项目6.杆件变形及其刚度条件1
合集下载
建筑力学第8章杆件的变形和刚度校核

9
8.3 平面弯曲梁的变形计算———叠加法(查表法) 从上一节例题可以看出,由于梁的变形微小, 而且梁的材料是在线弹性范围内工作的,因此梁的 挠度和转角均与梁上的荷载成线性关系。这样,梁 上某一荷载所引起的变形,不受同时作用的其他荷 载的影响,即各荷载对弯曲变形的影响是各自独立 的。因此,梁在几项荷载(集中力、集中力偶或分 布力)同时作用下某一截面的挠度和转角,就分别 等于每一项荷载单独作用下给截面的挠度和转角的 叠加。当每一项荷载所引起的转角在同一平面内( 例如均在 xy平面内),其挠度都在同一方向上( 例如均在 y轴方向)时,叠加就是代数和。
12
小结 本章主要研究扭转轴和平面弯曲梁的变形计算 和刚度校核问题。 1)扭转轴的变形计算及刚度条件为
13
2)平面弯曲梁的变形计算可用积分法和叠加 法进行。用积分法求解梁变形就是正确列出各段梁 的弯矩方程,代入挠曲线近似微分方程,积分一次 得到转角方程,再积分一次得到挠曲线方程,然后 正确应用边界条件和连续条件确定积分常数。积分 法是求梁变形的基本方法,虽然计算比较烦琐,但 在理论上是比较重要的。
14
2
图 8.2
3
图 8.3
4
5
6
7
8
正文正文正文正文正文正文正文正文正文正文 正文正文正文正文正文正文正文正文正文正文正文 正文正文正文正文正文正文正文正文正文正文正文 正文正文正文正文正文正文正文正文正文正文正文 正文正文正文正文正文正文正文正文正文正文正文 正文正文正文正文正文正文正文正文正文正文
第8章 杆件的变形和刚度校核
为了避免受扭的轴产生过大的变形,除了要 保证强度条件以外,还要满足刚度要求。工程中 ,通常是用单位长度扭转角 θ 来限制轴的扭转变 形。因此,其刚度条件为
变形及刚度计算_图文_图文

一、基本概念(挠度、转角、挠曲线)
度量梁变形后横截面位移的两个基本量 2、转角() :横截面对其原来位置的角位移(横截面 绕中性轴转动的角度) , 称为该截面的转角。
A
C
B
x
y挠度
C'
y
转角
转角方程:一般各横截面的转角是不相同的,是位置x的 函数,称为转角方程,记做= (x)
4、挠度和转角的关系
注意:位移边界条件在支座处
变形连续条件中间在分段点
三、 用积分法求梁的变形 注意
当梁上的外力将梁分为数段时,由于各段梁 的弯矩方程不同,因而梁的挠曲线近似微分方程 需分段列出。相应地各段梁的转角方程和挠曲线 方程也随之而异。
F
A
a
D
B
b
三、 用积分法求梁的变形 步骤
1、正确分段,分别列弯矩方程; 2、分段列近似微分方程,一次积分得转角方程,再此积 分得挠度方程; 3、由位移边界条件和变形连续条件求得积分常数。
纵向伸长量: 横向缩短量:
轴向压缩:
F
F
纵向缩短、横向伸长
纵向缩短量: 横向伸长量:
注:绝对变形量不足以描述变形的程度,尤其对于长度不 一的杆件,因此引入应变的概念。
§ 8-1 轴向拉压杆的变形
二、线应变
线应变:将绝对伸长量除以杆件的初始尺寸,即得单位伸长 ,称之为线应变。
1、纵(轴)向变形量: F
即 该式表明,某截面的转角等于挠曲线在该截面处的 一阶导数
A
挠曲线
y
C
C'
转角
B
x
y挠度
5、挠度和转角的符号约定
挠度:向下为正,向上为负。 转角:自x 转至切线方向,顺时针转为正,逆时针转为负。
拉压杆的变形及刚度计算

胡克定律:
l FNl EA
上式只适用于在杆长为l长度内FN、E、A均为常
值的情况下,即在杆为l长度内变形是均匀的情况。
EA称为杆的拉压刚度
1.2 横向变形、泊松比 则横向正应变为:
a
a
当应力不超过一定限度时,横向应变
与轴向应变 之比的绝对值是一个常数。
横向变形因数或泊松比
法国科学家泊松(1781~1840) 于1829年从理论上推演得出的结果。 ,
FRA F2 F1 (10 30)
=-20kN (2)、计算各段杆件 横截面上的轴力
AB段: FNAB=FRA=-20kN
BD段: FNBD=F2=10kN
(3)、画出轴力图,如图(c)所示。
(4)、计算各段应力
AB段: BC段: CD段:
AB
FNAB AAC
20 103 500
40MPa
表4-1给出了常用材料的E、 值。
表8.1 常用材料的E、 值
材料名称 低碳钢 中碳钢
低合金钢 合金钢
灰口铸铁 球墨铸铁
铝合金 硬铝合金
混凝土 木材(顺纹) 木材(横纹)
牌号 Q235
45 16Mn 40CrNiMoA
LY12
E 200 ~ 210
205 200 210 60 ~ 162 150 ~ 180 71 380 15.2 ~ 36 9.8 ~ 11.8 0.49 ~ 0.98
例2 图示托架,已知 F 40 kN,圆截面钢杆
AB的直径 d 20 mm ,杆BC是工字钢,其
横截面面积为 1430mm,2 钢材的弹性模量
E 200GPa。求托架在F力作用下,
节点B的铅垂位移和水平位移? 解:(1)、取节点B为研究对象,求两杆轴力
杆件的刚度计算汇总.

5
第一节
圆轴扭转时的变形及刚度计算
刚度计算的三方面:
① 校核刚度: ② 设计截面尺寸: ③ 计算许可载荷:
max
T max Ip G[ ]
T
max
GI p[ ]
有时,还可依据此条件进行选材。
6
第一节
[例]
圆轴扭转时的变形及刚度计算
图示阶梯圆轴,受力如图。已知该轴大端直径为
有足够的刚度。如果变形过大,将造成梁不能正常工作,进而
引起梁的破坏。如:高精度车床轴;桥梁;变速箱传动轴等。 绕曲线——梁在载荷作用下发生弯曲变形,梁轴线由直线 弯曲成一条光滑连续曲线。 梁曲线上任一点在垂直于梁变形前轴线方向的线位移 称为该点的挠度 。 梁任一横截面绕其中性轴转动的角度称为该截面的转角。
③ 轴上的绝对值最大的扭矩越小越合理,所以,1轮和
2轮应该换位。换位后,轴的扭矩如图所示,此时,轴的最 大直径才为 75mm。 T (kNm) 2.814 x – 4.21
13
第一节
圆轴扭转时的变形及刚度计算
课堂练习
14
第二节
梁的变形及刚度计算
一、弯曲变形的概念
为了确保梁的正常工作,梁除了满足强度条件外,还要求
D=60mm,小端直径为
d=30mm,已知G=80GPa,
1
0
/m 。试求:
1).校核该轴刚度; 2).A截面相对于C 截 面的扭转角。
解:1.内力分析:
画扭矩图如图所。
7
第一节
圆轴扭转时的变形及刚度计算
2.变形分析及刚度条件:
3.14 604 1012 I P1 1.27 106 (m 4 ) 32 32 d 4 3.14 304 1012 I P2 0.08 106 (m 4 ) 32 32 180 T1 180 2.5 103 0 1 1 . 4 ( /m) 9 6 GI P1 3.14 80 10 1.27 10 180 T2 180 1.5 103 0 2 1 . 35 ( /m) 9 6 GI P 2 3.14 80 10 0.08 10 故 max 1.4( 0 /m)
第一节
圆轴扭转时的变形及刚度计算
刚度计算的三方面:
① 校核刚度: ② 设计截面尺寸: ③ 计算许可载荷:
max
T max Ip G[ ]
T
max
GI p[ ]
有时,还可依据此条件进行选材。
6
第一节
[例]
圆轴扭转时的变形及刚度计算
图示阶梯圆轴,受力如图。已知该轴大端直径为
有足够的刚度。如果变形过大,将造成梁不能正常工作,进而
引起梁的破坏。如:高精度车床轴;桥梁;变速箱传动轴等。 绕曲线——梁在载荷作用下发生弯曲变形,梁轴线由直线 弯曲成一条光滑连续曲线。 梁曲线上任一点在垂直于梁变形前轴线方向的线位移 称为该点的挠度 。 梁任一横截面绕其中性轴转动的角度称为该截面的转角。
③ 轴上的绝对值最大的扭矩越小越合理,所以,1轮和
2轮应该换位。换位后,轴的扭矩如图所示,此时,轴的最 大直径才为 75mm。 T (kNm) 2.814 x – 4.21
13
第一节
圆轴扭转时的变形及刚度计算
课堂练习
14
第二节
梁的变形及刚度计算
一、弯曲变形的概念
为了确保梁的正常工作,梁除了满足强度条件外,还要求
D=60mm,小端直径为
d=30mm,已知G=80GPa,
1
0
/m 。试求:
1).校核该轴刚度; 2).A截面相对于C 截 面的扭转角。
解:1.内力分析:
画扭矩图如图所。
7
第一节
圆轴扭转时的变形及刚度计算
2.变形分析及刚度条件:
3.14 604 1012 I P1 1.27 106 (m 4 ) 32 32 d 4 3.14 304 1012 I P2 0.08 106 (m 4 ) 32 32 180 T1 180 2.5 103 0 1 1 . 4 ( /m) 9 6 GI P1 3.14 80 10 1.27 10 180 T2 180 1.5 103 0 2 1 . 35 ( /m) 9 6 GI P 2 3.14 80 10 0.08 10 故 max 1.4( 0 /m)
第九章 杆件的变形及刚度计算

l
FRB
此梁的弯矩方程及挠曲线微分方程分别为
ql q 2 M ( x) x x 2 2 ql q 2 EIw x x 2 2
ql 2 q 3 EIw x x C 4 6
ql 3 q 4 EIw x x Cx D 12 24
第九章
杆件的变形及刚度计算
第九章
杆件的变形及刚度计算
三、微分方程的积分
M ( x) w EI
若为等截面直梁, 其抗弯刚度EI为一常量上式可改写成
EIw M ( x )
1.积分一次得转角方程
EIw M ( x )dx C1
2.再积分一次,得挠度方程
EIw M ( x )dxdx C1 x C 2
一、叠加原理
梁的变形微小, 且梁在线弹性范围内工作时, 梁在几项荷载
(可以是集中力, 集中力偶或分布力)同时作用下的挠度和转角, 就分别等于每一荷载单独作用下该截面的挠度和转角的叠加. 当 每一项荷载所引起的挠度为同一方向(如均沿w轴方向), 其转角 是在同一平面内(如均在 xy 平面内)时,则叠加就是代数和. 这就
1.纯弯曲时曲率与弯矩的关系
M EI
横力弯曲时, M 和 都是x的函数.略去剪力对梁的位移的影 响, 则
1
1 M ( x) ( x) EI
第九章
杆件的变形及刚度计算
2.由数学得到平面曲线的曲率
1 | w | 3 2 2 ( x) (1 w ) | w | (1 w )
第九章
杆件的变形及刚度计算
四、积分常数的确定
1.边界条件 2.连续条件 在简支梁中, 左右两铰支座处的 挠度 w A 和 w B 都等于0. 在悬臂梁中,固定端处的挠度 w A 和转角 A 都应等于0.
材料力学第04章 杆件变形分析

桁架的变形通常用节点的位移(displacement)表示,现以 下图所示桁架为例,说明桁架节点位移的分析方法。
例4-2 桁架是由1、2杆组成,
通过铰链连接,在节点A承受 铅垂载荷F=40kN作用。已知
杆1为钢杆,横截面面积
A1=960mm2,弹性模量 E1=200GPa,杆2为木杆,横 截面面积A2=2.5×104mm2, 弹性模量E2=10GPa,杆2的杆 长为1m。求节点A的位移。
M (x) EI 24
d2w/dx2与弯矩的关系如图所示,坐标轴w以向上为正。由
该图可以看出,当梁段承受正弯矩时,挠曲线为凹曲线,如
图(a)所示,d2w/dx2为正。反之,当梁段承受负弯矩时, 挠曲线为凸曲线,如图(b)所示,d2w/dx2为负。可见, d2w/dx2与弯矩M的符号一致。因此上式的右端应取正号,即
于梁的高度,剪力对梁的变形影响可以忽略不计,上式仍可
用来计算横力弯曲梁弯曲后的曲率,但由于弯矩不再是常量,
上式变为
1 M (x)
(x) EI
即挠曲线上任一点处的曲率与该点处横截面上的弯矩成正比,
而与该截面的抗弯刚度(flexural rigidity)EI成反比。
23
由高等数学可知,平面曲线w=w(x)上任一点的曲率为
15
对于扭矩、横截面或剪切弹性模量沿杆轴逐段变化的圆 截面轴,其扭转变形为
n
Tili
i1 Gi I Pi
式中,Ti、li、Gi与IPi分别为轴段i的扭矩、长度、剪切弹 性模量与极惯性矩,n为杆件的总段数。
16
2.圆轴扭转的刚度条件
在圆轴设计中,除考虑其强度问题外,在许多情况下对刚 度的要求更为严格,常常对其变形有一定限制,即应该满足 相应的刚度条件。
例4-2 桁架是由1、2杆组成,
通过铰链连接,在节点A承受 铅垂载荷F=40kN作用。已知
杆1为钢杆,横截面面积
A1=960mm2,弹性模量 E1=200GPa,杆2为木杆,横 截面面积A2=2.5×104mm2, 弹性模量E2=10GPa,杆2的杆 长为1m。求节点A的位移。
M (x) EI 24
d2w/dx2与弯矩的关系如图所示,坐标轴w以向上为正。由
该图可以看出,当梁段承受正弯矩时,挠曲线为凹曲线,如
图(a)所示,d2w/dx2为正。反之,当梁段承受负弯矩时, 挠曲线为凸曲线,如图(b)所示,d2w/dx2为负。可见, d2w/dx2与弯矩M的符号一致。因此上式的右端应取正号,即
于梁的高度,剪力对梁的变形影响可以忽略不计,上式仍可
用来计算横力弯曲梁弯曲后的曲率,但由于弯矩不再是常量,
上式变为
1 M (x)
(x) EI
即挠曲线上任一点处的曲率与该点处横截面上的弯矩成正比,
而与该截面的抗弯刚度(flexural rigidity)EI成反比。
23
由高等数学可知,平面曲线w=w(x)上任一点的曲率为
15
对于扭矩、横截面或剪切弹性模量沿杆轴逐段变化的圆 截面轴,其扭转变形为
n
Tili
i1 Gi I Pi
式中,Ti、li、Gi与IPi分别为轴段i的扭矩、长度、剪切弹 性模量与极惯性矩,n为杆件的总段数。
16
2.圆轴扭转的刚度条件
在圆轴设计中,除考虑其强度问题外,在许多情况下对刚 度的要求更为严格,常常对其变形有一定限制,即应该满足 相应的刚度条件。
材料力学-杆件的变形计算

EIz EIw M (x)dx C
再进行一次积分,可得到挠度方程
EIzw ( M (x)dx)dx Cx D
其中, C 和 D 是积分常数,需要经过边界条件或者连续条件来拟
定其大小。
❖ 边界条件:梁在其支承处旳挠度或转角是已知旳, 这么旳已知条件称为边界条件。
❖ 连续条件:梁旳挠曲线是一条连续、光滑、平坦旳 曲线。所以,在梁旳同一截面上不可能有两个不同 旳挠度值或转角值,这么旳已知条件称为连续条件。
例题4-2: 已知:l = 54 mm ,di = 15.3 mm,E=200 GPa,
= 0.3,拧紧后,△l =0.04 mm。 试求:(a) 螺栓横截面上旳正应力 σ (b) 螺栓旳横向变形△d
解:1) 求横截面正应力
l 0.04 7.4110-4
l 54 E 200 103 7.41104 148.2 MPa
M lBA BA GI p
180 7Ma π GI p
x
7 3
j
DB
2.33
第三节 梁旳变形
1、梁旳变形
梁必须有足够旳刚度,即在受载后不至于发生过大旳弯 曲变形,不然构件将无法正常工作。例如轧钢机旳轧辊,若 弯曲变形过大,轧出旳钢板将薄厚不均匀,产品不合格;假 如是机床旳主轴,则将严重影响机床旳加工精度。
dx
GI p
取
dj M x
dx GI p
单位长度扭转角 用来表达扭转变形旳大小
单位长度扭转角旳单位: rad/m
GI p 抗扭刚度
GI p 越大,单位长度扭转角越小
g
在一段轴上,对单位长度扭转角公式进行积分,
就可得到两端相对扭转角j 。
dj
dx
dj M x
再进行一次积分,可得到挠度方程
EIzw ( M (x)dx)dx Cx D
其中, C 和 D 是积分常数,需要经过边界条件或者连续条件来拟
定其大小。
❖ 边界条件:梁在其支承处旳挠度或转角是已知旳, 这么旳已知条件称为边界条件。
❖ 连续条件:梁旳挠曲线是一条连续、光滑、平坦旳 曲线。所以,在梁旳同一截面上不可能有两个不同 旳挠度值或转角值,这么旳已知条件称为连续条件。
例题4-2: 已知:l = 54 mm ,di = 15.3 mm,E=200 GPa,
= 0.3,拧紧后,△l =0.04 mm。 试求:(a) 螺栓横截面上旳正应力 σ (b) 螺栓旳横向变形△d
解:1) 求横截面正应力
l 0.04 7.4110-4
l 54 E 200 103 7.41104 148.2 MPa
M lBA BA GI p
180 7Ma π GI p
x
7 3
j
DB
2.33
第三节 梁旳变形
1、梁旳变形
梁必须有足够旳刚度,即在受载后不至于发生过大旳弯 曲变形,不然构件将无法正常工作。例如轧钢机旳轧辊,若 弯曲变形过大,轧出旳钢板将薄厚不均匀,产品不合格;假 如是机床旳主轴,则将严重影响机床旳加工精度。
dx
GI p
取
dj M x
dx GI p
单位长度扭转角 用来表达扭转变形旳大小
单位长度扭转角旳单位: rad/m
GI p 抗扭刚度
GI p 越大,单位长度扭转角越小
g
在一段轴上,对单位长度扭转角公式进行积分,
就可得到两端相对扭转角j 。
dj
dx
dj M x
《工程力学》第五章 杆件的变形与刚度计算

根据杆所受外力,作出其轴力图如 图 b所示。
(2)计算杆的轴向变形 因轴力FN和横截面面积A沿杆轴线变
化,杆的变形应分段计算,各段变形的 代数和即为杆的轴向变形。
l
FNili FN1l1 FN 2l2 FN 2l3
EAi
EA1
EA1
EA2
1 200 103
( 20 103 100 500
10 103 100 500
10 103 100 )mm 200
0.015mm
例5-2 钢制阶梯杆如图,已知
轴向外力F1=50kN,F2=20kN,
各段杆长为l1=150mm,
l2=l3=120mm,横截面面积为:
1
A1=A2=600mm2,A3=300mm2,
钢的弹性模量E=200GPa。求各
x
l 3
,ym
ax
9
Ml2 3E
I
xMl2 16EI
A
M 6EIl
(l 2
3b2 )
B
M 6EIl
(l 2
3a2 )
三、叠加法计算梁的变形
➢叠加法前提条件:弹性、小变形。 ➢叠加原理:梁在几个载荷共同作用下任一截面的挠度或转角, 等于各个载荷单独作用下该截面挠度或转角的代数和。
F1=2kN,齿轮传动力F2=1kN。主轴的许可变形为:卡盘 C处的挠度不超过两轴承间距的 1/104 ;轴承B处的转角
不超过 1/103 rad。试校核轴的刚度。
解(1)计算截面对中 性轴的惯性矩
Iz
D4
64
(1 4 )
804 (1 0.54 )mm4
64
188104 mm4
(2)计算梁的变形
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求杆件的变形的叠加法
在线弹性和小变形的条件下,杆件的变形和 位移与载荷成线性关系,可利用叠加原理求杆件的 变形和位移。以梁为例,即欲求几项载荷共同作用 下在梁上某点引起的位移,可先分别计算每一项载 荷单独作用下同一点处的位移,然后进行代数相加。
由于一些基本梁(简支架、悬臂梁)在典型载荷 作用下的挠度与转角均已按积分法算出并编制成表6 -2,因而利用这些结果,由叠加法可以很方便地求 得各种梁在复杂载荷作用下的挠度与转角。
64
Ed
4
Pl3 48
5ql 4 384
64
200 109
0.134
3.5
10 48
3
1
5 1.035 104 384
1
0.031 103 m
(b ) 刚度校核 轴的刚度足够。
fmax 0.031 mm
6.3.3 提高梁刚度的措施 由梁的挠曲线近似微分方程: v'' d 2v M (x) 可见 dx2 EI
6.2 圆轴的扭转变形及其刚度条件
圆截面直杆在扭转时,小变形情况下,可认为各横截面 之间的距离保持不变,仅绕轴线作相对转动,两横截面间相
对转过的角度称为扭转角,用φ表示。 当在某一段杆内T、G、Ip为常量时,杆的扭转角为:
圆轴扭转的刚度条件:
l
T GIp
l
教材例6-2
任务6.3 梁的变形 及其刚度条件
表6-2介绍
6.3.2 梁的刚度条件与合理刚度设计
1.梁的刚度条件 指梁的最大挠度和最大转角不能超过许可值,即
max fmax f
弯曲构件的刚度条件。
2 刚度的合理设计
对于主要承受弯曲的零件和构件,刚度设计就是根据对零件 和构件的不同要求,将最大挠度和转角限制在一定范围内,即满 足弯曲刚度条件。
4). 预加反弯度(起拱):如吊车梁,起拱l/500~l/700.
拉压
扭转
弯曲
外载荷
内力
轴力
扭矩
应力 强度条件
N
A
max
max
T WP
max
变形计算 E l Nl
EA
T
GI P
刚 度 EA:抗拉刚度 GIP:抗扭刚度
剪力 弯矩
M WZ
max
y,, M EI Z
EIZ:抗弯刚度
教材例6-4,6-5
例:简化电机轴的尺寸和载荷如图所示,已知E=200GPa,d=130 mm, 定子与转子的许用间隙δ=0.35mm;校核轴的刚度。
P=3.5 kN q=1.035 kNm
A
C
B
500
500
解 (a) 用叠加法求梁的最大挠度
f max
vC
Pl 3 5ql 4 48EI 384EI
梁的弯曲变形与弯矩M(x)及抗弯刚度有关,而影响梁弯矩的因素又包括载 荷、支承情况及梁的有关长度。因此,为提高梁的刚度,可采用如下一些措施:
1). 选择合理的梁截面,从而增大截面的惯性矩I;
2). 调整加载方式,改善梁结构,以减小弯矩:使受力部位尽可能靠近支 座;或使集中力分散成分布力;
3). 减小梁的跨度;增加支承约束; 其中第三种措施的效果最为显著,因为梁的跨长或有关长度是以其乘方影响梁 的挠度和转角的。
• 不要以为梁的弯曲只发生在结构构件上,在施工 阶段模板支承不当照样发生弯曲问题
理实结合法应用:过梁——简支梁
过梁变形过大 对门窗的影响
约束特点:一端固定铰 支、一端可动铰支
过梁
简支梁
梁在各种简单荷载作用下的变形
在建筑工程中,通常不需要建立梁的挠 曲线方程,而只需要求出梁的最大挠度 和转角。为使用方便,将常见梁在简单 荷载作用下的挠曲线方程、端截面转角 和最大挠度列于表6-2,以便查用。
-------胡克定律 (6-5)
---------- 称为抗拉(压)刚度。
在弹性范围内有:
-------泊松比,见表6---1
教材例6-1
【例 】已知α=30。,杆长L=2m,直径d=25mm,E=210GPa, P=100kN,求节点A的位移。
【解】
100×1000×2000/(2×210×1000 ×3.14×12.52×COS30°)=1.12 (mm)
项目6 根据研究对象内力图, 研究杆件变形及其刚度计算
教学目标:
1、理解轴向拉压变形的纵向和横Βιβλιοθήκη 应变,掌握胡克定 律,会刚度计算;
2、理解圆轴的扭转变形并进行刚度计算; 3、理解梁的弯曲变形,会计算简单梁的最大转角和挠
度,会校核梁的刚度。——重点
任务6.1 轴向拉伸与压缩变形
a1 a
纵向变形:
横向变形:
6.3.1 挠度与转角
梁变形前后形状的变化称为变形。梁变形前后位置的变化称 为位移,位移包括线位移和角位移,如图所示。在小变形和忽略 剪力影响的条件下,线位移是截面形心沿垂直于梁轴线方向的位 移,称为挠度,用y表示;角位移是横截面变形前后的夹角,称 为转角,用θ表示。
规定:挠度:向下为“+”,反之为“-” 教材例表6-2 转角:顺时针为“+”,反之为“-”