人教版六年级数学上册比的认识资料讲解
(完整版)人教版六年级数学上册比知识点

第四章 比一、比的基本概念1、比的意义:两个数相除又叫做两个数的比两个同类量的比表示这两个量之间的倍数关系,两个有联系的不同类量的比表示一个新的量2、比的符号和读、写法 1015是分数形式的比,是比的另一种书写形式 3、比的各部分名称(1)比的前项:在两个数的比中,比号前面的数(2)比的后项:在两个数的比中,比号后面的数(3)比值:比的前项除以后项所得的商4、求比值的计算方法:比的前项除以比的后项比值可用分数、小数或整数表示5、比和比值的联系与区别都可以用分数形式表示:53既可表示3:5,又可表示3:5的比值;比表示两个数的一种关系,比值是一个数;比只能写成a:b 或ba 的形式,比值可以是分数、小数、整数 6、比与分数、除法的关系(1)联系 a:b=a ÷b=ba (b ≠0) 除法 被除数 ÷ 除数 商分数 分子 — 分母 分数值比 前项 : 后项 比值(2)区别①意义不同:比表示两个量的一种关系;除法是一种运算;分数则是一个数②表示方法不同:除法算式不能用分数表示;比可以用分数表示;但分数不一定表示两个量的比 ③结果表达不同:除法要求出商;比只有求比值才求出商;分数本身就是一个数值7、求比中未知项的方法比的前项=比的后项×比值比的后项=比的前项÷比值8、转化法解决问题:把不变量看作单位“1”小明读一本书,已读页数和未读页数只比是5:4.如果再读27页,已读与未读只比为2:1,求这本书多少页2:(1+2)=32 5:(5+4)=95 27÷(32-95)=243(页) 二、比的基本性质1、、比的基本性质比的前项和后项同时乘或除以相同的数(0除外),比值不变。
同样适用于连比2、化简比的意义(1)最简整数比:比的前项和后项是互质数的比(2)化简比的意义:把两个数的比化成最简单的整数比3、整数比的化简方法:把比的前项和后项同时除以它们的最大公因数4、分数比的化简方法(1)比的前项和后项同时乘它们的分母的最小公倍数,变整数比,再化简(2)利用求比值的方法,但结果必须写成比的形式5、小数比的化简方法:先把前项和后项的小数点同时向右移动相同的位数,变成整数比,再化简6、黄金比较短部分与较长部分长度之比等于较长部分与整体长度之比,约为0.618:1三、解决问题1、用转化单位“1”的方法和找中间量的方法解题甲数是乙数的103,乙数是丙数的94,求这三个数的连比 方法一:把乙数看作单位“1”,丙数是乙数的49,所以甲:乙:丙=103:1:49 方法二:找中间量的方法甲:乙=3:10=6:20 乙:丙=4:9=20:45 所以甲:乙:丙=6:20:452、按比例分配问题应用把一个数量按照一定的比来进行分配。
六年级上册数学《比》

六年级上册数学《比》一、比的定义比是两个量之间的一种关系,它通常用来表示两个数量之间的关系,如两个数相除或两个向量相除。
在数学中,比的定义可以概括为两个非零实数a和b的比,记作a:b或ab。
二、比的表示方法比的表示方法有两种:数值表示法和图示法。
数值表示法用比值来表示两个数的关系,如a:b=2:3表示a是b的2/3;图示法通常用线段图来表示两个量之间的关系,其中线段的长度表示两个量的大小,线段的长度比表示两个量的比值。
三、比的性质比的性质主要有以下三个方面:1. 比的前项和后项同时乘或除以相同的数(0除外),比值不变。
这是比的基本性质,它表明比的值的计算方法和两个数相除是一样的。
2. 比的前项和后项互换位置,比值不变。
这个性质说明比的前项和后项在位置上是可以互换的,而比值是不变的。
3. 在同一个问题中,不同的量之间的比值是一定的。
这个性质说明在同一个问题中,不同的量之间的比值是一定的,它不随量的变化而变化。
四、比的应用比在日常生活和数学中都有广泛的应用。
比如在物理中,速度的定义就是路程和时间的比;在化学中,浓度的计算也是用溶质的重量和溶剂的重量之间的比来计算的。
在数学中,比可以用来解决一些实际问题,如按比例分配、比例关系等。
五、比与分数的关系比与分数之间有着密切的联系。
分数是一个数的一部分,而比则是两个数之间的关系。
可以说,分数是一种具体的比的形式。
在数学中,分数和比常常是可以相互转换的。
比如,一个数的1/2可以表示成与这个数比值为1:2的形式。
同样地,两个数的比值也可以转换成分数形式。
例如,2:3的比值可以表示为分数2/3。
六、比与除法的关系比与除法之间也存在密切的联系。
在数学中,除法可以被看作是一种特殊的比。
当除法的除数等于1时,商就是这个数本身;而当除数不等于1时,商就是被除数与除数的比值。
因此,可以说除法是比的一种特殊表现形式。
同时,比也可以被看作是一种特殊的除法,即把除数看作一个常数,然后通过计算得到商。
六年级上册数学.4 比小学六年级数学上册第四单元-比知识点

(一)、比的意义1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
例如 15 :10 = 15÷10=3/2(比值通常用分数表示,也可以用小数或整数表示)15∶ 10= 3/2前项比号后项比值3、比可以表示两个相同量的关系,即倍数关系。
例:长是宽的几倍。
也可以表示两个不同量的比,得到一个新量。
例:路程÷速度=时间。
4、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
5、根据分数与除法的关系,两个数的比也可以写成分数形式。
6、比和除法、分数的联系:比前项比号“:”后项比值除法被除数除号“÷”除数商分数分子分数线“—”分母分数值7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
8、根据比与除法、分数的关系,可以理解比的后项不能为0。
9、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
10、求比值:用前项除以后项,结果最好是写为分数(不会约分的就不约分)例如:15∶ 10=15÷10=15/10=3/2更多学习资料加QQ2137626237(二)、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。
3、根据比的基本性质,可以把比化成最简单的整数比。
4.化简比:(2)用求比值的方法。
注意:最后结果要写成比的形式。
例如: 15∶10 = 15÷10 =15/10= 3/2 = 3∶2还可以15∶10 = 15÷10 = 3/2最简整数比是3∶25、比中有单位的,化简和求比值时要把单位化相同再化简和求比值,结果没有单位。
小学六年级数学知识点比的认识知识点

在小学六年级数学中,比的认识是一个重要的知识点。
比是用来表示两个量的大小关系的一种数学工具,它可以让我们更清楚地理解数值的大小差距,帮助我们进行大小比较和相对关系的分析。
下面是对小学六年级数学比的认识的具体知识点的详细讲解:一、比的概念和表示方法:1.比的概念:比是用来表示两个量的大小关系的一种数学工具。
比是无量纲的,即两个数值相除得到的结果。
2.比的表示方法:用冒号“:”表示两个数的比,比如用“2:3”表示2和3的比。
二、比的大小比较:1.同类比的大小比较:当比较的两个数是同一类别的物体时,可以通过直接比较两个数的大小,更大的数值表示较多,更小的数值表示较少。
2.异类比的大小比较:当比较的两个数是不同类别的物体时,需要通过等比例变换将两个数转化为同类比进行比较。
a.比的等价性:两个等量的比是相等的,可以互相转化,称为比的等价性;b.比的倍数关系:如果两个比相等,那么它们的倍数比也相等;c.比的大小关系:对于足够好的数x和y(即x>0且y>0),当且仅当x>y时,有x/y>1三、比的简便表示:1.百分数表示法:将比的右项设为100,左项按比例换算成的数值就是百分数;a.求百分数:将左项除以右项,再乘以100;b.求原数量:将百分数除以100,再乘以右项。
2.小数表示法:将比的右项设为10,左项按比例换算成的数值就是小数;a.求小数:将左项除以右项,得到的结果即为小数。
3.比的形成:可以通过将顺序、比例和倍数三个因素结合来得到相应的比。
四、求解问题:1.求已知比的倍数比:已知比和倍数比的关系,可以通过已知比和已知倍数中的两个数来求解未知数;2.求已知比的其他未知数:已知比和未知数中的两个数,可以通过已知比和已知未知数中的一个数来求解另一个未知数;3.求已知倍数比的其他未知数:已知倍数比和未知数中的一个数,可以通过已知倍数比和已知未知数中的两个数来求解另一个未知数;4.求两个已知比的两个未知数:已知两个比和未知数中的一个数,可以通过两个比和已知未知数中的一个数来求解另一个未知数。
小学六年级数学知识点比的认识知识点

比的认识是小学六年级数学的一个重要知识点,通过学习比的认识,可以对数量的大小进行比较和形成比例关系,进而解决实际生活中的问题。
下面将详细介绍小学六年级数学中与比的认识相关的知识点。
一、比的概念比是指两个或多个数的大小关系,以冒号“:”表示,例如5:3表示5和3的比,可以读作“5比3”。
二、比的表示比可以用两种方式表示:1.线段比:用线段表示比的数量大小关系,线段的长度表示数量的大小。
2.分数比:用分数表示比的大小关系,被除数表示较大的数量,除数表示较小的数量,比值用分号表示。
三、比的种类比可以分为三种情况:1.同类比较:比较同一种类的量,例如比较两个长度、两个重量的大小关系,这种比较叫做同类比较。
2.异类比较:比较不同种类的量,例如比较一个长度和一个重量的大小关系,这种比较叫做异类比较。
3.混合比较:同一种类和不同种类的量混合在一起进行比较,例如比较两个长度和一个重量的大小关系,这种比较叫做混合比较。
四、比的性质1.比的单位相同:进行比较的两个量必须拥有相同的单位。
2.比的特殊位置:比的两个量中,较大的在前,较小的在后。
3.比的相等:如果两个比中的两个量的比值相等,那么这两个比是相等的。
五、比的应用1.比的扩大和缩小:当比中的较大数乘以(或除以)相同的因数时,比的结果不变。
例如,5:3是一个比,如果将5和3同时乘以2,得到的新比是10:6,它们是等价的。
2.比的分解与合并:一个比可以通过分解和合并得到不同的比。
例如,10:5可以分解为5:5和5:5,可以合并为20:10。
3.比的比较:比的大小关系可以通过直接比较两个比的大小关系,或者将两个比转化为分数比进行比较。
4.比的应用问题:比的认识可以应用于很多实际生活问题中,例如在购物中比较商品价格、在做菜中调配食材的比例等。
总结起来,小学六年级数学中的比的认识知识点包括比的概念、表示方法、种类、性质以及比的应用。
通过学习这些知识点,可以在实际生活中进行数量的比较和解决实际问题。
六年级上册数学教案-比的意义人教版

六年级上册数学教案比的意义人教版一、教学内容1. 比的定义:比是用来表示两个数相除的关系,形式为a:b或a/b。
其中,a叫做比的前项,b叫做比的后项。
2. 比的读法:比的读法与分数的读法相似,先读前项,再读比号(比号读作“比”),读后项。
3. 比的大小:两个比相比较,可以通过将它们的前项和后项同时乘或除以一个相同的数(0除外),使得它们的前项相同,然后比较后项的大小。
如果后项相同,则前项越大,比就越大。
4. 比的化简:比可以进行化简,化简后的比与原比相等。
化简比的方法是先将前项和后项同时乘或除以一个相同的数(0除外),使得后项为1,然后读出化简后的比。
二、教学目标通过本节课的学习,希望同学们能够掌握比的意义,理解比与除法的关系,学会化简比,并能正确地进行比的比较。
三、教学难点与重点教学难点:比的化简方法,比的读法。
教学重点:比的定义,比的大小比较方法。
四、教具与学具准备教具:黑板,粉笔,多媒体教学设备。
学具:练习本,笔。
五、教学过程1. 实践情景引入:同学们,你们知道吗?在我们的生活中,比的概念无处不在。
比如,我们经常听到这样的话:“这个苹果的重量是那个苹果的两倍。
”这里的“两倍”就是一个比。
今天,我们就来学习比的意义。
2. 知识讲解:我们来学习比的定义。
比是用来表示两个数相除的关系,形式为a:b或a/b。
其中,a叫做比的前项,b叫做比的后项。
比如,3:4就表示3除以4的关系。
3. 比的读法:比的读法与分数的读法相似,先读前项,再读比号(比号读作“比”),读后项。
比如,3:4读作“三比四”。
4. 比的大小:两个比相比较,可以通过将它们的前项和后项同时乘或除以一个相同的数(0除外),使得它们的前项相同,然后比较后项的大小。
如果后项相同,则前项越大,比就越大。
5. 比的化简:比可以进行化简,化简后的比与原比相等。
化简比的方法是先将前项和后项同时乘或除以一个相同的数(0除外),使得后项为1,然后读出化简后的比。
六年级数学上册第六单元《比的认识》期末复习要点

六年级数学上册第六单元《比的认识》期末复习要点一、比的概念和比的性质1. 比的定义比是两个数之间的大小关系表示,可以用“:”或者“/”表示,比如:4:5,2/3。
表示第一个数与第二个数相比的关系。
2. 同比例的比如果两个比的对应项都相等,则这两个比是相等的,也叫做同比例的比。
3. 比的性质•任意非零数与1的比都等于它本身;•任意数与0的比都等于0;•任意非零数与自身的比都等于1。
二、比的比较和比的化简1. 比的比较•分数相等,比的大小相等;•分子相等,分母越小,比越大。
2. 相同比的比较当两个比分别和一个相同的比进行比较时,可以比较它们的分子。
3. 比的化简将一个比的分子和分母同时除以相同的数,得到的新比与原比相等。
三、比的运算1. 比的加法将两个比的分母相等,然后把它们的分子相加作为新的分子。
2. 比的减法将两个比的分母相等,然后把它们的分子相减作为新的分子。
3. 比的乘法将两个比的分子相乘作为新的分子,分母也相乘作为新的分母。
4. 比的除法将一个比的分母与另一个比的分子相乘作为新的分子,将这个比的分子与另一个比的分母相乘作为新的分母。
四、实际问题与比的关系1. 比例比例是两个有关系的比的关系,常用“:”或者“/”表示,比如:3:4,2/5。
比例中的两个比都是相等的比。
2. 比例关系当两个比例相等时,称为比例关系,可以表示成等比例方程。
3. 比例的变化当一个比按照一定的规律改变时,另一个比也按照相同的规律改变。
五、解决实际问题1. 建立等式根据实际问题,根据已知条件建立等式。
2. 解方程利用等式求解未知数,确定问题的解。
3. 校验答案将求解得到的未知数代入原等式中,判断是否符合题意。
以上是六年级数学上册第六单元《比的认识》的期末复习要点,希望对同学们的复习有所帮助。
六年级数学比的认识知识点总结

六年级数学比的认识知识点总结比的认识知识点:比的基本概念1. 两个数相除又叫做两个数的比。
比的前项除以后项所得的商,叫做比值。
2. 比值通常用分数、小数和整数表示。
3. 比的后项不能为0。
4. 同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;5. 根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。
6.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。
比的认识知识点:求比值求比值:用比的前项除以比的后项比的认识知识点:化简比化简比:用比的前项除以比的后项求出分数的比值后,在把分数比值改成比。
比的认识知识点:比的应用1、比的第一种应用:已知两个或几个数量的和,这两个或几个数量的比,求这两个或这几个数量是多少?例如:六年级有60人,男女生的人数比是5:7,男女生各有多少人?题目解析:60人就是男女生人数的和。
解题思路:第一步求每份:60(5+7)=5人第二步求男女生:男生:55=25人女生:57=35人。
2、比的第二种应用:已知一个数量是多少,两个或几个数的比,求另外几个数量是多少?例如:六年级有男生25人,男女生的比是5:7,求女生有多少人?全班共有多少人?题目解析:“男生25人”就是其中的一个数量。
解题思路:第一步求每份:255=5人第二步求女生:女生:57=35人。
全班:25+35=60人3、比的第三种应用:已知两个数量的差,两个或几个数的比,求这两个或这几个数量是多少?例如:六年级的男生比女生多20人(或女生比男生少20人),男女生的比是7:5,男女生各有多少人?全班共有多少人?“六年级数学比的认识知识点总结”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比的基本性质
6÷8 = (6÷2)÷ (8÷2)= 3 ÷ 4
根据刚才的推导,你能尝试着说一说什么是比的基本性质吗? 比的前项和后项同时乘或除以相同的数(0除外),比值不变。
第一站:填一填
★填空
1、一袋子里有5个红球和7个白球,白球和红球的比是 ( 7:5 ),红球和总球数的比是( 5:12 )。
人教版六年级数学上册比的认识
探究活动一 认识比 你能自己解决这些问题吗?
1、什么叫做比? 2、比各部分的名称分别叫做什么? 3、如何求一个比的比值?
探究活动三 比的基本性质
除法:
6÷8 =(6×2)÷ (8×2) = 12 ÷ 16
商不变的规律
6:8 =(6×2): (8×2)= 12 : 16 6:8 =(6÷2):(8÷2)= 3 ÷ 4
2、修一条长20千米的公路,已经修了15千米,已经修的长度与
公路全长的比是( 15:20 ( 5:20 )。
),没修的长度与总长的比是
3、
5cm
正方形的周长与边长的比是( 20:5 )。 正方形的面积与边长的比是( 25:5)。
第二站:练一练
填空,并想一想你是怎样算的。
3:( 0.125)=24
( 4 ):8=0.5
各类比赛中的比
不是我们这节课学 两队比分
习的比,它只是一
种计分形式,是比 2:2
较大小的,是相差 关系,不是相除关 系。
同学们,再见!
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
ห้องสมุดไป่ตู้
5:8=( 30 ):48
3:( 12 )=15:60
1、标准的篮球场长和宽的比是 28:15
2、我国国旗长和宽的比是3:2
3、地球海洋面积和陆地面积的比是 63:27
人体中有趣的比
1、婴儿的头长与身高的比大约是1:4。 2、成年人的头长与身高的比约是1:7。 3、两手平伸的长度和自己身高的比约是1:1 4、人的心脏与拳头的比约是1:1。 5、一个人血液与体重的比大约是1:13。