泥质砂岩地层评价
IPR测井项目介绍

IPR 测井项目介绍IPR 测井是适用于砂泥岩地质剖面的电化学测井方法,通过给砂泥岩地层施加一恒定外电场,使之产生极化场,即产生偶电层形变和局部浓度变化。
当外电场断去后,由于离子的扩散作用,二次场离子浓度梯度逐渐消失,恢复到原来的状态。
通过测量施加恒定外电场前后的电位,可求出地层的阳离子交换量和地层水矿化度,进而求出地层的含油饱和度,定量评价储层的水淹状况。
著名的Waxman-Smits 泥质砂岩电导率方程中地层水电导率Cw 和阳离子交换量Qv 是两个极其重要的电化学参数,是IPR 测井的主要响应参数,它们之间的关系非常明显。
对于水淹层,电阻率Rw 是个变量,仅用SP测井曲线是不可能求取出来的,因此同时测量快(慢)时窗电位、人工电位和自然电位SP ,可以定量求解地层水电阻率Rw 和阳离子交换量Qv 。
从电路上实现整个测量过程则是:恒流源通过供电电极A1或A2向地层发射恒定电流I 0,使地层产生极化场,此时A/D 通过自动控制测量板在预定时间t1采样的一次电位Up 。
供电300 ms 后断电,此时地层已被充分极化。
断电后,按指数规律随时间t 逐渐衰减,A/D 在预定时间t2,t3,t4采样正向二次电位)(2t U +∆,直到恢复地层原始状态——自然电位USP状态。
然后再反向供电、断电,测得反向二次电位)(2t U -∆ ,A/D 采样值送至CPU 现场实时处理后再送至D/A 输出得:快时窗电位:p U t U t /)()(2快快∆=η慢时窗电位:p U t U t /)()(2慢慢∆=η人工电位: 2/)]()([)(222t U t U t U -+∆+∆=∆高精度自然电位: 2/)]()([22t U t U SP -+∆-∆=0.3米电位电阻率:ρ=Kp p U /I 0其中:Kp 为仪器系数,为I 0激发电流图1、测井原理研究表明,岩层矿石的IPR 测井数值与其成分、含量、结构及周围溶液性质等密切相关,能明显显示出储层的岩石性质,这对于确定矿藏的位置和储量、确定泥质砂岩储层的阳离子交换量和地层水矿化度具有重要意义。
泥岩砂岩物理参数

泥岩砂岩物理参数 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN三峡库区地灾防治顾问部文件中铁二院三峡顾问咨发〔2007〕31号关于重庆市三峡库区三期地质灾害防治项目万州区徐家坝危岩带(治理总表序号:217)初步设计阶段勘查报告的咨询评估报告重庆市国土资源和房屋管理局:根据重庆市三峡地防办委托,中铁二院工程集团有限责任公司三峡库区地灾防治顾问部组织专家于2007年6月15日,在鸿都大酒店十七楼三会议室,对重庆市地勘局南江水文地质工程地质队提交的《万州区徐家坝危岩带(治理总表序号217)初步设计阶段勘查报告》(简称《勘查报告》)进行了审查,参加会议的单位有万州区地质灾害整治中心、重庆时乐浦地质灾害防治咨询设计事务所、重庆市地勘局南江水文地质工程地质队。
审查期间,听取了《勘查报告》编制单位的情况汇报,同与会人员交换意见。
经认真研究,现将《勘查报告》的咨询评估意见报告如下:一、 基本情况 (一)危岩基本情况徐家坝危岩位于重庆市万州鱼泉产业集团有限公司厂区南及西南侧,地处长江左岸一级支流龙宝河左岸台阶状(或方山)丘陵陡崖一带,行政区划属于万州主城龙宝区。
地理坐标介于X=3412990~36536255m 、Y=3412533~36537288m 范围。
危岩为侏罗系中统沙溪庙组巨厚层状砂岩陡崖,呈东西向分布,长900m ,高5.5~25m ,由14个危岩体组成,总体积21660m 3,为大型危岩带。
危岩带临空面近中 铁 二 院工程集团有限责任公于直立,所处势能较高,其高度以大于15m为主,多数属中位危岩。
危岩带斜坡脚高程在187~195.52m,危岩底高程在207~220m,危岩顶面高程在223.31~239.50m。
(二)可研阶段批复意见2005年8月中国国际工程咨询公司对可研勘查与设计报告进行评估,同年10月出具了评估报告,评估意见认为:1、意见(1)、危岩带各危岩体均已形成卸荷裂隙,顶部影响范围内的建筑物及地面普遍出现了变形裂缝,W1危岩体2003年已发生崩塌灾害,危岩失稳危及移民迁建企业和居民安全,进行防治是必要的。
湖北当阳庙前—淯溪地区三叠系—侏罗系泥(页)岩—砂岩类矿产资源特征及适用矿种调查评价

18-82% ; SiO2 含量为 55- 88% 〜77- 30%,平均为
66.28% ;Fe203含量为 0.88% -6.50%,平均为 2.35%。
溪 二岩性段矿 要化学成分统计结果见
表2& A1203含量为11. 46%〜20- 08%,平均为
16.90% ; SiO2 含 量为 62- 52% 〜81- 78%,平 均为
、粒 充填于
;
量为5%〜8%, d =
0.04〜0.07 mm,呈片状碎屑,散布于石英颗粒间;铁
质含量为1% -3%, d二0.001〜0.01 mm,呈絮状、斑
点
&
矿 矿物成
颗粒 要 英、 岩 、 长
和少量铁质,分选 一差,磨圆度差;基质 土矿
物 ,含量>15%;胶结物含量少。
颗粒粒
和Folk砂岩
摘 要:为优化矿业权设置、资源配置和矿产资源开发利用合理布局,切实加强资源集约与综合利用,对 当阳市庙前一&溪地区的三叠系一侏罗系泥(页)岩一砂岩类矿产资源进行调查研究。在大致查明矿石类 型、矿物组分、化学成分、结构构造及矿石质量的基—上,结合矿石实际开发利用现状及现行地质矿产行
业规范,对其适用矿种进行综合评价,规范其定3,以期为更好地制定符合当地建筑陶瓷工业生产的技术
321
2.2.2化学成分 晓坪组观音段含煤亚段底部矿层主要化学成分统
计结果见表3 & SW0含量为66.04% -82.67% ,平均为 74.61%; Al2 03 含量为 10. 01% - 16- 88%,平均为 14.07% ;Fe203含量为 0.56% ~3.52%,平均为 1.31%。
井组;11・重庆组;12.白垩系一第四系;13.行政区驻地;14.工作区位置;①•荆门东断裂;②•远安东断裂;③•通城河断裂;④•雾渡河断裂&
井壁不稳定地层的类型与井壁不稳定现象

一、井壁不稳定地层的类型与井壁不稳定现象1.井壁不稳定地层的类型钻井过程中所钻遇的地层,如泥页岩、砂质或粉砂质泥岩、流砂、砂岩、泥质砂岩或粉砂岩、砾岩、煤层、岩浆岩、碳酸盐岩等均可能发生井壁不稳定。
但井塌大多发生在泥页岩地层中,约占90%以上。
缩径大多发生在蒙脱石含量高、含水量大的浅层泥岩、盐膏层、含盐膏软泥岩、高渗透性砂岩或粉砂岩、沥青等类地层中。
压裂则可发生在任何一类地层中。
井塌可能发生在各种岩性、不同粘土矿物种类及含量的地层中;但严重井塌往往发生在下述地层中:(1)层理裂隙发育或破碎的各种岩性地层。
(2)孔隙压力异常的泥页岩。
(3)处于强地应力作用的地区。
(4)厚度大的泥岩层。
(5)生油层。
(6)倾角大易发生井斜的地层等。
2.井壁不稳定现象(1)井塌的现象钻井或完井过程中如发生井塌会出现以下现象:①返出钻屑尺寸增大,数量增多并混杂。
②泵压增高且不稳定,严重时会出现憋泵现象,并可憋漏地层③扭矩增大,蹩钻严重,停转盘打倒车。
④上提钻具遇卡,下放钻具遇阻;接单根、下钻下不到井底时会发生卡钻或无法划至井底。
⑤井径扩大,出现糖葫芦井眼,测井遇阻卡。
(2)缩径的现象当钻井过程中地层发生缩径时,由于井径小于钻头直径,会出现扭矩增大,蹩钻等现象,严重时转盘无法转动,甚至被卡死;上提钻具或起钻遇卡,严重时发生卡钻;下放钻具或下钻遇阻,如地层缩径严重,可使井眼闭合,如胜利油田和南疆钻含盐软泥时均出现过此现象。
(3)压裂的现象当钻井液的循环压力大于地层的破裂压力时,就会压裂地层,使地层出现裂缝,从而导致泵压下降,钻井液漏入地层,井筒中液柱压力下降。
如液柱压力降至上部易塌地层的坍塌压力或孔隙压力之下,就可能发生井塌或井喷等井下复杂情况。
二、地层组构特性、理化性能和井壁稳定性的室内评价方法返回1.地层组构特性和理化性能的分析方法研究井壁失稳的原因及技术对策必须搞清井壁不稳定地层的组构特性和理化性能,常用的分析方法有以下几种:(1)肉眼观察通过肉眼观察可以掌握地层的层理、裂隙和镜面擦痕发育情况,地层倾角大小,地层软硬程度及遇水后膨胀、分散和强度定性变化情况。
第4章4 储层参数测井解释模型讲解

5.4 储层参数测井解释模型
储集层物性相互之间的关系:
储集层的孔隙度与渗透率是密切相关的,但又不是简单的关系,它受颗粒 大小、分选程度、胶结程度等因素的制约。一般中粗颗粒的砂岩孔隙度大,渗 透率也大,而微细颗粒砂岩孔隙度低,渗透率也小。在孔隙度与渗透率的关系 图上,资料点的分布与粒度大小有关,粒度中值Md≤0.2mm,资料点分布在左 下方,也就是孔隙度低,渗透率也小;MD≥0.4mm的资料点分布在右上方,也 就是孔隙度大渗透率也高;0.2<Md<0.4mm的资料点基本上分布在上述两者之间。
5.4 储层参数测井解释模型
自然伽马确定泥质含量
在沉积岩石中,除钾盐层外,其放射性的强弱与岩石中含泥 质的多少有密切的关系。岩石含泥质越多,自然放射性就越强。 这是因为构成泥质的粘土颗粒较细,有较大的比表面积,在沉 积过程中能够吸附较多的溶液中放射性元素的离子。另外,泥 质颗粒沉积时间较长(特别是深海沉积),有充分的时间同放 射性元素接触和离子交换,所以,泥质岩石就具有较强的自然 放射性。这就是我们利用自然伽马测井曲线定量计算地层泥质 含量的地质依据。
三种不同的角度上提供了地层的孔隙度信息。 经验表明,如果形成三孔隙度的测井系列,无论对于高-中
-低孔隙度的地层剖面,以及不同的储层类型,一般都具有较强 的求解能力,并能较好地提供满足于地质分析要求的地层孔隙 度数据。
5.4 储层参数测井解释模型
从前面的分析可知,残余油气特别是气层对声波、 密度以及中子测井计算的孔隙度影响是不同的。
1
Shr
Nhr Nmf
测井地质学-6盖层的评价

图6-8 建立中的泥质趋势线
三、常见测井资料研究泥质参数
(二)、岩性密度测井(LDT)资料研究泥质参数 2、识别粘土矿物 1)通过Umaa与ρmaa交会图 识别矿物骨架成份及含量
该井的数字处理成果图,图中很 明显,对于比较纯的砂岩来讲主 要是含有伊利石,只有当粘土含 量总体积超过15-20%时,高岭石 才开始出现。从泥质交会上还可 以看出,沿石英-高岭石线的GR 值低,这与高岭石粘土矿物结构 中没有放射性钾是一致的,然而 沿石英-伊利石线,GR值上升, 因为通常在伊利石粘土中含钾。
三、常见测井资料研究泥质参数
(三)、中子测井(CNL)资料研究泥质参数 2、确定泥质含量及识别矿物
利用密度和中子测井交 会图,可以确定其粘土 矿物成分(图6-16)
图6-16 在ρb—φN交会图上粘土矿物的分布趋势
三、常见测井资料研究泥质参数
(三)、中子测井(CNL)资料研究泥质参数 2、确定泥质含量及识别矿物
Th Thkaol Vkaol Thfeld V feld K K kaol Vkaol K feld V feld
三、常见测井资料研究泥质参数
(一)、自然伽玛能谱测井(NGS)资料研究泥质参数 2、粘土含量得估算 5)马来盆地泥质砂岩地层的应用
图6-3 识别矿物的Th-K交会图
三、常见测井资料研究泥质参数
(一)、自然伽玛能谱测井(NGS)资料研究泥质参数
2、粘土含量得估算
1)利用Th和K得生产指数计算粘土含量 粘土含量计算: 通过生产指数可以达到同时使用Th和K曲线,而保证确定粘 土含量时与粘土类型无关。其计算公式如下:
Vsh
PI PI min PI max PI min
测井解释的基本理论和方法

第一篇测井解释基础与测井方法测井广泛应用于石油地质和油田勘探开发的全过程。
利用测井资料,我们不仅可以划分井孔地层剖面,确定岩层厚度和埋藏深度,确定储层并识别油气水层,进行区域地层对比,而且还可以探测和研究地层主要矿物成分、孔隙度、渗透率、油气饱和度、裂缝、断层、构造特征和沉积环境与砂体的分布等,对于评价地层的储集能力、检测油气藏的开采情况,细致地分析研究油层地质特征等具有重要意义。
随着测井技术及其解释处理方法的飞速发展,测井资料的应用日益深化,其作用也越来越明显。
第一章测井解释的基本理论和方法第一节测井解释的基本任务测井资料解释,就是按照预定的地质任务和评价目标选择几种测井方法采集所需的测井资料,依据已有的测井解释方法,结合地质、钻井、录井、开发等资料,对测井资料进行综合分析,用以解决地层划分、油气层和有用矿藏的评价及其勘探开发中的其它地质、工程问题。
测井解释的基本任务主要有:1.进行产层性质评价。
包括孔隙度、渗透率、有效厚度、孔径分布、粒径大小及分选性、裂缝分布、润湿性等的分析。
2.进行产液性质评价。
包括孔隙流体性质和成分(油、气、水)的确定,可动流体(油、气、水)饱和度、不可动流体(束缚水、残余油)饱和度的计算。
3.进行油藏性质评价。
包括研究构造、断层、沉积相,地层对比,分析油藏和油气水分布规律,计算油气储量、产能和采收率;指导井位部署、制订开发方案和增产措施。
4.进行钻采工程应用。
在钻井工程中,测量井眼的井斜、方位和井径等几何形状,估算地层孔隙流体压力和岩石的破裂压力梯度,指导钻井液密度的合理配制,确定套管下深和水泥上返高度,计算固井水泥用量和检查固井质量等;在采油工程中,进行油气井射孔,生产剖面和吸水剖面测量,识别水淹层位和水淹级别,确定出水层位和串槽层位,检查射孔质量、酸化和压裂效果等。
第二节岩性确定方法储层的岩性评价是指确定储层岩石所属的岩石类别,计算岩石主要矿物成分的含量和泥质含量,进一步确定泥质在岩石中分布的形式和粘土矿物的成分。
兰州盆地第三系砂岩工程地质特性评价研究

兰州盆地第三系砂岩工程地质特性评价研究张波【摘要】兰州盆地广泛分布的第三系砂岩沉积厚度大,多同泥岩互层分布,砂岩受水影响易发生软化,容易导致工程结构特别是地下隧道工程围岩出现失稳问题.为评价研究兰州盆地第三系砂岩工程地质特性,首先收集兰州至重庆铁路、兰州至中川铁路砂岩段勘察试验资料,统计分析得到了砂岩的物理力学性质;然后对代表性砂岩进行电镜扫描试验研究其在不同含水率下的微结构变化特征;最后确定了影响砂岩工程特性的主要影响因素为:含水率、黏粒含量、地下水阴离子浓度、孔隙比.通过采用突变理论建立了第三系砂岩工程地质特性定量评价模型,砂岩工程地质特性可以划分为5级:恶劣(S≤0.64)、较差(0.64<S≤0.71)、一般(0.71<S≤0.79)、较好(0.79<S≤0.87)、良好(S≥0.87).应用模型对兰渝铁路桃树坪隧道砂岩进行评价,该区域砂岩评价结果介于0.57~0.77之间,工程地质特性处于一般到恶劣状态,评价结果与现场实际结果一致.【期刊名称】《工程地质学报》【年(卷),期】2014(022)001【总页数】7页(P166-172)【关键词】第三系砂岩;工程地质特性;突变级数法;定量评价【作者】张波【作者单位】中铁第一勘察设计院集团有限公司西安710043【正文语种】中文【中图分类】U211.2第三系砂岩外观一般为红色,同泥岩一起常被称为红层。
我国砂岩分布广泛,从地形分布特点来看,我国砂岩主要分布于西南地区、西北、华中、华南等地区的各个盆地中[1~3]。
兰州地区第三系砂岩分布范围较广,且砂岩地层厚度比较大。
兰州地区仅新城范围内为白垩系地层,其余地区下伏基岩大体均为第三系红砂岩或碎屑岩类。
同硬质岩相比,第三系砂岩在破坏前变形具非线性,出现剪胀,呈塑性变形[4~6]。
兰州地区第三系砂岩是一种极软质岩石,由于成岩性差,受水影响后极易崩解而丧失结构特性。
这种松散岩体受埋深的压实作用变化明显,试验测得砂岩干燥状态下的单轴抗压强度范围值为3.05~5.68MPa,饱和状态下单轴抗压强度介于0.20~0.83MPa[7]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参数计算顺序:
→ Vsh:泥质含量
→POR :地层孔隙度
→Sw:地层含水饱和度
→PERM:地层渗透率
其它辅助地质参数
→φw:地层含水孔隙度; φxo:冲洗带含水孔隙度。
→Shr:残余油气饱和度;Vhr:冲洗带残余油气相对体 积;mhr:残余油气质量。
→PF:累计孔隙厚度,HF:累计油气厚度
→BULK:出砂指数。
CALL RDFLNM CALL CONST
CALL IN CALL OUT
2
CALL IN
N
是否第一次循环
Y
将输入的解释参数转换成程序所需要的参数
所需要的DEN、CNL、AC存在否
Y
对输入的测井值作某些校正
N
打印信息
停
1
School of Geophysics and Oil Resources
三、POR分析程序流程
School of Geophysics and Oil Resources
四、POR分析程序成果显示
School of Geophysics and Oil Resources
1.输入曲线: –POR程序要求至少输入一种孔隙度测井曲线(声 波、密度、中子曲线),至少有自然伽马(GR) 和深探测电阻率(RT)曲线。如果有冲洗带电阻 率(Rxo),井径(CAL),自然电位(SP),2~3种孔 隙度测井等,则效果更好些。
School of Geophysics and Oil Resources
1
计算泥质含量 计算孔隙度
计算Sw和Sxo 计算PORW、PORF、SH、PORT
计算BULK、PERM、HF、PF
将输 出结果化为百分数 CALL OUT
2
School of Geophysics and Oil Resources
第三节 POR分析程序的处理方法
一、POR分析程序的解释原理 二、POR程序输入、输出参数 三、POR程序流程 四、POR程序成果显示
School of Geophysics and Oil Resources
第三节 POR分析程序的处理方法
一、POR分析程序的解释原理 二、POR程序输入、输出参数 三、POR程序流程 四、POR程序成果显示
School of Geophysics and Oil Resources
二、POR分析程序的输入、输出参数
二、POR分析程序的输入、输出参数
2.输入解释参数: –GMN1、GMX1—纯砂岩和纯泥岩的自然伽马测井 值,隐含值分别为0和100。 (2-补偿中子 ; 3-自然电位 ;4-宏观俘获截面值 ;5-电阻 率) –SHFG—确定泥质含量方法和参数的标志符 。 –SWOP,PFG –A,B,M,N,RW,RMF,DG,DF,TM,TF,GCUR,SIRR,BIT, –NSH,DSH,TSH,ADEN,ACNL,AAC,AGR,ASP,ART,AN LL
School of Geophysics and Oil Resources
第三节 POR分析程序的处理方法
一、POR分析程序的解释原理 二、POR程序输入、输出参数 三、POR程序流程 四、POR程序成果显示
School of Geophysics and Oil Resources
三、POR分析程序流程
(t f tma ) Cp
(t f tma )
–补偿中子测井(PFG=3) • 一般采用忽略骨架含氢指数的计算方法,即
N Vsh Nsh
School of Geophysics and Oil Resources
一、POR分析程序的解释原理
3、含水饱和度的计算
用户可通过含水饱和度标识符SWOP选择计算含水 饱和度的方法。
School of Geophysics and Oil Resources
第三节 POR分析程序的处理方法
一、POR分析程序的解释原理 二、POR程序输入、输出参数 三、POR程序流程 四、POR程序成果显示
School of Geophysics and Oil Resources
一、POR分析程序的解释原理
一、POR分析程序的解释原理
2、地层孔隙度的计算 通过控制标识符PFG来选用三种孔隙度测井中的任
一种方法计算孔隙度。 –密度测井(PFG=1) (b ma ) Vsh (sh ma )
( f ma ) ( f ma )
–声波测井(PFG=2) (t tma ) Vsh (tsh tma )
School of Geophysics and Oil Resources
二、POR分析程序的输入、输出参数
3.输出曲线:
– POR- 有效孔隙度 – PORT— – PORW— 饱含水的孔隙度 – PORF— – PORX– PORH— – PERM— 渗透率 – BULK— – SW— 含水饱和度 – SH— 泥质含量 – PF— 累计孔隙厚度(米或英尺) – HF— 累计油气厚度(米或英尺)
一、POR分析程序的解释原理
1、计算地层泥质含量 通过SHFG选择泥质含量的计算方法
SHFG = 1 使用GR求泥质含量; = 2 使用CNL求泥质含量; = 3 使用SP求泥质含量 = 4 使用NLL求泥质含量 = 5 使用RT求泥质含量
School of Geophysics and Oil Resources
第四章 泥质砂岩地层的评价
含泥质岩石的测井响应方程 阳离子交换模型 POR分析程序的处理方法 低阻油气层测井评价
School of Geophysics and Oil Resources
第三节 POR分析程序的处理方法
POR程序是从美国Atlas公司引进的单孔隙度 测井泥质砂岩分析程序。其主要特点是简单实用, 所要求输入的测井曲线数目少,在地质情况比较 简单的情况下可以得到较好的解释结果,且本程 序的解释软件结构是目前常规测井解释软件的典 型模式,因此目前国内仍普遍使用,或针对地区 条件作了改进后使用。
Shr SRHM (1 Sw)
式中 SRHM—残余油气饱和度与含油气饱和度相关的地区 经验系数(隐含值0.5)
School of Geophysics and Oil Resources
一、POR分析程序的解释原理
5、其它辅助地质参数 (3)冲洗带残余油气相对体积(Vhr)及残余油气重量(mhr)
– SWOP=1,采用Simandoux公式的简化形式:
Sw
1
0.81Rw Rt
Vsh
Rw 0.4Rsh
– SWOP=2,采用阿尔奇公式 :
Sw
n
aRw
m Rt
通常取a=1,n=2,按m=1.87+0.019/φ计算。当 φ<0.1,令m=2.1;当m>4,m=4。
School of Geophysics and Oil Resources
一、POR分析程序的解释原理
1、计算地层泥质含量
SH i
SHLGi GMINi GMAXi GMINi
2GCURSHi 1 Vshi 2GCUR 1
– SHLGi:解释层段内i第条曲线测井值;
– GMINi:第i条曲线在纯砂岩处的测井值;
Vhr Shr mhr Vhr h
式中 ρh—油气密度(g/m3) 计算这两个参数的作用在于,当油气密度可靠时可用Vhr和mhr 划分油气界面.显然,对油层来说,Vhr=mhr;对气层Vhr>>mhr。
(4)累计孔隙厚度(PF)和累计油气厚度(HF)P230 (5)出砂指数(BULK) P230 略……
– SWOP=3,仍用Archie公式,但a=0.62,m=2.15, n=2。
School of Geophysics and Oil Resources
一、POR分析程序的解释原理
4、地层渗透率的计算
采用Timur公式计算地层绝对渗透率。
K 0.136 4.4
S
2 wb
–其中:Swb为一解释参数,由用户给定。
School of Geophysics and Oil Resources
一、POR分析程序的解释原理
5、其它辅助地质参数 (1)计算地层含水孔隙度φw 与冲洗带含水孔隙度φxo
w Sw xo Sxo
显然,两者之差(φxo-φw)表示地层中可动油气孔隙度, 而(φ-φw
(2) 经验法估计冲洗带残余油气饱和度
– GMAXi:第i条曲线在纯泥岩处的测井值;
– GCUR:地区经验系数,对第三纪地层为3.7;对老地 层为2;它也可以由本地区的实际资料统计获得。
– Vshi:由第i条曲线求出的泥质含量;
– i表示任一条测井曲线,在程序中它们是按GR、SP、 RT、CNL、NLL(中子寿命)顺序排列。
School of Geophysics and Oil Resources