根据MQ-3实际的技术参数而选择阻值合适的电阻,应在实验使用前应对MQ-3预热5到10分钟。
A\D转换电路:模数转换电路的功能是将连续变化的模拟量转换为离散的数字量,是架起模拟系统跟数字系统之间连接的桥梁。
对于本系统而言,就是用于快速、高精度地对输入的酒精浓度信号进行采样编码,将其转换成单片机所能够处理的数字量。
模数转换电路是本系统的关键部分,其性能的好坏直接影响整个系统的质量。
模数转换采用ADC0804,对输入模拟量要求:信号单极性,电压范围是0-5V,若信号太小,必须进行放大;输入的模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需在输入前增加采样保持电路。
ADC0804有20个引脚,其中11-18管脚为数字信号输出端,与单片机P1口相连;cs为片选端,接单片机P3.5口,当cs接低电平时ADC0804开始工作,WR接P3.6口,当WR变为低电平再跳变为高电平后启动A/D转换,RD接单片机P3.7口,当RD由低电平跳变为低电平时,单片机读走A/D转换完的数字信号。
CLK为时钟输入信号线, 因ADC0804的内部没有时钟电路,所需时钟信号必须由外界提供,通常使用频率为500KHZ,VREF(+),VREF (-)为参考电压输入。
INTR为中断控制信号,接单片机外部中断端口,当A/D 转换完后向单片机发出中断信号,等待读走数字信号,INTR也空可置不接,因为当启动A/D后一段时间后模数转换完后,等待一段时间后单片机也可以读走数字量。
原理图下图:2.4 自动报警电路:自动报警电路采用单片机I/O口外接三极管驱动蜂鸣器,当传感器检测到的酒精浓度达到或超过设定的浓度值时蜂鸣器会自动发出报警信号,如下图所示:2.5 独立按键电路:利用按键设置酒精浓度阈值,和重新刷新检测程序。
2.6利用动态扫描方式来显示检测值:4位LCD数码管显示电路如下图:最后附上设计原理图:总结本设计是基于单片机的酒精浓度测试仪。
电路结构简单,设计合理,体积小,使用方便,且灵敏度、分辨率和抗干扰能力适用于驾驶员自测是否饮酒过量的测量,也可用于酒精浓度监控,适合大众化使用。
MQ-3传感器属于金属半导体电阻式传感器,灵敏度高,响应速度快,可重复性使用。
当传感器的敏感部分吸附有酒精分子时,表面的导电电子比例就会发生变化,从而其表面电阻会随着被测酒精气体浓度的不同而发生相应的变化,且这种变化是可逆的,可重复使用。
MQ-3接上一定阻值的负载电阻,即可构成对酒精气体浓度的检测部分。
负载电阻的分压值即对应着一个酒精气体的浓度值,只需对该分压值采样,就可得到要测酒精气体浓度值的信号。
将该信号通过A/D 转换,将模拟信号转化为数字信号。
转换后的数字信号由单片机作相应的数据处理,并送到数码管显示出来。
在蜂鸣器报警模块中,当检测到的酒精浓度达到或超过设定的浓度值时蜂鸣器会自动发出报警信号。
当然可以对本系统作一定改进,并在此基础上制作酒精检测钥匙。
即在车钥匙上设计一个小吹管,由一组信号发射器连接至车上的电子控制组件,如果驾驶者在开门之前所做的酒精吹气测试样本被发现超过法定允许的标准值,则系统将使引擎维持在静止状态无法启动。
当驾驶者按下遥控器上的开门按钮,酒精探测仪也随之启动,然后驾驶者对着小管口吹气,酒精浓度会经由感应器上的小绿灯或小红灯显示出来。
当显示绿灯时,钥匙将传送允许信号至车辆的电子控制系统,也就是通过检测,可以上路了;但是如果测试结果为红灯,则车辆将维持在锁定状态,即使钥匙插入钥匙孔也无法发动车子。
这将大大减少由酒后驾驶造成的恶性交通事故。
半导体气敏传感器和电化学固体电解质气敏传感器具有测量精度高、所需试样少、响应快等特点,用半导体气敏元件组成的气敏传感器广泛应用于工业上的天然气、煤气、石油化工等部门的易燃、易爆、有毒等有害气体的检测、预报和自动控制。
随着纳米技术、薄膜技术等新材料研制成功,微机械与微电子技术、计算机技术等的综合应用,高性能的气敏传感器将会不断出现。