第九章 杆件的变形及刚度计算

合集下载

建筑力学课程教学大纲

建筑力学课程教学大纲

《建筑力学》课程教学大纲一、本课程的地位、作用和任务《建筑力学》是水利水电建筑工程专业的一门重要的专业基础课,在本专业中起着承上启下的作用,为后续课程打基础。

《建筑力学》的任务是:教授学生掌握物体受力分析与静力平衡问题的求解方法;杆件及结构内力与变形的分析方法;关于构件的强度、刚度与稳定性的计算及构件应力、应变的方法。

通过本课程的学习,要求学生具备对常见结构、构件进行受力分析、内力与变形计算的能力,并初步具备对结构的实验分析能力。

二、教学内容和教学要求第一章绪论1、教学内容建筑力学的研究对象、研究方法、主要内容。

2、教学要求了解建筑力学课程的性质、地位和作用,了解建筑力学各部分的内容、了解建筑力学的学习方法。

第一篇、静力学第二章刚体静力分析基础1、教学内容2—1 力与力偶1)力的概念和性质2)力对点之矩3)力偶的概念和性质2—2 约束与约束反力1)约束与约束反力的概念2)工程中常见的约束与约束反力2—3 受力分析与受力图2、教学要求(1)理解力、力对点的矩、平面力偶的概念及静力学的四个公理,合力矩定理、刚体的概念;掌握平面力偶系合成的计算。

(2)了解约束的概念及荷载的分类;了解作用在构件上荷载的计算方法;掌握常见工程中的约束类型及其约束反力的确定;第三章平面力系1、教学内容3—1 平面力系向一点的简化1)力的平移定理2)平面力系向一点的简化3)力在坐标轴上的投影主矢与主矩的计算4)平面力系向一点简化结果的进一步分析3—2 平衡方程及其应用1)平面一般力系的平衡条件和平衡方程2)平面力系的几种特殊情形3)静定与超静定问题4)物体系的平衡问题2、教学要求(1)了解力的平移定理的内容;掌握力在坐标轴上的投影的概念及计算,掌握合力的投影定理;(2)理解平面一般力系的概念;了解平面一般力系向一点简化和简化结果分析。

(3)掌握平面一般力系、平面汇交力系、平面平行力系及平面力偶系的平衡方程及其应用,重点掌握常见物体支座反力的求法。

工程力学第九章杆件变形及结构的位移计算

工程力学第九章杆件变形及结构的位移计算
应的(直线图形)的竖标,再除以杆的弯曲刚度。 应用图乘法计算时,应注意以下几点:
(1)竖标要在直线段弯矩图上取得; (2)每一个面积只对应一条直线段的弯矩图。
当与在杆的同一侧时,两者乘积取正号,反之取 负号。
§9–4 图乘法
二、几种常见图形的面积和形心位置的确定方法
二次抛物线
§9–4 图乘法
例1:求图示梁(EI=常数,跨长为l)B截面转角 B
(
1 2
l 2
1 2
2 3
Pl 4
B l l 1 Pl 1 l 1 1 Pl) 2 22 4 2223 4
l/2
l/2
Pl2 ( ) 16EI
1
Mi
1/ 2
取 yc的图形必
须是直线,不能是曲
B
1 EI
(1 2
l
Pl 4
1) 2
Pl 2 16 EI
(
)
线或折线.
§9–4 图乘法
q
A
B
1
2
1
MP 图
解:
1 ql2
M图
8
B
1 EI
[(2 3
l
1 8
ql2 )
1] 2
1 ql3 ( )
24 EI
§9–4图乘法
例2. 试求图示结构B点竖向位移.
P
1
Pl
l
EI
B
l EI MP
Mi
l
解:
By
MM P EI
ds
yc
EI
§9–4 图乘法
解:
yc
EI
1 ( 1 Pl l 2 l Pl l l)
ql3 ( 24 EI
)

杆件的变形及计算

杆件的变形及计算

τ=
Q ≤ [τ ] A
其中 Q 为剪切面上的剪力,由平衡条件求解;A 为剪切面面积;[τ]为材料的许用剪应力,单位 MPa. 为剪切面上的剪力,由平衡条件求解; 为剪切面面积; 为材料的许用剪应力 为材料的许用剪应力, .
二,挤压使用计算
在承载的情形下,连接件与其所连接的构件相互接触并产生挤压, 在承载的情形下,连接件与其所连接的构件相互接触并产生挤压,因而在二者接触面的局部区域产生 较大的接触应力,称为挤压应力,用符号σjy表示 单位MPa.挤压应力是垂直与接触面的正应力.其可 表示, 较大的接触应力,称为挤压应力,用符号 表示,单位 .挤压应力是垂直与接触面的正应力. 导致接触的局部区域产生过量的塑性变形,而导致二者失效. 导致接触的局部区域产生过量的塑性变形,而导致二者失效. 积压力为作用在接触面上的总的压力, 表示. 积压力为作用在接触面上的总的压力,用符号 Pjy 表示. 表示. 挤压面为接触面在挤压力作用线垂直平面上的投影, 挤压面为接触面在挤压力作用线垂直平面上的投影,用符号 Ajy 表示. 其强度设计准则
在例6-1中杆 的直径均为d=30mm,[σ]=160MPa,其它条件不变.试确定此时结构所能 例6-3 在例 中杆BC,EF 的直径均为 , ,其它条件不变. 承受的许可载荷? 承受的许可载荷? 中分析EF杆为危险杆 解:根据例1中分析 杆为危险杆,由平衡方程可得 根据例 中分析 杆为危险杆,
N2 =
第三节 连接件的强度设计
一,剪切实用计算
当作为连接件的铆钉,,销钉,键等零件承受一对等值, 当作为连接件的铆钉,,销钉,键等零件承受一对等值,反 ,,销钉 作用线距离很近的平行力作用时, 向,作用线距离很近的平行力作用时,其主要失效形式之一为沿 剪切面发生剪切破坏.发生相对错动的截面称为剪切面. 剪切面发生剪切破坏.发生相对错动的截面称为剪切面.由于剪 切面上剪应力分布比较复杂, 切面上剪应力分布比较复杂,可假定认为剪应力在剪切面上均匀 分布——剪切实用计算. 剪切实用计算. 分布 剪切实用计算 其设计准则为

工程力学位移分析与刚度设计资料

工程力学位移分析与刚度设计资料

第九章位移分析与刚度设计一、教学目标具有胡克定律,弹性模量与泊松比的概念,能熟练地计算轴向拉压情况下杆的变形熟练掌握扭转杆件变形(扭转角)计算方法和扭转刚度计算方法;掌握求梁变形的两种方法:积分法和叠加法,明确叠加原理的使用条件,掌握用变形比较法求解静不定梁。

二、教学内容轴向拉伸和压缩的变形扭转杆件变形(扭转角)计算,刚度条件弯曲变形的量度及符号规定;挠曲线近似微分方程;计算弯曲变形的两种方法;用变形比较法解简单的超静定梁三、重点难点轴向拉伸和压缩的变形扭转杆件变形(扭转角)计算,刚度条件梁的变形分析。

挠曲线近似微分方程。

积分法求梁的变形。

叠加法求梁的变形。

用变形比较法解简单超静定梁。

四、教学方式采用启发式教学,通过提问,引导学生思考,让学生回答问题。

五、计划学时学时六、实施学时七、讲课提纲。

(一)、§9.1受轴向拉伸(压缩)时杆件的变形计算一、纵向变形图9-11、线变形:△l=l1-l (绝对变形)——反映杆的总伸长,但无法说明杆的变形程度(绝对变形与杆的长度有关)2、线应变:l l∆=ε(相对变形)——反映每单位长度的变形,即反映杆的变形程度。

(相对变形与杆的长度无关)3、虎克定律:EA σ=(9-1) 二、横向变形 泊松比1、 横向缩短:△b =b 1-b2、 横向线应变: b b b b b -=∆='1ε 3、 泊松比实验结果表明:在弹性范围,其横向应变与纵向应变之比的绝对值为一常数,既泊松比:考虑到两个应变的正负号恒相反,即拉伸时:ε+ , ε'-压缩后:ε- , ε'+三、变形和位移的概念1、变形..——物体受外力作用后要发生形状和尺寸的改变........,这种现象称为物体的变形。

2、 位移..——物体变形后,在物体上的一些点、一些线或面就可能 发生空间位置的改变,这种空间位置的改......变称为位移。

3、 变形和位移的关系——因果关系,产生位移的原因是杆件的变形,杆件变形的结果引起杆件中的一些点、面、线发生位移。

杆件的轴向拉压变形及具体强度计算

杆件的轴向拉压变形及具体强度计算

根据强度条件,可以解决三类强度计算问题
1、强度校核:
max
FN A

2、设计截面:
A

FN

3、确定许可载荷: FN A
目录
拉压杆的强度条件
例题3-3
F
F=1000kN,b=25mm,h=90mm,α=200 。
〔σ〕=120MPa。试校核斜杆的强度。
解:1、研究节点A的平衡,计算轴力。
目录
——横截面上的应力
目录
FN
A
——横截面上的应力
该式为横截面上的正应力σ计 算公式。正应力σ和轴力FN同号。 即拉应力为正,压应力为负。
根据杆件变形的平面假设和材料均匀连续性假设 可推断:轴力在横截面上的分布是均匀的,且方向垂 直于横截面。所以,横截面的正应力σ计算公式为:
目录
• 拉(压)杆横截面上的应力
FN 2 45° B
F
FN1 28.3kN FN 2 20kN
2、计算各杆件的应力。
B
1

FN1 A1


28.3103 202 106

4
F
90106 Pa 90MPa
x
2

FN 2 A2

20103 152 106

89106 Pa 89MPa
目录
三、材料在拉伸和压缩时的力学性质
教学目标:1.拉伸、压缩试验简介; 2.应力-应变曲线分析; 3.低碳钢与铸铁的拉、压的力学性质; 4.试件的伸长率、断面收缩率计算。
教学重点:1.应力-应变曲线分析; 2.材料拉、压时的力学性质。
教学难点:应力-应变曲线分析。 小 结: 塑性材料与脆性材料拉伸时的应力-应变曲线分析。 作 业: 复习教材相关内容。

九、 材料力学位移分析(2)

九、 材料力学位移分析(2)
课堂练习P265,习题9-20
5、梁的刚度计算
解:1、作强度设计
[ ]; W ql 2 1 M max 10103 4 2 40kNm; 4 4 40103 4 3 W 4 10 m ; 100106 单个槽钢W 2 10 4 m 3 200cm3 ;
22a槽钢满足刚度要求。
课外练习:9-18;9-19;
6、简单的静不定问题
关于静不定的基本概念
求解静不定问题的基本方法
拉压静不定问题
扭转静不定问题 简单的静不定梁 静不定结构的特性
6、简单的静不定问题
关于静不定的基本概念
静定问题与静定结构——未知力(内力或外力)个数等于独立的平衡方程数 静不定问题与静不定结构——未知力个数多于独立的平衡方程数
对转角的限制 轴的类型 滑动轴承 向心轴承 向心球面轴承 圆柱滚子轴承 圆锥滚子轴承 安装齿轮的轴 许用转角[θ]/rad
0.001 0.005 0.005 0.0025 0.0025 0.001
5、梁的刚度计算
例题9-10、图示钢制圆轴,已知
20kN C
2000
Fp=20kN,E=206GPa,轴承B 处的
4、铝杆应力:σ =FNA/AA=128.8MPa 5、铝杆长度:l =300+0.936-0.552=300.38mm;
6、简单的静不定问题
扭转静不定问题 例题9-15、两端固定的圆轴受力如图,已知Mx,GIp,l, 求A、B两端的约束力。
y
x Mx z A l C l Mx D l B
6、简单的静不定问题
解:1、轴受力如图,由平衡方程:
M
x
0;
M x 4 M x M x M x 3 0;

9第九章 杆件变形及结构的位移计算

9第九章 杆件变形及结构的位移计算

产生位移的原因 一般荷载——力的作用 广义荷载 温度变化 支座位移 制造误差
P
t
一般荷载
C C
温度变化
A
支座位移 B
B
B
制造误、位移计算的目的
⑴ 刚度要求 强度校核 结构设计计算应考虑的内容 稳定性验算 刚度验算 在工程上,吊车梁允许的挠度<1/600跨度; 房屋主梁允许挠度<1/350跨度。 高层建筑框架结构,风荷载作用下的最大位移<1/450高度, 最大层间位移<1/550层高; 地震作用下的最大位移<1/400高度; 最大层间位移<1/500层高。 ⑵ 超静定结构的计算基础 超静定结构必须考虑几何条件(位移约束或变形协调)方可求解。
1
B
C a-x
M =a x
横梁BC 竖柱CA
a
A
x
注意:负号表示位移 的方向与假设的单位 力的方向相反。 (4)求B点的线位移ΔB
§9-4 图乘法
刚架与梁的位移计算公式为:


MMds EI
在杆件数量多的情况下,不方便. 下面介绍 计算位移的图乘法.
梁和刚架位移计算公式
计算工作量很大,应用比较麻烦。一定条件下,上述积分计算可以简化。
ΔCV 2330 106 7.012mm 3 210 10 2 791.2
4m
–200
–200
5 8
3 8
5 8
3 8
5 8
杆件名称 A-C B-C D-E A-D C-D C-E
杆长l (m) 6 6 6 5 5 5
截面积A 轴力 FNP (cm2) (kN) 15.824 15.824 15.824 15.824 15.824 15.824 120 120 -120 -200 0 0

名师讲义【赵堔】工程力学第9章扭转强度与刚度

名师讲义【赵堔】工程力学第9章扭转强度与刚度

d MTn x dx
GI p
AB 截面相对扭转角为:
l
d
l
MTn x dx
GI p
# 图示为变截面圆杆,A、B 两端直径分别为 d1、d2 。
从中取 dx 段,该段相邻两截 面的扭转角为:
d T dx
GI P (x)
AB 截面相对扭转角为:
d
T dx
L
L GI P ( x)
三、 扭转杆的刚度计算
圆管强度。
解:1. 计算扭矩作扭矩图
2. 强度校核
危险截面:截面 A 与 B
A
TA
2πR02d1
ml
2πR02d1
44.6
MPa [
]
ml
B
TB
2π 2
27.9
MPa [
]
圆管强度足够
例 图示阶梯状圆轴,AB段直径 d1=120mm,BC段直径
d2=100mm 。扭转力偶矩 MA=22 kN•m, MB=36 kN•m,
d
5、切应力的计算公式:
dA 对圆心的矩 → dAr0
T
AdA.r0
2 0
r0
2td
r02t2
T
2r0 2t
薄壁圆筒扭转时 横截面上的切应力计算式
二、关于切应力的若干重要性质
1、剪切虎克定律
为扭转角 r0 l
l
r0 即
l
做薄壁圆筒的扭转试验可得 T
纵轴 T——
T
2r02t
核轴的刚度 解:1. 内力、变形分析
T1 MA 180 N m
AB
T1l GIp
1.5010-2
rad
T2 MC 140 N m
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

l
FRB
此梁的弯矩方程及挠曲线微分方程分别为
ql q 2 M ( x) x x 2 2 ql q 2 EIw x x 2 2
ql 2 q 3 EIw x x C 4 6
ql 3 q 4 EIw x x Cx D 12 24
第九章
杆件的变形及刚度计算
第九章
杆件的变形及刚度计算
三、微分方程的积分
M ( x) w EI
若为等截面直梁, 其抗弯刚度EI为一常量上式可改写成
EIw M ( x )
1.积分一次得转角方程
EIw M ( x )dx C1
2.再积分一次,得挠度方程
EIw M ( x )dxdx C1 x C 2
一、叠加原理
梁的变形微小, 且梁在线弹性范围内工作时, 梁在几项荷载
(可以是集中力, 集中力偶或分布力)同时作用下的挠度和转角, 就分别等于每一荷载单独作用下该截面的挠度和转角的叠加. 当 每一项荷载所引起的挠度为同一方向(如均沿w轴方向), 其转角 是在同一平面内(如均在 xy 平面内)时,则叠加就是代数和. 这就
1.纯弯曲时曲率与弯矩的关系
M EI
横力弯曲时, M 和 都是x的函数.略去剪力对梁的位移的影 响, 则
1
1 M ( x) ( x) EI
第九章
杆件的变形及刚度计算
2.由数学得到平面曲线的曲率
1 | w | 3 2 2 ( x) (1 w ) | w | (1 w )
第九章
杆件的变形及刚度计算
四、积分常数的确定
1.边界条件 2.连续条件 在简支梁中, 左右两铰支座处的 挠度 w A 和 w B 都等于0. 在悬臂梁中,固定端处的挠度 w A 和转角 A 都应等于0.
A B
wA 0
A
wB 0
B
wA 0
A 0
第九章
杆件的变形及刚度计算
例题1 图示一抗弯刚度为 EI 的悬臂梁, 在自由端受一集中力 F 作用.试求梁的挠曲线方程和转角方程, 并确定其最大挠度 wmax 和最大转角 max w
A a l D B
b
第九章
杆件的变形及刚度计算
x
解: 梁的两个支反力为
b FRA F l a FRB F l
两段梁的弯矩方程分别为
F FRA
A 1 a D b l 2
FRB
B
x
b M1 FRA x F x l b M2 F x F ( x a) l
(0 x a ) (a x l )
A
F
B x
l
第九章
解:
杆件的变形及刚度计算
w
F
A B
x
(1) 弯矩方程为
x
M ( x ) F (l x )
(1)
(2) 挠曲线的近似微分方程为
l
EIw M ( x ) Fl Fx (2)
对挠曲线近似微分方程进行积分
Fx EIw Flx C1 (3) 2 2 3 Flx Fx EIw C 1x C 2 2 6
第九章
杆件的变形及刚度计算
(a)(0 x a)
Fb 2 2 2 ( 1 w1 l b 3x ) 6lEI Fbx 2 2 [ l b x 2] w1 6lEI
(b)( a x l )
Fb l 1 2 2 2 2 [ ( x a ) x ( l b )] 2 w 2' 2lEI b 3 Fb l 3 3 2 2 [ ( ( x a ) w2 x l b ) x] 6lEI b
第九章
杆件的变形及刚度计算
w (1 w )
2 3 2
M ( x) EI
w 2 与 1 相比十分微小而可以忽略不计,故上式可近似为
M ( x) w" EI
(6.5)
此式称为 梁的挠曲线近似微分方程 近似原因 : (1) 略去了剪力的影响; (2) 略去了 w2项; (3) tan w w( x )
tan w ' w '( x )
w
A
C C'
挠曲线
B
x
w挠度
转角

B
第九章
杆件的变形及刚度计算
5.挠度和转角符号的规定
挠度向上为正,向下为负. 转角自x 转至切线方向,逆时针转为正,顺时针转为负. w
A C B x
挠曲线
C'
w挠度

转角
B
第九章
杆件的变形及刚度计算
二、推导公式
杆件的变形及刚度计算
但在另外一些情况下,有时却要求构件具有较大的弹性变 形,以满足特定的工作需要.
例如,车辆上的板弹簧,要求有足够大的变形,以缓解车辆受
到的冲击和振动作用.
F 2
F 2
F
第九章
杆件的变形及刚度计算
§9-2 杆件的刚度设计准则
刚度设计准则
对于拉压杆
FP FP
u
u [u ]
FN l l EA
是叠加原理.
第九章
杆件的变形及刚度计算
1.载荷叠加 多个载荷同时作用于结构而引起的变形等于每个载荷单独作用
于结构而引起的变形的代数和.
( F1 , F2 , , Fn ) 1 ( F1 ) 2 ( F2 ) n ( Fn )
w( F1 , F2 , , Fn ) w1 ( F1 ) w2 ( F2 ) wn ( Fn )
l
l 0
FN ( x) dx EA
第九章
杆件的变形及刚度计算
刚度设计准则
对于受扭圆轴
[ ] , = /l []
M xl GI p M x 180 [ ] GI
第九章
杆件的变形及刚度计算
刚度设计准则
对于梁
w [w], [ ]
第九章
杆件的变形及刚度计算
§9-3 用积分法求弯曲变形
一、基本概念
1.挠度 横截面形心 C (即轴线上的点)在垂直于 x 轴方向的线位移, 称为该截面的挠度.用w表示.
w A C B x w挠度 C'
B'
第九章
2.转角
杆件的变形及刚度计算
横截面对其原来位置的角位移,称为该截面的转角. 用 表示 w
边界条件x=0 和 x=l时, w
0
x
q
wmax B
梁的转角方程和挠曲线方程 A 分别为
A
l
B
q 2 3 3 (6lx 4 x l ) 24 EI qx w (2lx 2 x 3 l 3 ) 24 EI
最大转角和最大挠度分别为
FRA
FRB
在 x=0 和 x=l 处转角的绝对值相等且都是最大值,
2
(4)
第九章
杆件的变形及刚度计算
Fx 2 EIw Flx C1 (3) 2 2 3 Flx Fx EIw C 1x C 2 2 6 边界条件 x 0, w 0
x 0, w 0
(4)
将边界条件代入(3)(4)两式中,可得 C1 0 梁的转角方程和挠曲线方程分别为
积分法的原则
(a)对各段梁,都是由坐标原点到所研究截面之间的梁段上 的外力来写弯矩方程的.所以后一段梁的弯矩方程包含前一段梁 的弯矩方程.只增加了(x-a)的项.
(b)对(x-a)的项作积分时,应该将(x-a)项作为积分变量.从而 简化了确定积分常数的工作.
第九章
杆件的变形及刚度计算
§9–4 用叠加法求弯曲变形
第九章
杆件的变形及刚度计算
例题2 图示一抗弯刚度为 EI 的简支梁,在全梁上受集度为q 的
均布荷载作用.试求此梁的挠曲线方程和转角方程,并确定其 max 和 wmax
q A l B
第九章
杆件的变形及刚度计算
q A x B
解:由对称性可知,梁的两 个支反力为
FRA FRB
ql 2
FRA
第九章
杆件的变形及刚度计算
第九章
杆件的变形及刚度计算
§9-1 基本概念及工程实例 §9-2 杆件的刚度计算准则 §9-3 用积分法求弯曲变形 §9-4 用叠加法求弯曲变形 §9-5 简单的静不定问题 §9-6 提高弯曲刚度的措施
第九章
杆件的变形及刚度计算
§9-1 基本概念及工程实例
一、工程实例
第九章
2
2 Fb Fbl 2 2 3 y | ( l b ) 0.0642 w max x x1 EI 9 3lEI
结论:在简支梁中, 不论它受什么荷载作用, 只要挠曲线上无 拐点, 其最大挠度值都可用梁跨中点处的挠度值来代替, 其精确度 是能满足工程要求的.
第九章
杆件的变形及刚度计算
2 3 2
M ( x) EI
第九章
杆件的变形及刚度计算
w
在规定的坐标系中,x 轴水平向右 为正, w轴竖直向上为正. 曲线向下凸时: 曲线向上凸时:
M
M
w 0 M 0 w
M
M 0 w 0
M
因此,
w与 M 的正负号相同
O
M 0 w 0
x
x
O
w 0 M 0
b 挠曲线方程 EIw 2 M 2 F x F ( x a ) l
转角方程
b x F ( x a) C2 EIw 2 F l 2 2
2
2
挠度方程
相关文档
最新文档