4、基本不等式(上海,含答案)

合集下载

上海高考数学复习专题-不等式

上海高考数学复习专题-不等式

【注】本例中
“a>0”是先决条件,否则需要讨论
x1,x2 与对称轴
x=−
$
的大小关系,非常
复杂。(如图 d)
图a
图b
图c
图d
2)分离参数法:将不等式变换为 f(x) ≥a 或 f(x) ≤a 的形式。 f(x) ≥m,x∈R 恒成立(如图 e),则 8! "3R ≥ 2 f(x) ≤m,x∈R 恒成立,(如图 f)则 8! "3 I ≤ 2 f(x) ≥m,在区间[x1,x2]恒成立,(如图 g),则 f! '" ≥ m

当且仅当 ' = $ = ⋯ = 时,取等号。
即:n 个正数的算术平均值,不小于它的几何平均值。当且仅当它们都相等时取等号。
【注】算术平均值 = .# /#⋯ #
几何平均值 = 0 ' ∙ $ ∙ ⋯ ∙
1.3 几个常用的重要结论
ab > 0 ⇒ + ≥ 2,当且仅当 a=b 时,取等号。
>0 2 = 常数 > 0,
一个含参数的等式(或参数)时,不得扩大或缩小原变量的范围。 如:若 a>b ⇒ ac>bc,则有 c>0
H
如:若
>
⇒ bc>ad,则有 ac>0
2.2 求解一元二次不等式
【注】1)对于a $ + + > 0!或 < 0",必须讨论:(1)a=0 ,(2)a≠0 2)一元二次不等式的解集,常与一元二次方程 a $ + + = 0 (a≠0)的根联系在一起。
"> 0
n!I"
m!I" n!I"

0

2020年上海新高一新教材数学讲义-专题08 基本不等式及其应用教师版

2020年上海新高一新教材数学讲义-专题08 基本不等式及其应用教师版

专题08 基本不等式及其应用(平均值不等式及其应用,三角不等式)知识梳理一、基本不等式:1.若,a b R ∈,222a b ab +≥,当且仅当a =b 时取等号2.(1)“积定和最小”:ab b a 2≥+⇔如果积ab 是定值P ,那么当a b =时,和a b +有最小值(2)“和定积最大”:22⎪⎭⎫ ⎝⎛+≤b a ab ⇔如果和a b +是定值S ,那么当a b =时,积ab 有最大值214S 。

3.若,a b R +∈2a b+≥ 加权平均》算术平均》几何平均二、平均值不等式:若a 、b 为正数,则2a b+≥a b =时取等号变式:222()22a b a b ab ++≥≥推广:123,,,,n a a a a 是n 个正数,则12na a a n+++称为这n 个正数的算术平均数,称为这n个正数的几何平均数,它们的关系是:12n a a a n ++⋅⋅⋅+≥12n a a a ===时等号成立。

三、三角形不等式如果,a b 是实数,则a b a b a b -±+≤≤ 注:当b a ,为复数或向量时结论也成立. 推论1:1212n n a a a a a a ++++++≤推论2:如果a b c 、、是实数,那么a c a b b c --+-≤,当且仅当()()0a b b c --≥时,等号成立.例题解析一、简单基本不等式问题【例1】条件“0>a 且0>b ”是结论“ab ba ≥+2”成立的 条件。

【难度】★【答案】充分非必要条件 【例2】已知正数y x ,满足12=+y x ,求yx 11+的最小值。

判断下述解法正确与否,若不正确,请给出正确的解法,若正确,则说明理由。

y x xyxy y x xy y x y x 112422221,2110,0+∴≥∴≥+=≥+∴>> 的最小值为24【难度】★【答案】不正确,忽略了前两个小不等式中的取等条件, 当时,即,取得最小值。

2019年上海高考数学第一轮复习 第04讲 基本不等式

2019年上海高考数学第一轮复习 第04讲 基本不等式

2019年上海高考数学第一轮复习第04讲基本不等式第04讲基本不等式及证明[基础篇]一、常用的基本不等式:1)对于实数a,b,有a^2+b^2≥2ab(当且仅当a=b时取等号)推广:对于实数a,b,c,有a+b+c≥ab+bc+ac(当且仅当a=b=c时取等号)2)基本不等式:对于实数a,b,有a+b≥2ab(当且仅当a=b时取等号)3)四项连不等式:对于实数a,b,c,d,有a≤b≤c≤d,则a+c≤b+d≤2c(当且仅当a=b=c=d时取等号)推广:对于实数a,b,c,有ab+bc+ac≤a^2+b^2+c^2(当且仅当a=b=c时取等号)4)基本不等式推论1:对于实数a,b,有ab≤(a^2+b^2)/25)基本不等式推论2:对于实数a≥1,有a+1/a≥26)基本不等式推论3:对于实数a,b<0,有a+b≤-2ab(当且仅当a=b时取等号)二、利用重要不等式求最值:设x,y>0,由x+y≥2xy1)如积xy=P(定值),则积x+y有最小值2P;2)如和x+y=S(定值),则积xy有最大值S^2/4注意:1)运用重要不等式求最值时,注意三个条件:“一正,二定,三相等”,即各项均为正数,和或积为定值,取最值时等号能成立。

以上三个条件缺一不可。

如果没有满足前提,则应根据题目创设情境;2)均值不等式具有放缩功能,如果有多处用到,请注意每处取等的条件是否一致。

技能篇]题型一:基本不等式应用:例题1-1已知a、b>0,则下列不等式中不成立的是()A。

a^2+b^2≥2abB。

(a+b)/(2√ab)≥1C。

a+b+2√ab≥2abD。

(a+b)/ab≥1例题1-2下列函数中,最小值为2的是A。

y=x+2/xB。

y=sin(x)+2sin(x/2)C。

y=e^x+2e^(-x)D。

y=ln(x)+2ln(1/x)题型二:“凑”基本不等式:例题2-1函数y=x^2+1/(x^2+1)+1的值域为A。

不等式(四)

不等式(四)

第四节 基本不等式[考纲传真] 1.了解基本不等式的证明过程. 2.会用基本不等式解决简单的最大(小)值问题.知识点1 基本不等式ab ≤a +b2 (1)基本不等式成立的条件:a >0,b >0;(2)等号成立的条件:当且仅当a =b 时等号成立;(3)其中a +b2叫做正数a ,b 的算术平均数,ab 叫做正数a ,b 的几何平均数.因此基本不等式又称为均值不等式.知识点2 利用基本不等式求最大、最小值问题 (1)如果x ,y ∈(0,+∞),且xy =P (定值),那么当x =y 时,x +y 有最小值2P .(简记:“积定和最小”) (2)如果x ,y ∈(0,+∞),且x +y =S (定值),那么当x =y 时,xy 有最大值S 24.(简记:“和定积最大”)1.必会结论(1)a 2+b 2≥2ab (a ,b ∈R ).(2)b a +ab≥2(a ,b 同号).(3)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ).(4)⎝ ⎛⎭⎪⎫a +b 22≤a 2+b22(a ,b ∈R ). (5)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22≥ab (a ,b ∈R ). (6)a 2+b 22≥a +b 2≥ab ≥21a +1b(a >0,b >0).2.必清误区(1)使用基本不等式求最值.“一正”“二定”“三相等”三个条件缺一不可. (2)连续应用基本不等式求最值要求每次等号成立的条件一致. 【学情自测】1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)ab ≤⎝⎛⎭⎪⎫a +b 22成立的条件是ab >0.( ) (2)函数b a +ab 的取值范围是[2,+∞).( )(3)函数f (x )=cos x +4cos x ,x ∈⎝ ⎛⎭⎪⎫0,π2的最小值为4.( )2.(教材改编)设a >0,b >0,且a +b =8,则ab 的最大值为( ) A .8 B.12 C .14D.163.若a >0,b >0且a +2b =2,则ab 的最大值为( ) A.12 B.2 C .1D.44.(2016·重庆模拟)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =________.【利用基本不等式求最值】1.函数y =x 2+2x +2x +1(x >-1)的图象最低点的坐标是( )A .(1,2) B.(1,-2) C .(1,1)D.(0,2)2.(2016·威海模拟)已知x>0,则xx2+4的最大值为________.3.(2016·武汉模拟)已知正实数x,y满足x+2y-xy=0,则x+2y的最小值为________.【基本不等式的综合应用】(1)(2016·济宁模拟)已知f(x)=32x-(k+1)3x+2,当x∈R时,f(x)恒为正值,则k的取值范围是()A.(-∞,-1) B.(-∞,22-1)C.(-1,22-1) D.(-22-1,22-1)(2)(2016·郑州模拟)已知各项为正数的等比数列{a n}满足a7=a6+2a5,若存在两项a m,a n,使得a m·a n=22a1,则1m+4n的最小值为________.[变式训练]1.(2016·泰安模拟)已知a>0,b>0,若不等式3a+1b≥ma+3b恒成立,则m的最大值为()A.9 B.12C.18 D.242.(2015·济南模拟)若点A(1,1)在直线mx+ny-2=0上,其中mn>0,则1m+1 n的最小值为________.【基本不等式的实际应用】(1)某楼盘的建筑成本由土地使用权费和材料工程费构成,已知土地使用权费为2 000元/m2;材料工程费在建造第一层时为400元/m2,以后每增加一层费用增加40元/m2.要使平均每平方米建筑面积的成本费最低,则应把楼盘的楼房设计成________层.(2)(2016·盐城模拟)某水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元.从今年起,工厂投入100万元科技成本.并计划以后每年比上一年多投入100万元科技成本.预计产量每年递增1万件,每件水晶产品的固定成本g(n)与科技成本的投入次数n的关系是g(n)=80n+1.若水晶产品的销售价格不变,第n次投入后的年利润为f(n)万元.①求出f(n)的表达式;②求从今年算起第几年利润最高?最高利润为多少万元?[变式训练]某房地产开发公司计划在一楼区内建造一个长方形公园ABCD,公园由形状为长方形A1B1C1D1的休闲区和环公园人行道(阴影部分)组成.已知休闲区A1B1C1D1的面积为4 000 m2,人行道的宽分别为4 m和10 m(如图6-4-1所示).图6-4-1(1)若设休闲区的长和宽的比|A1B1||B1C1|=x(x>1),求公园ABCD所占面积S关于x的函数S(x)的解析式;(2)要使公园所占面积最小,则休闲区A1B1C1D1的长和宽该如何设计?.【易错辨析】多次使用基本不等式忽视成立条件致误(2016·深圳模拟)已知两正数x,y满足x+y=1,则z=⎝⎛⎭⎪⎫x+1x⎝⎛⎭⎪⎫y+1y的最小值为________.课时强化练A组跨越本科线1.已知f(x)=x+1x-2(x<0),则f(x)有()A.最大值为0 B.最小值为0C.最大值为-4 D.最小值为-42.已知0<x<1,则x(3-3x)取得最大值时x的值为()A.13 B.12C.34 D.233.把一段长16米的铁丝截成两段,分别围成正方形,则两个正方形面积之和的最小值为()A.4 B.8C.16 D.324.若a,b均为大于1的正数,且ab=100,则lg a·lg b的最大值是()A.0 B.1C.2 D.525.(2015·陕西高考)设f(x)=ln x,0<a<b,若p=f(ab),q=f⎝⎛⎭⎪⎫a+b2,r=12(f(a)+f(b)),则下列关系式中正确的是()A.q=r<p B.p=r<qC .q =r >p D.p =r >q 6.(2016·蚌埠模拟)设OA →=(1,-2),OB →=(a ,-1),OC →=(-b,0)(a >0,b >0,O 为坐标原点),若A ,B ,C 三点共线,则2a +1b 的最小值是( )A .4 B.92 C .8D.97.当x >1时,不等式x +1x -1≥a 恒成立,则实数a 的最大值为________. 8.(2016·广州模拟)设x ,y 均为正实数,且32+x +32+y=1,则xy 的最小值为________.B 组 名校必刷题9.(2016·福州模拟)已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是( ) A .3 B.4 C.92D.11210.函数y =x 2+2x -1(x >1)的最小值是( )A .23+2 B.23-2 C .2 3 D.211.已知x >0,y >0,且2x +8y -xy =0,求 (1)xy 的最小值; (2)x +y 的最小值.高考突破练(九)命题热点一不等关系与一元二次不等式1.(2014·天津高考)设a,b∈R,则“a>b”是“a|a|>b|b|”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【解析】当b<0时,显然有a>b⇔a|a|>b|b|;当b=0时,显然有a>b⇔a|a|>b|b|;当b>0时,a>b有|a|>|b|,所以a>b⇔a|a|>b|b|.综上可知a>b⇔a|a|>b|b|,故选C.【答案】 C2.(2014·四川高考)若a>b>0,c<d<0,则一定有()A.ad>bc B.ad<bcC.ac>bd D.ac<bd【解析】法一令a=3,b=2,c=-3,d=-2,则ac=-1,bd=-1,排除选项C,D;又ad=-32,bc=-23,所以ad<bc,所以选项A错误,选项B正确.故选B.法二 因为c <d <0, 所以-c >-d >0, 所以1-d >1-c >0. 又a >b >0,所以a-d >b-c ,所以a d <bc .故选B.【答案】 B命题热点二 简单的线性规划问题3.(2015·湖南高考)若变量x ,y 满足约束条件⎩⎨⎧x +y ≥1,y -x ≤1,x ≤1,则z =2x -y 的最小值为( )A .-1 B.0 C .1D.2【解析】 画出可行域如图中阴影部分所示.由z =2x -y 得y =2x -z ,平移直线2x -y =0,当直线过A 点时,z 取得最小值. 由⎩⎪⎨⎪⎧ x +y =1,y -x =1,得⎩⎪⎨⎪⎧x =0,y =1, ∴A (0,1).∴当x =0,y =1时,z min =2×0-1=-1,故选A. 【答案】 A4.(2015·安徽高考)已知x ,y 满足约束条件⎩⎨⎧x -y ≥0,x +y -4≤0,y ≥1,则z =-2x +y 的最大值是( )A .-1 B.-2 C .-5D.1【解析】 约束条件下的可行域如图所示,由z =-2x +y 可知y =2x +z ,当直线y =2x +z 过点A (1,1)时截距最大,此时z 最大为-1,故选A.【答案】 A5.(2015·山东高考)若x ,y 满足约束条件⎩⎨⎧y -x ≤1,x +y ≤3,y ≥1,则z =x +3y 的最大值为________.【解析】 根据约束条件画出可行域如图所示,平移直线y =-13x ,当直线y =-13x +z3过点A 时,目标函数取得最大值.由⎩⎪⎨⎪⎧y -x =1,x +y =3,可得A (1,2),代入可得z =1+3×2=7. 【答案】 76.(2015·全国卷Ⅱ)若x ,y 满足约束条件⎩⎨⎧x +y -5≤0,2x -y -1≥0,x -2y +1≤0,则z =2x +y 的最大值为________.【解析】 ∵z =2x +y ,∴y =-2x +z ,将直线y =-2x 向上平移,经过点B 时z 取得最大值.由⎩⎪⎨⎪⎧x +y -5=0,x -2y +1=0, 解得⎩⎪⎨⎪⎧x =3,y =2,∴z max =2×3+2=8.【答案】 87.(2014·湖南高考)若变量x ,y 满足约束条件⎩⎨⎧y ≤x ,x +y ≤4,y ≥k ,且z =2x +y 的最小值为-6,则k =________.【解析】 作出不等式组表示的平面区域,如图中阴影部分所示,z =2x +y ,则y =-2x +z .易知当直线y =-2x +z 过点A (k ,k )时,z =2x +y 取得最小值,即3k =-6,所以k =-2.【答案】 -28.(2014·浙江高考)当实数x ,y 满足⎩⎨⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.【解析】 画可行域如图所示,设目标函数z =ax +y ,即y =-ax +z ,要使1≤z ≤4恒成立,则a >0,数形结合知,满足⎩⎪⎨⎪⎧1≤2a +1≤4,1≤a ≤4即可,解得1≤a ≤32.所以a 的取值范围是1≤a ≤32.【答案】 ⎣⎢⎡⎦⎥⎤1,32命题热点三 基本不等式9.(2015·福建高考)若直线x a +yb =1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2 B.3 C .4D.5【解析】 将(1,1)代入直线x a +y b =1得1a +1b =1,a >0,b >0,故a +b =(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +ab ≥2+2=4,等号当且仅当a =b 时取到,故选C.【答案】 C10.(2014·福建高考)要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元 B.120元 C .160元D.240元【解析】 由题意知,体积V =4 m 3,高h =1 m ,所以底面积S =4 m 2,设底面矩形的一条边长是x m ,则另一条边长是4x m ,又设总造价是y 元,则y =20×4+【答案】 C11.(2014·重庆高考)若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( ) A .6+2 3B.7+2 3 C .6+4 3D.7+4 3【解析】由题意得⎩⎪⎨⎪⎧ab >0,ab ≥0,3a +4b >0,所以⎩⎨⎧a >0,b >0.又log 4(3a +4b )=log 2ab ,所以log 4(3a +4b )=log 4ab , 所以3a +4b =ab ,故4a +3b =1.所以a +b =(a +b )⎝ ⎛⎭⎪⎫4a +3b =7+3a b +4b a ≥7+23a b ·4b a =7+43,当且仅当3ab =4ba 时取等号.故选D.【答案】 D12.(2015·天津高考)已知a >0,b >0,ab =8,则当a 的值为________时,log 2a ·log 2(2b )取得最大值.【解析】 由于a >0,b >0,ab =8,所以b =8a .所以log 2a ·log 2(2b )=log 2a ·log 2⎝ ⎛⎭⎪⎫16a =log 2a ·(4-log 2a )=-(log 2a -2)2+4,当且仅当log 2a =2,即a =4时,log 2a ·log 2(2b )取得最大值4. 【答案】 413.(2014·上海高考)若实数x,y满足xy=1,则x2+2y2的最小值为________.【解析】∵x2+2y2≥2x2·2y2=22xy=22,当且仅当x=2y时取“=”,∴x2+2y2的最小值为2 2.【答案】2 214.(2014·湖北高考)某项研究表明:在考虑行车安全的情况下,某路段车流量F(单位时间内经过测量点的车辆数,单位:辆/时)与车流速度v(假设车辆以相同速度v行驶,单位:米/秒),平均车长l(单位:米)的值有关,其公式为F=76 000vv2+18v+20l.(1)如果不限定车型,l=6.05,则最大车流量为________辆/时;(2)如果限定车型,l=5,则最大车流量比(1)中的最大车流量增加________辆/时.【解析】(1)当l=6.05时,F=76 000vv2+18v+121=76 000v+121v+18≤76 0002v·121v+18=76 00022+18=1 900.当且仅当v=11米/秒时等号成立,此时车流量最大为1 900辆/时.(2)当l=5时,F=76 000vv2+18v+100=76 000v+100v+18≤76 0002v·100v+18=76 00020+18=2 000.当且仅当v=10米/秒时等号成立,此时车流量最大为2 000辆/时.比(1)中的最大车流量增加100辆/时.【答案】(1)1 900(2)100。

2023学年上海市重点高中高一年级数学专项(基本不等式)好题练习(附答案)

2023学年上海市重点高中高一年级数学专项(基本不等式)好题练习(附答案)

2023学年上海市重点高中高一年级数学专项(基本不等式)好题练习一.基本不等式及其应用(共4小题)1.(2022秋•宝山区校级期中)某新建居民小区欲建一面积为700平方米的矩形绿地,在绿地四周铺设人行道,设计要求绿地长边外人行道宽3米,短边外人行道宽4米.怎样设计绿地的长与宽,才能使人行道的占地面积最小?(结果精确到0.1米)2.(2022秋•宝山区校级期中)(1)设x>1,求函数的最小值;(2)设x∈R,求函数y=x(8﹣x)的最大值.3.(2022秋•浦东新区校级期中)定义min{a1,a2⋯,,a n}为n个实数a1,a2,…,a n中的最小数,max{a1,a2,⋯,a n}为n个实数a1,a2,…,a n中的最大数.(1)设a,b都是正实数,且a+b=1,求;(2)解不等式:min{x+1,x2+3,|x﹣1|}>2x﹣3;(3)设a,b都是正实数,求的最小值.4.(2019秋•浦东新区校级期中)已知两个正数a、b满足a+2b=1,求的最小值.二.函数恒成立问题(共1小题)5.(2022秋•临渭区期末)已知函数f(x)=x2+(1﹣k)x+2﹣k.(1)解关于x的不等式f(x)<2;(2)若函数f(x)在区间(﹣1,1)上有两个不同的零点,求实数k的取值范围.(3)对任意的x∈(﹣1,2),f(x)≥1恒成立,求实数k的取值范围.三.根据实际问题选择函数类型(共19小题)6.(2022秋•浦东新区校级期末)为了响应国家节能减排的号召,2022年某企业计划引进新能源汽车生产设备.通过市场详细分析:全年需投入固定成本2500万元,每生产x(百辆)新能源汽车,需另投入成本C(x)万元,且.由市场调研知,每辆车售价9万元,且生产的车辆当年能全部销售完.(1)请写出2022年的利润L(x)(万元)关于年产量x(百辆)的函数关系式;(利润=售价﹣成本)(2)当2022年的总产量为多少百辆时,企业所获利润最大?并求出最大利润.7.(2022秋•浦东新区校级期末)2023年某企业计划引进新能源汽车生产设备,经过市场详细分析,全年投入固定成本2500万元,每生产x百辆新能源汽车需另投入成本C(x)万元,且,由市场调研知,每一百辆车的售价为500万元,且全年内生产的车辆当年能全部销售完.(注:利润=销售额﹣成本)(1)求2023年的利润L(x)(万元)关于年产量x(百辆)的函数关系式;(2)当2023年的年产量为多少百辆时,企业所获利润最大?并求出最大利润.8.(2022秋•长宁区校级期末)新冠肺炎疫情发生以后,口罩供不应求,某口罩厂日夜加班生产,生产口罩的固定成本为400万元,每生产x万箱(x>0,x∈N),需另投入成本p(x)万元.当产量不足60万箱时,;当产量不小于60万箱时,,若每箱口罩售价100元,通过市场详细分析,该口罩厂生产的口罩可以全部销售完.(1)求口罩销售利润y(万元)关于产量x(万箱)的函数关系式;(2)当产量为多少万箱时,该口罩生产厂在生产中所获利润最大?9.(2022秋•浦东新区校级月考)双碳战略之下,新能源汽车发展成为乘用车市场转型升级的重要方向.根据工信部最新数据显示,截至2022年一季度,我国新能源汽车已累计推广突破1000万辆大关.某企业计划引进新能源汽车生产设备,通过市场详细分析,每生产x(千辆)获利10W(x)(万元),该公司预计2022年全年其他成本总投入(20x+10)万元.由市场调研知,该种车销路畅通,供不应求.22年的全年利润为f(x)(单位:万元).(1)求函数f(x)的解析式;(2)当2022年产量为多少辆时,该企业利润最大?最大利润是多少?请说明理由.10.(2022秋•徐汇区校级期中)如图,某研究员需要围成相同的长方形小白鼠笼四间来做观察对比实验,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36dm长网的材料,每间小白鼠笼的长、宽各设计为多少时,可使每间小白鼠笼面积最大?(2)若使每间小白鼠笼面积为24dm2,则每间小白鼠笼的长、宽各设计为多少时,可使围成四间小白鼠笼的钢筋总长度最小?11.(2022秋•宝山区校级期中)某公司经过测算,计划投资A、B两个项目.若投入A项目资金x(万元),则一年创造的利润为(万元);若投入B项目资金x(万元),则一年创造的利润为(万元).(1)当投入A、B两个项目的资金相同且B项目比A项目创造的利润高,求投入A项目的资金x(万元)的取值范围;(2)若该公司共有资金30万元,全部用于投资A、B两个项目,且要求投资B项目的资金不超过10万元,则该公司一年至少能创造多少利润?(结果精确到0.1万元).12.(2022秋•宝山区校级月考)某校拟建一个面积为100平方米的矩形健身区,张老师请同学们小组合作设计出使 周长最小的建造方案,下面是其中一个小组的探究过程,请补充完整.(1)列式:设矩形的一边长是x米,若周长为y米,则y与x之间的函数关系式为_____.(2)填表画图:x • 4 6 10 13 16 20 25 30 •y • 58 a 40 41 44 50 58 66 • 填表:①其中a=_____.②描点连线,请在图中画出该函数的图象.(3)请求出周长y的最小值.13.(2021秋•黄浦区校级月考)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为5万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x(单位:cm)满足关系:,其中k为能耗系数,k>0.设f(x)为隔热层建造费用与20年的能源消耗费用之和,即f(x)=5x+20C(x).(1)若建1cm隔热层时,每年能源消耗费用C为16万元,求此时k的值及f(x)的表达式;(2)在第(1)问的条件下,隔热层修建多厚时,总费用f(x)达到最小,并求最小值;(3)在实际生产中,隔热层厚度x(单位:cm)控制在3≤x≤10之间,求总费用f(x)的最小值关于k的函数g(k).14.(2023春•和平区校级月考)某航运公司用300万元买回客船一艘,此船投入营运后,每月需开支燃油费、维修费、员工工资,已知每月燃油费7000元,第n个月的维修费和工资支出为600(n﹣1)+3000元.(1)设月平均消耗为y元,求y与n(月)的函数关系;(2)投入营运第几个月,成本最低?(月平均消耗最小)(3)若第一年纯收入50万元(已扣除消耗),以后每年纯收入以5%递减,则多少年后可收回成本?15.(2022秋•新邵县期末)为最大程度减少人员流动,减少疫情发生的可能性,一些城市陆续发出“春节期间非必要不返乡,就地过年”的倡议.某地政府积极制定政策,决定政企联动,鼓励企业在春节期间留住员工在本市过年并加班追产.为此,该地政府决定为当地某A企业春节期间加班追产提供x万元(x∈[10,20])的专项补贴.A 企业在收到政府x万元补贴后,产量将增加到t=(x+2)万件.同时A企业生产t万件产品需要投入成本为)万元,并以每件()元的价格将其生产的产品全部售出.(注:收益=销售金额+政府专项补贴﹣成本)(1)求A企业春节期间加班追产所获收益R(x)(万元)关于政府补贴x(万元)的函数关系式;(2)当政府的专项补贴为多少万元时,A企业春节期间加班追产所获收益最大?16.(2022秋•徐州期末)“硬科技”是以人工智能、航空航天、生物技术、光电芯片、信息技术、新材料、新能源、智能制造等为代表的高精尖科技,属于由科技创新构成的物理世界,是需要长期研发投入、持续积累才能形成的原创技术,具有极高技术门槛和技术壁垒,难以被复制和模仿、最近十年,我国的一大批自主创新的企业都在打造自己的科技品牌,某高科技企业自主研发了一款具有自主知识产权的高级设备,并从2023年起全面发售.经测算,生产该高级设备每年需投入固定成本1000万元,每生产x百台高级设备需要另投成本y万元,且y=,每百台高级设备售价为160万元,假设每年生产的高级设备能够全部售出,且高级设备年产展最大为10000台.(1)求企业获得年利润P(万元)关于年产量x(百台)的函数关系式;(2)当年产量为多少时,企业所获年利润最大?并求最大年利润.17.(2022秋•青秀区校级期末)某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量W(单位:千克)与施用肥料x(单位:千克)满足如下关系:W(x)=,肥料成本投入为10x元,其它成本投入(如培育管理、施肥等人工费)20x元.已知这水果的时常售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润f(x)(单位:元).(1)求f(x)的函数关系式;(2)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?18.(2022秋•临澧县校级期末)新冠肺炎是近百年来人类遭遇的影响范围最广的全球性大流行病.面对前所未知,突如其来,来势汹汹的疫情天灾,中央出台了一系列助力复工复产好政策城市快递行业运输能力迅速得到恢复,市民的网络购物也越来越便利.根据大数据统计,某条快递线路运行时,发车时间间隔x(单位:分钟)满足:4≤x≤15,x∈N,平均每趟快递车辆的载件个数f(x)(单位:个)与发车时间间隔x近似地满足,其中x∈N.(1)若平均每趟快递车辆的载件个数不超过1500个,试求发车时间间隔x的值;(2)若平均每趟快递车辆每分钟的净收益(单位:元),问当发车时间间隔x为多少时,平均每趟快递车辆每分钟的净收益最大?并求出最大净收益.19.(2022秋•安徽期末)2022年是不平凡的一年,由于受疫情的影响,各行各业都受到很大冲击,为了减少疫情带来的损失,某书商准备举办一场展销会.据市场调查,当每套丛书售价定为x元时,销售量可达到(10﹣0.1x)万套.现出版社为配合该书商的活动,决定进行价格改革,每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为20元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价﹣供货价格.(1)求每套丛书利润y与售价x的函数关系,并求出每套丛书售价定为80元时,书商能获得的总利润是多少万元?(2)每套丛书售价定为多少元时,每套丛书的利润最大?并求出最大利润.20.(2022秋•安次区校级期末)某大型企业原来每天成本y1(单位:万元)与日产量x(单位:吨)之间的函数关系式为y1=2x2+(15﹣4k)x+120k+8,为了配合环境综合整治,该企业积极引进尾气净化装置,每吨产品尾气净化费用为k万元,尾气净化装置安装后当日产量x=1时,总成本y=142.(1)求k的值;(2)设每吨产品出厂价为48万元,试求尾气净化装置安装后日产量为多少时,日平均利润最大,其最大值为多少.(日平均利润就是日总利润÷日产量)21.(2022秋•岳阳期末)党的二十大报告指出:我们要推进美丽中国建设,坚持山水林田湖草沙一体化保护和系统治理,统筹产业结构调整、污染治理、生态保护、应对气候变化,协同推进降碳、减污、扩绿、增长,推进生态优先、节约集约、绿色低碳发展.某乡政府也越来越重视生态系统的重建和维护.若乡财政下拨一项专款400百万元,分别用于植绿护绿和处理污染两个生态维护项目,植绿护绿项目五年内带来的生态收益可表示为投放资金x(单位:百万元)的函数M(x)(单位:百万元):;处理污染项目五年内带来的生态收益可表示为投放资金x(单位:百万元)的函数N(x)(单位:百万元):.(1)设分配给植绿护绿项目的资金为x(百万元),则两个生态项目五年内带来的收益总和为y(百万元),写出y关于x的函数解析式;(2)生态维护项目的投资开始利润薄弱,只有持之以恒,才能功在当代,利在千秋.试求出y的最大值,并求出此时对两个生态项目的投资分别为多少?22.(2022秋•槐荫区校级期末)我国某企业为了进一步增加市场竞争力,计划在2023年利用新技术生产某款新手机.通过市场详细分析,生产此款手机全年需投入固定成本250万,每生产x(千部)手机,需另投入可变成本R(x)万元,且R(x)=,由市场调研知,每部手机售价0.8万元,且全年内生产的手机当年能全部销售完.(利润=销售额﹣固定成本﹣可变成本).(1)求2023年的利润W(x)(万元)关于年产量x(千部)的函数关系式;(2)2023年产量为多少(千部)时,企业所获利润最大?最大利润是多少?23.(2022秋•九龙坡区期末)2021年11月初,新冠肺炎疫情由兰州转到天水,天水市某村施行“封村”行动.为了更好地服务于村民,村卫生室需建造一间地面面积为30平方米且墙高为3米的长方体供给监测站.供给监测站的背面靠墙,无需建造费用,因此甲工程队给出的报价为:正面新建墙体的报价为每平方米600元,左右两面新建墙体报价为每平方米360元,屋顶和地面以及其他报价共计21600元,设屋子的左右两侧墙的长度均为x 米(3≤x≤10).(1)当左右两面墙的长度为多少时,甲工程队报价最低?并求出最低报价;(2)现有乙工程队也要参与此监测站的建造竞标,其给出的整体报价为元(a>0),若无论左右两面墙的长度为多少米,乙工程队都能竞标成功,试求a的取值范围.24.(2022秋•浙江月考)如图,某学校为庆祝70周年校庆,准备建造一个八边形的中心广场,广场的主要造型是由两个相同的矩形ABCD和EFGH构成的面积为100m2的十字形地域.计划在正方形MNPQ上建一座花坛,造价为2800元/m2;在四个相同的矩形(图中阴影部分)上铺花岗岩地面,造价为250元/m2;再在四个空角(图中四个三角形)上铺草坪,造价为80元/m2.设总造价为W(单位:元),AD长为x(单位:m).(1)当x=4m时,求草坪面积;(2)当x为何值时,W最小?并求出这个最小值.四.绝对值不等式的解法(共1小题)25.(2022秋•浦东新区期末)解不等式|2x﹣1|>1.五.不等式的证明(共2小题)26.(2020秋•黄浦区校级期末)已知a、b都是正实数,且=b﹣a.(1)求证:a>1;(2)求b的最小值.27.(2021秋•徐汇区校级期中)(1)在△ABC中,角A,B,C所对的边分别是a,b,C,求证:A,B,C中至少有一个角大于或等于60°;(2)已知a,b,c为不全相等的正数,且abc=1,求证:.六.反证法与放缩法证明不等式(共1小题)28.(2022秋•长宁区校级期中)已知实数a>b>c,a+b+c=1,a2+b2+c2=1. (1)若,求a﹣b的值;(2)求证:;(3)用反证法证明:c<0.参考答案一.基本不等式及其应用(共4小题)1.(2022秋•宝山区校级期中)某新建居民小区欲建一面积为700平方米的矩形绿地,在绿地四周铺设人行道,设计要求绿地长边外人行道宽3米,短边外人行道宽4米.怎样设计绿地的长与宽,才能使人行道的占地面积最小?(结果精确到0.1米)【详细分析】根据已知条件,结合基本不等式的公式,即可求解.【名师解答】解:设矩形绿地的长度为x,宽为,人行道的占地面积S,则S=(x+8)(+6)﹣700=6x++48+48=80+48≈414.4,当且仅当6x=,即x=时,等号成立,故绿地的长为≈30.5米,宽为23米时,人行道的占地面积最小为414.4平方米.【名师点评】本题主要考查函数的实际应用,掌握基本不等式公式是解本题的关键,属于基础题. 2.(2022秋•宝山区校级期中)(1)设x>1,求函数的最小值;(2)设x∈R,求函数y=x(8﹣x)的最大值.【详细分析】(1)构造函数的表达式为:a+类型,利用基本不等式求解函数的最小值即可.(2)化简函数的解析式,求出函数的对称轴,利用二次函数的性质求解函数的值域以及函数的最值即可. 【名师解答】解:(1)∵x>1,∴x﹣1>0.∴y=x+=x﹣1++1≥2+1=4+1=5,当且仅当x﹣1=,即x=3时,取等号.∴x=3时,函数的最小值是5.(2)因为y=x(8﹣x)=﹣(x﹣4)2+16,函数的对称轴为:x=4,由二次函数的性质可知,当x=4时,最大值是16.【名师点评】本题考查基本不等式在最值中的应用,注意基本不等式成立的条件,考查转化思想以及计算能力. 3.(2022秋•浦东新区校级期中)定义min{a1,a2⋯,,a n}为n个实数a1,a2,…,a n中的最小数,max{a1,a2,⋯,a n}为n个实数a1,a2,…,a n中的最大数.(1)设a,b都是正实数,且a+b=1,求;(2)解不等式:min{x+1,x2+3,|x﹣1|}>2x﹣3;(3)设a,b都是正实数,求的最小值.【详细分析】(1)由基本不等式放缩即可;(2)利用最小值函数定义,化简函数,分段解不等式;(3)利用最大值函数定义放缩,然后利用最值定义求最值.【名师解答】解:(1)由基本不等式,所以=;(2)由于x2+3﹣(x+1)=x2﹣x+2>0,则min{x+1,x2+3,|x﹣1|}=min{x+1,|x﹣1|}=,当x<0时,原不等式可化为x+1>2x﹣2,即x<3,结合x<0得x<0;当x≥0时,原不等式可化为|x﹣1|>2x﹣3,即或,解得1≤x<2或0≤x<1,即0≤x<2;综上,原不等式解集为:(﹣∞,2);(3)设M=,则,于是,从而,当且仅当时取等号,故的最小值为.【名师点评】本题考查基本不等式及不等式的解法,属于中档题.4.(2019秋•浦东新区校级期中)已知两个正数a、b满足a+2b=1,求的最小值. 【详细分析】直接利用函数的关系式的恒等变换,基本不等式的应用求出结果.【名师解答】解:两个正数a、b满足a+2b=1,故:=1+,(当且仅当a=b时,等号成立).故答案为:9.【名师点评】本题考查的知识要点:函数的关系式的恒等变换,基本不等式的应用,主要考查学生的运算能力和数学思维能力,属于基础题.二.函数恒成立问题(共1小题)5.(2022秋•临渭区期末)已知函数f(x)=x2+(1﹣k)x+2﹣k.(1)解关于x的不等式f(x)<2;(2)若函数f(x)在区间(﹣1,1)上有两个不同的零点,求实数k的取值范围.(3)对任意的x∈(﹣1,2),f(x)≥1恒成立,求实数k的取值范围.【详细分析】(1)由题意得(x+1)(x﹣k)<0,令(x+1)(x﹣k)=0,解得x=﹣1或x=k,分类讨论k=﹣1,k>﹣1,k<﹣1,结合二次函数的图象与性质,即可得出答案;(2)题意转化为方程x2+(1﹣k)x+2﹣k=0在(﹣1,1)上有两个不同的根,结合二次函数的图象与性质,列出关于k的不等式组,即可得出答案;(3)利用分离参数法,题意转化为对任意的x∈(﹣1,2),恒成立,构造函数,x∈(﹣1,2),利用基本不等式求出g(x)的最小值,即可得出答案. 【名师解答】解:(1)∵f(x)=x2+(1﹣k)x+2﹣k,∴f(x)<2,即x2+(1﹣k)x﹣k<0,即(x+1)(x﹣k)<0,令(x+1)(x﹣k)=0,解得x=﹣1或x=k,当k=﹣1时,此时(x+1)2<0,故原不等式的解集为∅,当k>﹣1时,不等式的解集为(﹣1,k),当k<﹣1时,不等式的解集为(k,﹣1);(2)函数f(x)在区间(﹣1,1)上有两个不同的零点,转化为方程x2+(1﹣k)x+2﹣k=0在(﹣1,1)上有两个不同的根,∴,解得,故实数k的取值范围为;(3)f(x)=x2+(1﹣k)x+2﹣k,对任意的x∈(﹣1,2),f(x)≥1恒成立,转化为对任意的x∈(﹣1,2),恒成立,令,x∈(﹣1,2),则k≤g(x)min,又0<x+1<3,则,当且仅当,即x=0时等号成立, ∴k≤1,故实数k的取值范围为(﹣∞,1].【名师点评】本题考查函数恒成立问题和二次函数的图象与性质、基本不等式的应用,考查转化思想、函数思想和分类讨论思想,考查逻辑推理能力和运算能力,属于中档题.三.根据实际问题选择函数类型(共19小题)6.(2022秋•浦东新区校级期末)为了响应国家节能减排的号召,2022年某企业计划引进新能源汽车生产设备.通过市场详细分析:全年需投入固定成本2500万元,每生产x(百辆)新能源汽车,需另投入成本C(x)万元,且.由市场调研知,每辆车售价9万元,且生产的车辆当年能全部销售完.(1)请写出2022年的利润L(x)(万元)关于年产量x(百辆)的函数关系式;(利润=售价﹣成本)(2)当2022年的总产量为多少百辆时,企业所获利润最大?并求出最大利润.【详细分析】(1)根据给定条件,分段求出C(x)的表达式,即可得出答案;(2)由(1)得,根据分段函数的性质,分类讨论0<x<40,x≥40求出最大值,比较大小,即可得出答案.【名师解答】解:(1)∵,∴当0<x<40时,L(x)=9×100x﹣10x2﹣500x﹣2500=﹣10x2+400x﹣2500,当x≥40时,,故;(2)由(1)得,∴当0<x<40时,L(x)=﹣10(x﹣20)2+1500,∴当x=20时,L(x)max=1500;∴当x≥40时,,当且仅当,即x =80时等号成立,又3640>1500,∴当x=80,即2022年生产80百辆时,该企业获得利润最大,且最大利润为3640万元.【名师点评】本题考查分段函数的性质,考查转化思想和分类讨论思想,考查逻辑推理能力和运算能力,属于中档题.7.(2022秋•浦东新区校级期末)2023年某企业计划引进新能源汽车生产设备,经过市场详细分析,全年投入固定成本2500万元,每生产x百辆新能源汽车需另投入成本C(x)万元,且,由市场调研知,每一百辆车的售价为500万元,且全年内生产的车辆当年能全部销售完.(注:利润=销售额﹣成本)(1)求2023年的利润L(x)(万元)关于年产量x(百辆)的函数关系式;(2)当2023年的年产量为多少百辆时,企业所获利润最大?并求出最大利润.【详细分析】(1)根据利润=销售额﹣成本,分类讨论0<x<40,x≥40,求解即可得出答案;(2)根据分段函数的性质,分类讨论0<x<40,x≥40,分别求出最大值,比较大小,即可得出答案. 【名师解答】解:(1)∵,∴当0<x<40时,L(x)=500x﹣10x2﹣100x﹣2500=﹣10x2+400x﹣2500,当x≥40时,,故;(2)由(1)得,当0<x<40时,L(x)=﹣10(x﹣20)2+1500,∴L(x)max=L(20)=1500,当x≥40时,,当且仅当,即x =100时等号成立,故L(x)max=L(100)=1800,∵1800>1500,故当2023年的年产量为100百辆时,该企业所获利润最大,最大利润为1800万元.【名师点评】本题考查根据实际问题选择函数类型和分段函数的性质,考查转化思想和分类讨论思想,考查逻辑推理能力和运算能力,属于中档题.8.(2022秋•长宁区校级期末)新冠肺炎疫情发生以后,口罩供不应求,某口罩厂日夜加班生产,生产口罩的固定成本为400万元,每生产x万箱(x>0,x∈N),需另投入成本p(x)万元.当产量不足60万箱时,;当产量不小于60万箱时,,若每箱口罩售价100元,通过市场详细分析,该口罩厂生产的口罩可以全部销售完.(1)求口罩销售利润y(万元)关于产量x(万箱)的函数关系式;(2)当产量为多少万箱时,该口罩生产厂在生产中所获利润最大?【详细分析】(1)由题意得y=100x﹣p(x)﹣400,分类讨论0<x<60,x≥60,即可得出答案;(2)由(1)得y=,分别求出0<x<60,x≥60,的最大值,比较大小,即可得出答案.【名师解答】解:(1)由题意得y=100x﹣p(x)﹣400,当0<x<60时,,则y=100x﹣(x2+50x)﹣400=﹣x2+50x﹣400,当x≥60时,,则y=100x﹣(101x+﹣1860)﹣400=1460﹣x﹣, 综上所述,y=;(2)由(1)得y=,当0<x<60时,y=﹣x2+50x﹣400==﹣(x﹣50)2+850,二次函数y的图象开口向下,且对称轴为x=50,∴当x=50时,y max=850,当x≥60时,y=1460﹣x﹣≤1460﹣2=1300,当且仅当x=,即x=80时等号成立, ∵1300>850,∴当产量为80万箱时,该口罩生产厂在生产中所获利润最大.【名师点评】本题考查根据实际问题选择函数类型,考查转化思想和分类讨论思想,考查逻辑推理能力和运算能力,属于中档题.9.(2022秋•浦东新区校级月考)双碳战略之下,新能源汽车发展成为乘用车市场转型升级的重要方向.根据工信部最新数据显示,截至2022年一季度,我国新能源汽车已累计推广突破1000万辆大关.某企业计划引进新能源汽车生产设备,通过市场详细分析,每生产x(千辆)获利10W(x)(万元),该公司预计2022年全年其他成本总投入(20x+10)万元.由市场调研知,该种车销路畅通,供不应求.22年的全年利润为f(x)(单位:万元).(1)求函数f(x)的解析式;(2)当2022年产量为多少辆时,该企业利润最大?最大利润是多少?请说明理由.【详细分析】(1)由题意得f(x)=10W(x)﹣(20x+10),结合题意和分段函数的性质,分类讨论0<x≤2,2<x≤5,化简计算,即可得出答案.(2)由(1)得,根据分段函数的性质,分别求出0<x≤2,2<x≤5的最大值,比较大小,即可得出答案.【名师解答】解:(1)由题意得f(x)=10W(x)﹣(20x+10),∵,∴当0<x≤2时,W(x)=2(x2+17),则f(x)=20(x2+17)﹣(20x+10)=20x2﹣20x+330,当2<x≤5时,W(x)=50﹣,则f(x)=10(50﹣)﹣(20x+10)=490﹣﹣20x,综上所述,函数f(x)的解析式为;(2)由(1)得,当0<x≤2时,,∴f(x)在(0,]上单调递减,在[,2]上单调递增,∴f(x)max=f(2)=370;当2<x≤5时,当且仅当,即x=3时,f(x)max=390,∵370<390,∴f(x)最大值为390,故当2022年产量为3000辆,该企业利润最大,最大利润是390万元.【名师点评】本题考查根据实际问题选择函数类型和分段函数的性质,考查函数思想和转化思想、分类讨论思想,考查逻辑推理能力和运算能力,属于中档题.10.(2022秋•徐汇区校级期中)如图,某研究员需要围成相同的长方形小白鼠笼四间来做观察对比实验,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36dm长网的材料,每间小白鼠笼的长、宽各设计为多少时,可使每间小白鼠笼面积最大?(2)若使每间小白鼠笼面积为24dm2,则每间小白鼠笼的长、宽各设计为多少时,可使围成四间小白鼠笼的钢筋总长度最小?【详细分析】(1)设每间小白鼠笼的长为x,宽为y,则每间小白鼠笼的面积为xy,由题意得4x+6y=36,利用基本不等式,即可得出答案;(2)设每间小白鼠笼的长为x,宽为y,则每间小白鼠笼的面积为xy=24,则围成四间小白鼠笼的钢筋总长度为4x+6y,利用基本不等式,即可得出答案.【名师解答】解:(1)设每间小白鼠笼的长为x,宽为y,则每间小白鼠笼的面积为xy,由题意得4x+6y=36,即2x+3y=18,∵x>0,y>0,∴18=2x+3y≥2,当且仅当2x=3y,即x=dm,y=3dm时等号成立,即≤,则xy≤, 故每间小白鼠笼的长、宽各设计为dm、3dm时,可使每间小白鼠笼面积最大;(2)设每间小白鼠笼的长为x,宽为y,则每间小白鼠笼的面积为xy=24,则围成四间小白鼠笼的钢筋总长度为4x+6y≥2=4=4=48,当且仅当4x=6y,即x=6,y=4时等号成立,故每间小白鼠笼的长、宽各设计为6dm、4dm时,可使围成四间小白鼠笼的钢筋总长度最小.【名师点评】本题考查基本不等式的应用,考查转化思想,考查逻辑推理能力和运算能力,属于中档题. 11.(2022秋•宝山区校级期中)某公司经过测算,计划投资A、B两个项目.若投入A项目资金x(万元),则一年创造的利润为(万元);若投入B项目资金x(万元),则一年创造的利润为(万元).(1)当投入A、B两个项目的资金相同且B项目比A项目创造的利润高,求投入A项目的资金x(万元)的取值范围;。

2024年新高一数学初升高衔接《基本不等式》含答案解析

2024年新高一数学初升高衔接《基本不等式》含答案解析

第07讲 基本不等式模块一 思维导图串知识模块二 基础知识全梳理(吃透教材)模块三 核心考点举一反三模块四 小试牛刀过关测1.了解基本不等式的证明过程;2.能利用基本不等式证明简单的不等式及比较代数式的大小;3.熟练掌握利用基本不等式求函数的最值问题;4.会用基本不等式求解实际应用题.知识点 1 基本不等式1、重要不等式(1)公式:对于任意的实数,a b ,有222a b ab +≥,当且仅当a b =时,等号成立.【说明】22222()0202a b a b ab a b ab -≥⇔+-≥⇔+≥,当且仅当a b =时,等号成立.(2)常见变形:2222()()a b a b +≥+、222a b ab +≤、2242ab a b ab ≤++.2、基本不等式(1)公式:如果0a >,0b >2a b+≤,当且仅当a b =时,等号成立.【说明】2ba +叫做正数,ab 的算术平均数,ab 叫做正数,a b 的几何平均数.因此基本不等式表明:两个正数的算术平均数不小于它们的几何平均数.(2)常见变形:a b +≥;2.2a b ab +⎛⎫≤ ⎪⎝⎭(3)常用结论:①2b aa b+≥(,a b 同号),当且仅当a b =时取等号;2b aa b+≤-(,a b 异号),当且仅当a b =-时取等号.②12a a+≥(0a >),当且仅当1a =时取等号;12a a+≤-(0a <),当且仅当1a =-时取等号;知识点 2 最值定理1、最值定理:已知,x y 都是正数,(1)若x +y =s (和s 为定值),则当x=y 时,积xy 有最大值,且这个值为s 24.(2)若xy =p (积p 为定值),则当x=y 时,和x +y 有最小值,且这个值为2p .最值定理简记为:积定和最小,和定积最大.2、在用基本不等式求函数的最值时,要满足三个条件:一正二定三取等.①一正:各项均为正数;②二定:含变数的各项的和或积必须有一个为定值;③三相等:含变数的各项均相等,取得最值.知识点 3 基本不等式的变式与拓展1、基本不等式链20,0)112a b a b a b +≤≤≤>>+或222()(0,0)22a b a b ab a b ++≤≤>>.当且仅当a b =时等号成立.其中,2211aba b a b=++为,a b 的调和平均值,222a b +为,a b 的平方平均值2、基本不等式的拓展(1)三元基本不等式:3a b c ++≥,,a b c 均为正实数),当且仅当a b c ==时等号成立.(2)n元基本不等式:12n a a a n+++ 12,,n a a a 均为正实数),当且仅当12n a a a === 时等号成立.考点一:对基本不等式的理解例1.(22-23高一上·河北邯郸·月考)不等式(x -2y )+12x y-≥2成立的前提条件为( )A .x ≥2yB .x >2yC .x ≤2yD .x <2y【变式1-1】(23-24高一上·西藏林芝·期中)下列命题中正确的是( )A .若0,0a b >>,且16a b +=,则64ab ≤B .若0a ≠,则44a a +≥=C .若,R a b ∈,则2()2a b ab +≥D .对任意,R a b ∈,222,a b ab a b +≥+≥.【变式1-2】(23-24高一上·山西运城·月考)(多选)已知,a b ∈R ,且0ab >,则下列不等式中,恒成立的是( )A.2a b+≥B .()()2222a b a b +≥+C .2b a a b +≥D .114a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭【变式1-3】(23-24高一上·新疆巴音郭楞·期末)(多选)《几何原本》中的几何代数法是以几何方法研究代数问题,这种方法是数学家处理问题的重要依据,通过这一原理,很多的代数公理或定理都能够通过图形实现证明,也称之为无字证明.现有图形如图所示,C 为线段AB 上的点,且AC a =,BC b =,O 为AB 的中点,以AB 为直径作半圆,过点C 作AB 的垂线交半圆于D ,连接OD 、AD 、BD ,过点C 作OD 的垂线,垂足为E .则该图形可以完成的所有的无字证明为( )A.)0,02a ba b +≥>>B .()2230,0a b ab a b +>>>C()20,011a b a b≥>>+D .()220,022a b a ba b ++≥>>考点二:利用基本不等式比较大小例2. (23-24高一上·甘肃会宁·期中)设n mA m n=+(m 、n 为互不相等的正实数),242B x x =-+-,则A 与B 的大小关系是( )A .A B>B .A B≥C .A B<D .A B≤【变式2-1】(23-24高一上·江苏淮安·期中)已知实数a ,b ,c 满足22c b a a-=+-,2222c b a a a+=++,且0a >,则a ,b ,c 的大小关系是( )A .b c a>>B .c b a>>C .a c b>>D .c a b>>【变式2-2】(23-24高一上·福建莆田·期末)(多选)若170,139a b <<<<,则,a b +22,2a b +中不可能是最大值的是( )A .222a b +B.C.D .a b+【变式2-3】(23-24高一上·全国·专题练习)(多选)若0a b >>,则下列不等式成立的是( )A.2a b+>B .22ab a ba b +<+C .22ab a ba b +>+D 2aba b>+考点三:利用基本不等式求最值例3. (23-24高一下·贵州贵阳·月考)已知02x <<,则()32x x -的最大值是( )A .3-B .3C .1D .6【变式3-1】(23-24高一上·广东韶关·月考)已知100x >>,则2的最小值为( )A .3-B .2-C .1-D .0【变式3-2】(23-24高一下·河南周口·月考)已知正数,a b 满足1ab =,则22(1)(1)T a b =+++的最小值为( )A .4B .6C .8D .16【变式3-3】(23-24高一下·陕西榆林·月考)若正数x ,y 满足44x y +=,则11x y+的最小值为( )A .2B .94C .3D .83【变式3-4】(23-24高一下·广西·开学考试)已知0a >,0b >,且a b ab +=,则27ab a b -+的最小值是( )A .6B .9C .16D .19考点四:利用基本不等式证明不等式例4. (23-24高一上·安徽马鞍山·期中)已知0,0,1a b a b >>+=,求证:(1)114a b+≥;(2)12118a b ⎛⎫⎛⎫++≥+ ⎪⎪⎝⎭⎝⎭.【变式4-1】(23-24高一上·四川雅安·期中)已知0a >,0b >,且1a b +=,证明:(1)22221a b +≥;(2)1916a b+≥.【变式4-2】(23-24高一上·全国·专题练习)设a ,b ,c 均为正数,求证:()11192a b c a b b c a c ⎛⎫++++≥⎪+++⎝⎭.【变式4-3】(23-24高一上·安徽淮南·期中)已知,,a b c 是正实数.(1)证明:a b c ++≥(2)若2a b c ++=,证明:11192a b c ++≥.(3)已知,a b 是正数,且1a b +=,求证:()()ax by bx ay xy ++≥.考点五:基本不等式恒成立问题例5. (23-24高一上·贵州安顺·≥数m 的最大值为( )A .2B .3C .4D .9【变式5-1】(23-24高一上·吉林延边·月考)已知0x >,0y >,且2x y +=.若410x mxy +-≥恒成立,则实数m 的最大值是()A .4B .8C .3D .6【变式5-2】(23-24高一上·广东揭阳·期中)已知0x >,0y >,且9x y xy +=,若不等式a x y ≤+恒成立,则a 的取值范围是( )A .(],6-∞B .(],16-∞C .(],8∞-D .(],9-∞【变式5-3】(23-24高一下·湖南株洲·开学考试)(多选)若对于任意0x >,231xax x ≤++恒成立,则实数a 的取值可以是( )A .15B .110C .12D .13考点六:基本不等式在实际中的应用例6. (23-24高一下·浙江·月考)如图,某灯光设计公司生产一种长方形线路板,长方形()ABCD AB AD >的周长为4,沿AC 折叠使点B 到点B '位置,AB '交DC 于点P .研究发现当ADP △的面积最大时用电最少,则用电最少时,AB 的长度为( )A .54B C .32D 【变式6-1】(23-24高一上·江苏连云港·月考)某工厂建造一个无盖的长方体贮水池,其容积为48003m ,深度为3m .如果池底每平方米的造价为100元,池壁每平方米的造价为80元,怎样设计水池能使总造价最低?最低总造价为多少元?【变式6-2】(23-24高一上·广东佛山·月考)某工厂拟造一座平面图(如图)为长方形且面积为2150m 的三级污水处理池.由于地形限制,该处理池的长、宽都不能超过16 m ,且高度一定.如果四周池壁的造价为400元/2m ,中间两道隔墙的造价为248元/2m ,池底造价为80元/2m ,那么如何设计该处理池的长和宽,才能使总造价最低?(池壁的厚度忽略不计)【变式6-3】(23-24高一上·四川乐山·期中)用篱笆在一块靠墙的空地围一个面积为2的等腰梯形菜园,如图所示,用墙的一部分做下底AD ,用篱笆做两腰及上底,且腰与墙成60︒,当等腰梯形的腰长为多少时,所用篱笆的长度最小?并求出所用篱笆长度的最小值.一、单选题1.(23-24高一上·陕西宝鸡·期中)221x x +取最小值时x 的取值为( )A .1B .1±C .2D .2±2.(23-24高一上·湖南娄底·期末)若0x >,0y >,且1x y +=,则xy 的最大值是( )A .116B .14C .12D .13.(22-23高一上·江苏宿迁·月考)若0x >,则22y x x=+的最小值是( )A .B .C .4D .24.(23-24高一下·云南丽江·开学考试)已知a ,b 为正数,41a b +=,则114a b+的最小值为( )A .1B .2C .4D .85.(23-24高一上·湖南娄底·期末)已知0x >,则24-+x x x 的最小值为( )A .5B .3C .5-D .5-或36.(23-24高一上·山东济南·期末)如图所示,线段AB 为半圆的直径,O 为圆心,,C F 为半圆弧上不与,A B 重合的点,OF AB ⊥.作CD AB ⊥于,D DE OC ⊥于E ,设,AD a BD b ==,则下列不等式中可以直接表示CE DF ≤的是( )A .2aba b≤+B 2a b +≤C .2a b +≤D .2ab a b ≤+二、多选题7.(23-24高一下·云南昆明·期中)下列说法正确的是( )A .1x x+的最小值为2B .(2)x x -的最大值为2C .22x x -+的最小值为2D .2272x x ++最小值为28.(23-24高一上·全国·单元测试)已知,R a b ∈,且0ab ≠,则下列四个不等式中,恒成立的为( )A .222a b ab +≥B .2b a a b+≥C .2a b ab +⎛⎫≤ ⎪⎝⎭2D .22222a b a b ++⎛⎫≤⎪⎝⎭三、填空题9.(23-24高一上·广西百色·期末)若1x >,则2161x x x -+-的最小值为.10.(23-24高一上·北京·期中)某快递公司为提高效率,引进智能机器人分拣系统,以提高分拣效率和降低物流成本.已知购买x 台机器人的总成本为21()150600P x x x =++(单位:万元).若要使每台机器人的平均成本最低,则应买机器人 台.11.(23-24高一上·吉林延边·月考)若x a ∀>,关于x 的不等式225x x a+≥-恒成立,则实数a 的取值范围是.四、解答题12.(23-24高一上·山东菏泽·月考)(1)已知01x <<,则(43)x x -取得最大值时x 的值为?(2)函数22(1)1x y x x +=>- 的最小值为?(3)已知x ,y 是正实数,且4x y +=,求13x y+的最小值.13.(23-24高一上·安徽马鞍山·月考)如图,我国古代的“弦图”是由四个全等的直角三角形围成的.设直角三角形ABC 的直角边长为,a b ,且直角三角形ABC 的周长为2.(已知正实数,x y2x y +≤x y =时等号成立)(1)求直角三角形ABC 面积的最大值;(2)求正方形ABDE 面积的最小值.第07讲 基本不等式模块一 思维导图串知识模块二 基础知识全梳理(吃透教材)模块三 核心考点举一反三模块四 小试牛刀过关测1.了解基本不等式的证明过程;2.能利用基本不等式证明简单的不等式及比较代数式的大小;3.熟练掌握利用基本不等式求函数的最值问题;4.会用基本不等式求解实际应用题.知识点 1 基本不等式1、重要不等式(1)公式:对于任意的实数,a b ,有222a b ab +≥,当且仅当a b =时,等号成立.【说明】22222()0202a b a b ab a b ab -≥⇔+-≥⇔+≥,当且仅当a b =时,等号成立.(2)常见变形:2222()()a b a b +≥+、222a b ab +≤、2242ab a b ab ≤++.2、基本不等式(1)公式:如果0a >,0b >2a b+≤,当且仅当a b =时,等号成立.【说明】2ba +叫做正数,ab 的算术平均数,ab 叫做正数,a b 的几何平均数.因此基本不等式表明:两个正数的算术平均数不小于它们的几何平均数.(2)常见变形:a b +≥;2.2a b ab +⎛⎫≤ ⎪⎝⎭(3)常用结论:①2b aa b+≥(,a b 同号),当且仅当a b =时取等号;2b aa b+≤-(,a b 异号),当且仅当a b =-时取等号.②12a a+≥(0a >),当且仅当1a =时取等号;12a a+≤-(0a <),当且仅当1a =-时取等号;知识点 2 最值定理1、最值定理:已知,x y 都是正数,(1)若x +y =s (和s 为定值),则当x=y 时,积xy 有最大值,且这个值为s 24.(2)若xy =p (积p 为定值),则当x=y 时,和x +y 有最小值,且这个值为2p .最值定理简记为:积定和最小,和定积最大.2、在用基本不等式求函数的最值时,要满足三个条件:一正二定三取等.①一正:各项均为正数;②二定:含变数的各项的和或积必须有一个为定值;③三相等:含变数的各项均相等,取得最值.知识点 3 基本不等式的变式与拓展1、基本不等式链20,0)112a b a b a b +≤≤≤>>+或222()(0,0)22a b a b ab a b ++≤≤>>.当且仅当a b =时等号成立.其中,2211aba b a b=++为,a b 的调和平均值,222a b +为,a b 的平方平均值2、基本不等式的拓展(1)三元基本不等式:3a b c ++≥,,a b c 均为正实数),当且仅当a b c ==时等号成立.(2)n元基本不等式:12n a a a n+++ 12,,n a a a 均为正实数),当且仅当12n a a a === 时等号成立.考点一:对基本不等式的理解例1.(22-23高一上·河北邯郸·月考)不等式(x -2y )+12x y-≥2成立的前提条件为( )A .x ≥2yB .x >2yC .x ≤2yD .x <2y【答案】B【解析】由均值不等式的条件“一正、二定,三相等”,即均值不等式成立的前提条件是各项均为正数,所以不等式()1222x y x y-+≥-成立的前提条件为20x y ->,即2x y >.故选:B.【变式1-1】(23-24高一上·西藏林芝·期中)下列命题中正确的是( )A .若0,0a b >>,且16a b +=,则64ab ≤B .若0a ≠,则44a a +≥=C .若,R a b ∈,则2()2a b ab +≥D .对任意,R a b ∈,222,a b ab a b +≥+≥.【答案】A【解析】A 选项,2642a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当8a b ==时等号成立,A 选项正确.B 选项,当a<0时,40a a+<,所以B 选项错误.C 选项,当0,0a b ><时,()20,02a b ab +<≥,所以C 选项错误.D 选项,当0,0a b <<时,0a b +<,a b +≥不成立,所以D 选项错误. 故选:A【变式1-2】(23-24高一上·山西运城·月考)(多选)已知,a b ∈R ,且0ab >,则下列不等式中,恒成立的是( )A .2a b+≥B .()()2222a b a b +≥+C .2b a a b +≥D .114a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭【答案】BCD【解析】对于A ,当,a b 为负数时不成立,故A 错误,对于B ,()()22222()0a b a b a b +-+=-≥,则()()2222a b a b +≥+,故B 正确,对于C ,0ab >,则,b aa b 都为正数,2b a a b +≥,当且仅当b a ab=,即a b =时等号成立,故C 正确,对于D ,111224b a a b ab a b ab a b ⎛⎫⎛⎫++=+++≥+= ⎪⎪⎝⎭⎝⎭,当且仅当1ab ab =和b aa b=同时成立,即1a b ==±时等号成立,故D 正确,故选:BCD 【变式1-3】(23-24高一上·新疆巴音郭楞·期末)(多选)《几何原本》中的几何代数法是以几何方法研究代数问题,这种方法是数学家处理问题的重要依据,通过这一原理,很多的代数公理或定理都能够通过图形实现证明,也称之为无字证明.现有图形如图所示,C 为线段AB 上的点,且AC a =,BC b =,O 为AB 的中点,以AB 为直径作半圆,过点C 作AB 的垂线交半圆于D ,连接OD 、AD 、BD ,过点C 作OD 的垂线,垂足为E .则该图形可以完成的所有的无字证明为( )A.)0,02a ba b +≥>>B .()2230,0a b ab a b +>>>C()20,011a b a b≥>>+D .()220,022a b a ba b ++≥>>【答案】AC【解析】由题意可知AB AC BC a b =+=+,2a bOA OB OD +===,因为90CBD CAD ADC ∠=-∠=∠ ,90ACD DCB ∠=∠= ,则Rt Rt ACD DCB ∽ ,所以,CD ACBC CD= ,即2CD AC BC ab =⋅=,所以CD =在Rt OCD △中,OD CD >,即)0,02a ba b +>>当OD AB ⊥时,O 、C 点重合,a b =,此时)0,02a ba b +=>>,则)0,02a ba b +≥>>,所以A 正确;对于C 选项,在Rt OCD △中,CE OD ⊥,则90DCE CDE DOC ∠=-∠=∠ ,又因为90DEC DCO ∠=∠= ,所以,Rt Rt DEC DCO ∽ ,可得CD DE DO CD=,即2CD DE OD =⋅,所以222112CD ab ab DE a b OD a b a b====+++,由于CD DE >111a b >+,当a b =时,CD DE =111a b=+,()20,011a ba b>>+,所以C正确;由于22a b+在该图中没有相应的线段与之对应,故BD中的不等式无法通过这种几何方法来证明,故选:AC.考点二:利用基本不等式比较大小例2. (23-24高一上·甘肃会宁·期中)设n mAm n=+(m、n为互不相等的正实数),242B x x=-+-,则A与B的大小关系是()A.A B>B.A B≥C.A B<D.A B≤【答案】A【解析】m、n为互不相等的正实数,则m nn m≠,所以2n mAm n=+>=,2242(2)22B x x x=-+-=--+≤,=2x时,max2B=,所以A B>.故选:A.【变式2-1】(23-24高一上·江苏淮安·期中)已知实数a,b,c满足22c b aa-=+-,2222c b a aa+=++,且0a>,则a,b,c的大小关系是()A.b c a>>B.c b a>>C.a c b>>D.c a b>>【答案】B【解析】因为0a>,由基本不等式得22220c b aa-=+-≥=>,故c b>,因为2222c b a aa+=++,22c b aa-=+-,两式相减得,2222222222a a a aabaa++-=-+++=,故2112a ab+=+,所以220141151216ab aa a⎛⎫-⎪-+-+⎝=⎭=>,故b a>,所以c b a>>.故选:B【变式2-2】(23-24高一上·福建莆田·期末)(多选)若170,139a b <<<<,则,a b +22,2a b +中不可能是最大值的是( )A .222a b +B .C .D .a b+【答案】ABC【解析】由于170,139a b <<<<,则a b ¹,故a b +>222a b +>,则不可能是最大值,B ,C 符合题意;由于22221132)2()()428(a b a b a b ++=--+--,当170,139a b <<<<时,221112()2(0448a -<-=,22111()(1224b -<-=,故221131132((0428848a b -+--<+-=,即222a b a b +<+,故222a b +不可能是最大值,A 符合题意,故选:ABC【变式2-3】(23-24高一上·全国·专题练习)(多选)若0a b >>,则下列不等式成立的是( )A .2a b+>B .22ab a ba b +<+C .22ab a ba b +>+D 2aba b>+【答案】ABD【解析】对于选项A ,因为0a b >>,则20>,所以2a b+A 正确;因为0a b >>,所以0a b +>,0ab >,又2a b +>,得到01<<故22ab a ba b +<<+,所以选项B 和D 正确,对于选项C ,取2,1a b ==,满足0a b >>,但243322ab a ba b +=<=+,所以C 错误,故选:ABD.考点三:利用基本不等式求最值例3. (23-24高一下·贵州贵阳·月考)已知02x <<,则()32x x -的最大值是( )A .3-B .3C .1D .6【答案】B【解析】()32x x -()213234x x ⎡⎤≤⨯+-=⎣⎦,当且仅当2x x =-,即1x =取得等号,满足题意.故选:B.【变式3-1】(23-24高一上·广东韶关·月考)已知100x >>,则2的最小值为( )A .3-B .2-C .1-D .0【答案】A【解析】因为100x >>,故()10x x +-≥5,当且仅当5x =时,等号成立,所以2253≥-=-.故选:A.【变式3-2】(23-24高一下·河南周口·月考)已知正数,a b 满足1ab =,则22(1)(1)T a b =+++的最小值为( )A .4B .6C .8D .16【答案】C【解析】因为()2222228T a b a b ab =++++≥++=,当且仅当1a b ==时取等号,所以T 的最小值为8.故选:C.【变式3-3】(23-24高一下·陕西榆林·月考)若正数x ,y 满足44x y +=,则11x y+的最小值为( )A .2B .94C .3D .83【答案】B【解析】由正数x ,y 满足44x y +=,得111111419(4)()(5)5)4444y x x y x y x y x y +=++=++≥=,当且仅当4y x x y =,即23x =,43y =时取等号,所以11x y +的最小值为94.故选:B【变式3-4】(23-24高一下·广西·开学考试)已知0a >,0b >,且a b ab +=,则27ab a b -+的最小值是( )A .6B .9C .16D .19【答案】C【解析】因为a b ab +=且0a >,0b >,所以111a b+=,则()1192722799101016b a ab a b a a b b a b a b a b a b ⎛⎫-+=-++=+=++=++≥+= ⎪⎝⎭,当且仅当9111b aa ba b ⎧=⎪⎪⎨⎪+=⎪⎩时,即当4a =,43b =时,等号成立.因此,27ab a b -+的最小值是16.故选:C.考点四:利用基本不等式证明不等式例4. (23-24高一上·安徽马鞍山·期中)已知0,0,1a b a b >>+=,求证:(1)114a b+≥;(2)12118a b ⎛⎫⎛⎫++≥+ ⎪⎪⎝⎭⎝⎭.【答案】(1)证明见解析;(2)证明见解析【解析】(1)0,0,1a b a b >>+= ,()1111224b a a b a b a b a b ⎛⎫∴+=++=++≥+= ⎪⎝⎭,当且仅当ba a b=,即12a b ==时等号成立.(2)0,0,1a b a b >>+= ,12212212()1111a b a b b a ab b a ab +⎛⎫⎛⎫∴++=+++=+++⎪⎪⎝⎭⎝⎭21223434111()a b b a a b a b a b ⎛⎫=++++=++=+++ ⎪⎝⎭3434134888b a b a a b a b =++++=++≥+=+当且仅当34b a ba =时,即3,4ab ==-时等号成立.【变式4-1】(23-24高一上·四川雅安·期中)已知0a >,0b >,且1a b +=,证明:(1)22221a b +≥;(2)1916a b+≥.【答案】(1)证明见解析;(2)证明见解析【解析】(1)因为1a b +=,所以()222212a b a b ab ab +=+-=-,因为0a >,0b >,所以2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时,等号成立,所以11121242ab -≥-⨯=,即2212a b +≥,故22221a b +≥;(2)因为1a b +=,所以()1919910b aa b a b a b a b ⎛⎫+=++=++ ⎪⎝⎭,因为0a >,0b >,所以0b a>,90a b >,所以96b a a b +≥,当且仅当9b a a b =,即334b a ==时,等号成立,则91016b aa b ++≥,即1916a b+≥.【变式4-2】(23-24高一上·全国·专题练习)设a ,b ,c 均为正数,求证:()11192a b c a b b c a c ⎛⎫++++≥⎪+++⎝⎭.【答案】证明见解析【解析】∵a ,b ,c 均为正数,∴()()()0a b b c c a +++++≥>,当且仅当a b b c a c +=+=+,即a b c ==时,等号成立.1110a b b c a c ++≥>+++,当且仅当111a b b c a c==+++,即a b c ==时,等号成立.∴()11129a b c a b b c a c ⎛⎫++++≥= ⎪+++⎝⎭,故()11192a b c a b b c a c ⎛⎫++++≥ ⎪+++⎝⎭,当且仅当a b c ==时,等号成立.【变式4-3】(23-24高一上·安徽淮南·期中)已知,,a b c 是正实数.(1)证明:a b c ++≥(2)若2a b c ++=,证明:11192a b c ++≥.(3)已知,a b 是正数,且1a b +=,求证:()()ax by bx ay xy ++≥.【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】(1)由222()()()a b c a b b c a c ++=+++++≥++,当且仅当a b c ==时等号成立,即a b c ++≥.(2)由11111()(3)22a b c a b c a b c b c a c a ba b c a b c a a b b c c++++++++=⋅++=⋅++++++119(3(3222)222≥++=⋅+++=,当且仅当23a b c ===时等号成立,则11192a b c ++≥,得证.(3)由222222()()()()(2)()ax by bx ay ab x y xy a b ab xy xy a b ++=+++≥++2()xy a b xy =+=,当且仅当x y =时等号成立,不等式得证.考点五:基本不等式恒成立问题例5. (23-24高一上·贵州安顺·≥数m 的最大值为( )A .2B .3C .4D .9【答案】Dm ≥恒成立,即5m +≥恒成立.又559≥+=,当且仅当a b =时取等号.故实数m 的最大值为9.故选:D【变式5-1】(23-24高一上·吉林延边·月考)已知0x >,0y >,且2x y +=.若410x mxy +-≥恒成立,则实数m 的最大值是()A .4B .8C .3D .6【答案】A【解析】由410x mxy +-≥,则41828912222x x x x y m xy xy xy y x++++≤===+()9111991542222222221x y x y y x y x ⎛⎛⎫⎛⎫++==+++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当922x y y x =,即12x =,32y =时,等号成立.故选:A.【变式5-2】(23-24高一上·广东揭阳·期中)已知0x >,0y >,且9x y xy +=,若不等式a x y ≤+恒成立,则a 的取值范围是( )A .(],6-∞B .(],16-∞C .(],8∞-D .(],9-∞【答案】B【解析】9x y xy +=,故911x y +=,()91910x yx y x y x y y x ⎛⎫+=++=++ ⎪⎝⎭,0x >,0y >,故96x y y x +≥=,当且仅当9x y y x=,即12,4x y ==时取等号,故10616x y +≥+=,x y +最小值是16,由不等式a x y ≤+恒成立可得16a ≤.a 的取值范围是(],16-∞,故选:B.【变式5-3】(23-24高一下·湖南株洲·开学考试)(多选)若对于任意0x >,231xax x ≤++恒成立,则实数a 的取值可以是( )A .15B .110C .12D .13【答案】ACD【解析】因为0x >,所以21113153x x x x x =≤=++++,当且仅当1x x=,即1x =时等号成立,由任意0x >,231xa x x ≤++恒成立, 所以15a ≥,符合条件有15,12,13,故A 、C 、D 对;11015<,故B 错;故选:ACD考点六:基本不等式在实际中的应用例6. (23-24高一下·浙江·月考)如图,某灯光设计公司生产一种长方形线路板,长方形()ABCD AB AD >的周长为4,沿AC 折叠使点B 到点B '位置,AB '交DC 于点P .研究发现当ADP △的面积最大时用电最少,则用电最少时,AB 的长度为( )A .54B C .32D 【答案】B【解析】如图,设AB x =,由矩形()ABCD AB AD >的周长为4,可知(2)AD x =-.设PC a =,则()DP x a =-.,90,APD CPB ADP CB P AD CB '''∠=∠∠=∠=︒= ,,Rt ADP Rt CB P AP PC a '∴∴== ≌.在Rt ADP 中,由勾股定理得222AD DP AP +=,即222(2)()x x a a -+-=,解得222x x a x-+=,所以22x DP x a x-=-=.所以ADP △的面积11222(2)322x S AD DP x x x x -⎛⎫=⋅=-⋅=-+ ⎪⎝⎭.所以33S ≤-=-2x x =时,即当x =时,ADP △的面积最大,面积的最大值为3-B .【变式6-1】(23-24高一上·江苏连云港·月考)某工厂建造一个无盖的长方体贮水池,其容积为48003m ,深度为3m .如果池底每平方米的造价为100元,池壁每平方米的造价为80元,怎样设计水池能使总造价最低?最低总造价为多少元?【答案】当水池设计成底面边长为40m 的正方形时,总造价最低,为198400元.【解析】设池底的一边长为()m 0x x >,则另一边长为48001600m=m 3x x,总造价为y 元,则1600160016001003280160000480y x x x x ⎛⎫⎛⎫=⨯++⨯⨯⨯=+⨯+ ⎪ ⎪⎝⎭⎝⎭160000480198400≥+⨯=,当且仅当1600x x=,即40x =时,等号成立,所以当水池设计成底面边长为40m 的正方形时,总造价最低,最低为198400元.【变式6-2】(23-24高一上·广东佛山·月考)某工厂拟造一座平面图(如图)为长方形且面积为2150m 的三级污水处理池.由于地形限制,该处理池的长、宽都不能超过16 m ,且高度一定.如果四周池壁的造价为400元/2m ,中间两道隔墙的造价为248元/2m ,池底造价为80元/2m ,那么如何设计该处理池的长和宽,才能使总造价最低?(池壁的厚度忽略不计)【答案】长为时总造价最低.【解析】设处理池的长和宽分别为x ,y ,高为h ,总造价为z ,则150xy =,(016,016)x y <≤<≤,(22)400224815080(8001296)120001200012000z x y h yh x y h =+⨯+⨯+⨯=++≥+=+,当且仅当8001296x y =,又150xy =,即16x =<,16y 时取到等号,故长为时总造价最低.【变式6-3】(23-24高一上·四川乐山·期中)用篱笆在一块靠墙的空地围一个面积为2的等腰梯形菜园,如图所示,用墙的一部分做下底AD ,用篱笆做两腰及上底,且腰与墙成60︒,当等腰梯形的腰长为多少时,所用篱笆的长度最小?并求出所用篱笆长度的最小值.【答案】当等腰梯形的腰长为10m 时,所用篱笆长度最小,其最小值为30m .【解析】设()()m 0AB a a =>,上底()()m 0BC b b =>,分别过点,B C 作下底的垂线,垂足分别为,E F ,则BE ,2a AE DF ==,则下底22a aAD b a b =++=+,该等腰梯形的面积())22b a b S a b a ++==+=所以()2300a b a +=,则30022a b a =-,所用篱笆长为2l a b =+300222a a a =+-300322a a =+≥30=,当且仅当300322aa =,即()10m a =,()10mb =时取等号.所以,当等腰梯形的腰长为10m 时,所用篱笆长度最小,其最小值为30m .一、单选题1.(23-24高一上·陕西宝鸡·期中)221x x+取最小值时x 的取值为( )A .1B .1±C .2D .2±【答案】B【解析】由题意可知,20x >,∴2212x x +≥=,当且仅当221x x =,即1x =±时,等号成立,即221x x+取最小值时x 的取值为1±.故选:B .2.(23-24高一上·湖南娄底·期末)若0x >,0y >,且1x y +=,则xy 的最大值是( )A .116B .14C .12D .1【答案】B【解析】由题意1x y +=≥,解得14≤xy ,等号成立当且仅当12x y ==.故选:B.3.(22-23高一上·江苏宿迁·月考)若0x >,则22y x x=+的最小值是( )A .B .C .4D .2【答案】C【解析】因为0x >,所以224y x x =+=≥,当且仅当22x x=,即1x =时等号成立,所以22y x x=+的最小值是4.故选:C.4.(23-24高一下·云南丽江·开学考试)已知a ,b 为正数,41a b +=,则114a b+的最小值为( )A .1B .2C .4D .8【答案】C【解析】正数a ,b 满足41a b +=,则11114()2244444)(b a a b a b a a b b +=+=≥++++,当且仅当44b aa b =,即142a b ==时取等号,所以当11,82a b ==时,114a b +取得最小值4.故选:C5.(23-24高一上·湖南娄底·期末)已知0x >,则24-+x x x 的最小值为( )A .5B .3C .5-D .5-或3【答案】B【解析】由0x >,得244113x x x x x -+=+-≥=,当且仅当4x x =,即2x =时等号成立,所以24-+x x x的最小值为3.故选:B.6.(23-24高一上·山东济南·期末)如图所示,线段AB 为半圆的直径,O 为圆心,,C F 为半圆弧上不与,A B 重合的点,OF AB ⊥.作CD AB ⊥于,D DE OC ⊥于E ,设,AD a BD b ==,则下列不等式中可以直接表示CE DF ≤的是( )A .2aba b≤+B 2a b +≤C .2a b +≤D .2ab a b ≤+【答案】D【解析】因为,AD a BD b ==,所以,22a b a b OF OC OD +-===,在Rt DOF △中,DF ==又CD AB ⊥,所以CD ===在Rt CDO △中,DE OC ⊥,故ED OC OD DC ⋅=⋅,得到22a bOD DC ED a b OC -⋅===+所以2abCE a b===+,所以CE DF ≤,即2ab a b +,故选:D.二、多选题7.(23-24高一下·云南昆明·期中)下列说法正确的是( )A .1x x+的最小值为2B .(2)x x -的最大值为2C .22x x -+的最小值为2D .2272x x ++最小值为2【答案】CD【解析】对于选项A ,当=1x -时,12x x+=-,故A 错误;对于选项B ,()()222211x x x x x -=-+=--+,所以()2x x -的最大值为1,故B错误;对于选项C,122222x x x x -+=+≥=,当且仅当122xx=,即0x =时,等号成立,故C 正确.对于选项D ,222277222222x x x x ++=+-≥=-++,当且仅当22722x x+=+,即22x =时,等号成立,故D 正确.故选:CD.8.(23-24高一上·全国·单元测试)已知,R a b ∈,且0ab ≠,则下列四个不等式中,恒成立的为( )A .222a b ab +≥B .2b a a b+≥C .2a b ab +⎛⎫≤ ⎪⎝⎭2D .22222a b a b ++⎛⎫≤⎪⎝⎭【答案】ACD【解析】由,R a b ∈,则222a b ab +≥,得222a b ab +≥,A 正确;由,R a b ∈,取1,2a b =-=,则1202b a a b +=--<,故B 错误;由于,R a b ∈,则22()024a b a b ab +-⎛⎫-=-≤ ⎪⎝⎭,则2a b ab +⎛⎫≤ ⎪⎝⎭,故C 正确;由于2222()0224a b a ba b ++-⎛⎫-=-≤ ⎪⎝⎭,故D 正确,故选:ACD .三、填空题9.(23-24高一上·广西百色·期末)若1x >,则2161x x x -+-的最小值为.【答案】9【解析】由1x >,得10x ->,于是21616161119111x x x x x x x -+=+=-++≥=---,当且仅当1611x x -=-,即5x =时取等号,所以2161x x x -+-的最小值为9.故答案为:910.(23-24高一上·北京·期中)某快递公司为提高效率,引进智能机器人分拣系统,以提高分拣效率和降低物流成本.已知购买x 台机器人的总成本为21()150600P x x x =++(单位:万元).若要使每台机器人的平均成本最低,则应买机器人 台.【答案】300【解析】购买x 台机器人的总成本为21()150600P x x x =++,则平均成本()150112600P x x x x =++≥+=,当且仅当150600x x=,即300x =时,平均成本最低为2万元.故答案为:300.11.(23-24高一上·吉林延边·月考)若x a ∀>,关于x 的不等式225x x a+≥-恒成立,则实数a 的取值范围是 .【答案】1,2⎡⎫+∞⎪⎢⎣⎭【解析】若关于x 的不等式225x x a +≥-恒成立,则min 2(2)5x x a+≥-,因为x a >,故2222()2242x x a a a a x a x a +=-++≥=+--,当且仅当1x a =+时取等,故得425a +≥,解得12a ≥.故答案为:1,2⎡⎫+∞⎪⎢⎣⎭四、解答题12.(23-24高一上·山东菏泽·月考)(1)已知01x <<,则(43)x x -取得最大值时x 的值为?(2)函数22(1)1x y x x +=>- 的最小值为?(3)已知x ,y 是正实数,且4x y +=,求13x y +的最小值.【答案】(1)23;(2)2 ;(3)1+【解析】(1)2113434(43)(3)(43)[3323x x x x x x +--=⨯⨯-≤⨯=,当且仅当343x x =-,即2(0,1)3x =∈时取等号.故(43)x x -取得最大值43时,x 的值为23.(2)2222122311x x x x y x x +-++-+==--2(1)2(1)31x x x -+-+=-3(1)221x x =-++≥+-.(1x >)当且仅当311x x -=-,即1(1,)x =∈+∞时取等号.故函数的最小值为2.(3)x ,R y +∈,()1311313112144y x x y x y x y x y ⎛⎫⎛⎫∴+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭当且仅当y =,即)21x =,(23y =时取等号.∴13x y +的最小值为113.(23-24高一上·安徽马鞍山·月考)如图,我国古代的“弦图”是由四个全等的直角三角形围成的.设直角三角形ABC 的直角边长为,a b ,且直角三角形ABC 的周长为2.(已知正实数数学31,x y2x y +≤x y =时等号成立)(1)求直角三角形ABC 面积的最大值;(2)求正方形ABDE 面积的最小值.【答案】(1)3-;(2)(43-【解析】(1)由题意得:(22a b =+=2≤=6ab ≤-所以132S ab =≤-a b =时,等号成立,所以直角三角形ABC面积的最大值为3-;(2)因为a b +≤所以21a b =+≤)21≥=,所以(2243S a b =+≥-,当且仅当a b =时,等号成立,所以正方形ABDE 面积的最小值为(43-.。

上海理工大学附属中学高一数学上册《基本不等式及其应

上海理工大学附属中学高一数学上册《基本不等式及其应用》练习 沪教版2.4基本不等式及其应用1.通晓两种基本不等式的形式:○1基本不等式1:对任意实数a 和b ,有222a b ab +≥,当且仅当a b =时等号成立。

○2基本不等式2:对任意正数,a b ,有2a bab +≥,当且仅当a b =时等号成立。

2.全面理解基本不等式:○1对于基本不等式2,,a b R +∈条件可减弱为0,0a b ≥≥,所以上述条件只是充分不必要条件;○2基本不等式的主体是2a bab +≥(,a b R +∈),即两正数的算术平均值不小于其几何平均值;○3基本不等式等号成立的充要条件是a b =(0,0a b >>); ○4掌握不等式2的变形: (,)2a b ab a b R ++≥∈,变形得:22a b ab +⎛⎫≤ ⎪⎝⎭(,a b R +∈),由此可知,当积为定值,和有最小值;当和为定值,积有最大值。

3.知道基本不等式还有其推广形式:○1对任意,,a b c R +∈,有33a b c abc ++≥,当且仅当a b c ==时等号成立; ○2对任意12,,,n a a a R +∈L ,有1212n n n a a a n a a a ++≥L L ,当且仅当12n a a a ===L例1.(1)当0x >,1x x+的取值范围,并指出取的最小值时的x 的值;(2)当0x <,求42x x+的最值,并指出取最值时x 的值;(3)若1x >,求11x x +-的取值范围;(4)如果3x >,求2313x x x -+-的取值范围;例2.(1)已知,x y R +∈,且21x y +=,求证:18xy ≤,并指出等号成立的条件;(2)已知01x <<,求当x 取何值时,(1)x x -值最大;(3)已知102x <<,则当_________x =时,3(12)x x -有最大值_________;(4)当________x =时,21x x -有最大值___________;例3.已知,a b R +∈且1a b +=,求11a b+的最小值;变式一:已知,a b R +∈且321a b +=,求11a b+的最小值;变式二:已知,a b R +∈且231a b +=,求21a b+的最小值;变式三:已知,a b R +∈且211a b+=,求a b +的最小值;例4.对于问题“已知正数,x y 满足21x y +=,求11x y+的最小值”有如下做法: 21x y +=Q 且,0x y >,11111(2)22242x y xy x y x y xy⎛⎫∴+=++≥= ⎪⎝⎭,min1142x y ⎛⎫∴+= ⎪⎝⎭ 判断以上解法是否正确?说明理由;若不正确,请给出正确的解法。

上海杨浦初级中学高中数学选修4-5第一章《不等关系与基本不等式》测试(答案解析)

一、选择题1.某单位计划今明两年购买某物品,现有甲、乙两种不同的购买方案,甲方案:每年购买的数量相等;乙方案:每年购买的金额相等,假设今明两年该物品的价格分别为1p 、2p ()12p p ≠,则这两种方案中平均价格比较低的是( )A .甲B .乙C .甲、乙一样D .无法确定2.若,b R,,a a b ∈≠且则下列式子:(1)22a 32b ab +>,(2)553223a b b a a b +>+, (3)2252(2)a b a b ++≥-,(4)2b aa b+>.其中恒成立的个数是 A .1个B .2个C .3个D .4个3.关于x 的不等式13x x a -+-≥恒成立,则实数a 的取值范围是( ) A .(][),42,-∞-+∞B .(][),24,-∞+∞C .(][),33,-∞-+∞D .(][),24,-∞-⋃+∞4.设,,a b c ∈R ,且a b >,则( ) A .ac bc > B .a c b c -<- C .33a b > D .22a b > 5.已知实数a ,b ,c 满足c b a <<,0ac <,那么下列选项中正确的是( ) A .ab ac >B .ac bc <C .22ab cb >D .22ca ac >6.若实数a >b ,则下列结论成立的是( ) A .a 2>b 2B .11a b<C .ln 2a >ln 2bD .ax 2>bx 27.已知1a >,实数,x y 满足x y a a >,则下列不等式一定成立的是( ) A .11x y x y+>+ B .()()22ln 1ln 1x y +>+C .sin sin x y >D .33x y >8.若()0,2x π∈,则不等式sin sin x x x x +<+的解集为( ) A .()0,πB .5,44ππ⎛⎫ ⎪⎝⎭C .3,22ππ⎛⎫ ⎪⎝⎭D .(),2ππ9.若a b >,0ab ≠则下列不等式恒成立的是( ) A .22a b >B .lg()0a b ->C .11a b< D .a b 22>10.已知a b R ∈,,且a b >,则下列不等式中恒成立的是( ) A .22a b >B .()lg a b 0->C .a b 22--<D .a 1b> 11.已知a ,b R ∈,且a b >,则下列不等式恒成立的是( )A .22a b >B .lg()0a b ->C .11()()22ab<D .1a b> 12.若a b >,则下列不等式成立的是( ) A .22a b >B .11a b< C .a b >D .a b e e >二、填空题13.若不等式2240x x m +--≥的解集为R ,则实数m 的取值范围是_______.14.若存在实数(0)a a ≠满足不等式2211ax a a a +≤--+,则实数x 的取值范围是________.15.若不等式|3|4x b -<的解集中的整数有且仅有1,2,3,则b 的取值范围是_____ 16.若110a b>>有下列四个不等式①33a b <;②21log 3log 3a b ++>;④3322a b ab +>.则下列组合中全部正确的为__________ 17.定义运算x ·y ,,1,,x x y m y x y ≤⎧=-⎨>⎩若·m=|m-1|,则m 的取值范围是_____.18.若关于x 的不等式||(,)x a b a b R +<∈的解集为{|35}x x <<,则a b -=________. 19.若存在实数a 使得44max cos 3,cos 710cos 3cos 3c c a a a a ⎧⎫++++≥⎨⎬++⎩⎭成立,则实数c 的取值范围是_____.20.已知|a +b|<-c(a ,b ,c ∈R),给出下列不等式: ①a <-b -c ;②a >-b +c ;③a <b -c ;④|a|<|b|-c ; ⑤|a|<-|b|-c.其中一定成立的不等式是________(填序号).三、解答题21.已知函数()|21||23|f x x x =++-. (1)求不等式()6f x ≤的解集;(2)若关于x 的不等式22()log (3)2f x a a -->恒成立,求实数a 的取值范围. 22.已知函数2()|1|5f x mx a x =-++.(1)当0,1m a ==时,求不等式()|2|f x x -的解集;(2)当1m =时,存在0[0,2]x ∈,使()00|1|f x a x -成立,求实数a 的取值范围. 23.已知函数()f x x x m =-. (1)若3m =,解不等式()2f x >;(2)若0m >,且()f x 在[]0,2上的最大值为3,求正实数m 的值. 24.已知函数()|1|2|3|f x x x =--+. (1)求不等式()1f x <的解集;(2)若存在实数x ,使得不等式23()0m m f x --<成立,求实数m 的取值范围. 25.已知()12f x x x =-+-.(1)求使得()2f x >的x 的取值集合M ;(2)求证:对任意实数a ,()0b a ≠,当R x C M ∈时,()a b a b a f x ++-≥恒成立. 26.已知函数()21f x x ax a =++-(0)a >. (1)当2a =时,求不等式()5f x ≤的解集; (2)若函数()f x 的最小值为32,设正实数,m n 满足m n a +=,求1212m n +++的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】分别计算出两种方案的平均价格,然后利用作差法可得出结论. 【详解】对于甲方案,设每年购买的数量为x ,则两年的购买的总金额为12p x p x +, 平均价格为121222p x p x p p x ++=; 对于乙方案,设每年购买的总金额为y ,则总数量为12y yp p +, 平均价格为12121222p p yyy p p p p =++.因为()()()()221212121212121212420222p p p p p p p p p p p p p p p p +--+-==>+++,所以,12121222p p p p p p +>+. 因此,乙方案的平均价格较低. 故选:B. 【点睛】方法点睛:比较法是不等式性质证明的理论依据,是不等式证明的主要方法之一,作差法的主要步骤为:作差——变形——判断正负.在所给不等式是积、商、幂的形式时,可考虑比商2.A解析:A 【解析】分析:将不等式两侧的式子做差和0比即可,或者将不等式两侧的式子移到一侧,再配方即可. 详解:(1) 22a 32b ab +-=22322b a b ⎛⎫+- ⎪⎝⎭,当a=1,b=-2.时不等式不成立; (2)553223 a b b a a b +>+=()()()222a b a b a ab b -+++当a=1,b=-1时,不等式不成立;(3)()22522a b a b ++--()()22=a 210b -++≥恒成立.选项正确. (4) ba a b+,2][2,)∈-∞-⋃+∞(,故不正确. 故答案为A.点睛:这个题目考查了基本不等式的应用条件,两式比较大小的方法;两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系.3.D解析:D 【分析】利用绝对值三角不等式确定1x x a -+-的最小值,再解不等式即可. 【详解】解:根据绝对值三角不等式,得()()111x x a x x a a -+-≥---=-,所以不等式13x x a -+-≥恒成立等价于13a -≥,解得:4a ≥或2a ≤-,即实数a 的取值范围是(][),24,-∞-⋃+∞, 故选:D. 【点睛】本题主要考查了绝对值三角不等式的应用及如何在恒成立条件下确定参数a 的取值范围.4.C解析:C 【分析】取特殊值判断A,D ,根据不等式的性质判断B ,根据幂函数的性质判断C . 【详解】 A 选项,取0c时,不等式不成立;B 选项,不等式两边加上同一个数c -,不等号方向不发生改变,故错误;C 选项,根据幂函数3y x =在R 上为增函数知33a b >,故正确;D 选项,取1,2a b ==-,不等式不成立,故错误. 故选:C 【点睛】本题主要考查了不等式的性质,幂函数的单调性,特值法,属于中档题.5.A解析:A 【分析】根据不等式的性质推理即可得出. 【详解】c b a <<,且0ac <, 0c ∴<,0a >,0b a -<,ab ac ∴>.故选:A. 【点睛】本题考查不等式与不等关系,解题关键是熟练掌握不等式的性质,属于基础题.6.C解析:C 【解析】 【分析】特值法排除A,B,D,单调性判断C 【详解】 由题意,可知:对于A :当a 、b 都是负数时,很明显a 2<b 2,故选项A 不正确; 对于B :当a 为正数,b 为负数时,则有11a b>,故选项B 不正确; 对于C :∵a >b ,∴2a >2b >0,∴ln 2a >ln 2b ,故选项C 正确; 对于D :当x =0时,结果不成立,故选项D 不正确; 故选:C . 【点评】本题主要考查不等式的性质应用,特殊值技巧的应用,指数函数、对数函数值大小的比较.本题属中档题.7.D解析:D 【分析】根据指数函数的单调性,得到x y >,再利用不等式的性质,以及特殊值法,即可求解. 【详解】根据指数函数的单调性,由1a >且x y a a >,可得x y >, 对于A 中,由111()()(1)x y x y x y x y x y xy xy-+--=--=--,此时不能确定符号,所以不正确;对于B 中,当x 1,y 2==-时,2211x y +<+,此时()()22ln 1ln 1x y +<+,所以不正确;对于C 中,例如:当2,32x y ππ==时,此时sin sin x y <,所以不正确; 对于D 中,由33222213()()()[()]024x y x y x xy y x y x y y -=-++=--+>,所以33x y >,所以是正确的.故选D . 【点睛】本题主要考查了指数函数的单调性,以及不等式的性质的应用,其中解答中合理利用特殊值法判定是解答的关键,着重考查了推理与运算能力,属于基础题.8.D解析:D 【分析】由绝对值三角不等式的性质得出sin 0x x <,由02x π<<,得出sin 0x <,借助正弦函数图象可得出答案. 【详解】因为sin sin x x x x +<+成立,所以sin 0x x <, 又(0,2)x π∈,所以sin 0x <,(,2)x ππ∈,故选D . 【点睛】本题考查绝对值三角不等式的应用,再利用绝对值不等式时,需要注意等号成立的条件,属于基础题.9.D解析:D 【分析】利用不等式的性质、对数、指数函数的图像和性质,对每一个选项逐一分析判断得解. 【详解】对于选项A, 22a b >不一定成立,如a=1>b=-2,但是22a b <,所以该选项是错误的; 对于选项B, 1111,,,lg 0,2366a b a b ==-=<所以该选项是错误的; 对于选项C,11,0,b a b a a b ab--=-<ab 符号不确定,所以11a b <不一定成立,所以该选项是错误的;对于选项D, 因为a>b,所以a b 22>,所以该选项是正确的. 故选D 【点睛】本题主要考查不等式的性质,考查对数、指数函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.10.C解析:C 【分析】主要利用排除法求出结果. 【详解】 对于选项A :当0a b >>时,不成立;对于选项B :当10a b >>>时,()lg 0a b -<,所以不成立; 对于选项D :当0a b >>时,不成立; 故选C . 【点睛】本题考查的知识要点:不等式的基本性质的应用,排除法的应用,主要考查学生的运算能力和转化能力,属于基础题型.11.C解析:C 【解析】 【分析】利用不等式的性质和函数的单调性,通过特值排除,对四个选项逐一进行分析即可得到答案 【详解】对于A ,令0,1a b ==-,200=,()211-=,满足a b >,但不满足22a b >,故排除 对于B ,令0,1a b ==-,()lg 10a b lg -==,故排除对于C ,1 2x y ⎛⎫= ⎪⎝⎭为减函数,当a b >时,1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故C 恒成立对于D ,令0,1a b ==-,011a b =<-,故排除 故选C 【点睛】本题主要考查了简单的函数恒成立问题,可以根据不等式的性质和函数的单调性,通过特值排除,属于基础题。

高二数学基本不等式试题答案及解析

高二数学基本不等式试题答案及解析1.已知正数,满足,,则的最小值为_________.【答案】9【解析】【考点】基本不等式的应用.2.已知且满足,则的最小值为【答案】18【解析】.【考点】基本不等式的应用.3.下列各式中,最小值是2的是()A.B.C.D.【答案】C【解析】,当且仅当,即,取得最小值,故选择C,不选择A的原因是不满足是正数的条件,不选择B的原因是中的等号不成立,不选择D的原因是该式没有最小值,所以运用均值不等式求最值,一定要注意“一正、二定、三相等”是否都具备,缺一不可.【考点】利用均值不等式求最值.4.(1)已知,,求证:;(2)已知,,求证:;并类比上面的结论写出推广后的一般性结论(不需证明).【答案】(1)证明书详见解析;(2)证明详见解析;(3)结论推广为:,则.【解析】(1)由均值不等式即可证明;(2)注意到:,故可考虑用柯西不等式得到,进而得出所要证明的不等式;(3)观察(1)(2)所给条件,,可想到任意个正数的条件为,而(1)(2)的结论都是对应数的倒数之和大于等于1,所以结论为:.(1)因为且所以由基本不等式可得,再根据倒数法则可得;(2)因为,所以由柯西不等式可得即,所以(3)一般性结论为:,则.【考点】1.基本不等式;2.柯西不等式;3.归纳推理.5.下列结论中①函数有最大值②函数()有最大值③若,则正确的序号是_____________.【答案】①③【解析】①②因为,所以③因为,所以【考点】基本不等式应用6.设(R,且),则大小关系为()A.B.C.D.【答案】D【解析】由基本不等式可知因为所以等号不成立.【考点】基本不等式.7.设正实数满足,则当取得最大值时,的最大值为 ( ) A.0B.1C.D.3【答案】D【解析】根据题意,由于正实数满足,当取得最大值时,x=2y,,故可知答案为D.【考点】不等式的运用点评:主要是考查了均值不等式的运用,属于基础题。

8.已知,且,则的最小值是()A.B.C.D.【答案】C【解析】,当且仅当时等号成立取得最小值【考点】均值不等式点评:利用均值不等式求最值时要注意其成立的条件:都是正数,当和为定值时,乘积取最值,当乘积为定值时,和取最值,最后验证等号成立的条件是否满足9.若且满足,则的最小值是()A.B.C.7D.6【答案】C【解析】将x用y表示出来,代入3x+27y+1,化简整理后,再用基本不等式,即可求最小值.解:由x+3y-2=0得x=2-3y,代入3x+27y+1=32-3y+27y+1=+27y+1,∵>0,27y>0,∴+27y+1≥7,当=27y时,即y=,x=1时等号成立,故3x+27y+1的最小值为7,故选C.【考点】基本不等式点评:本题的考点是基本不等式,解题的关键是将代数式等价变形,构造符合基本不等式的使用条件.10.如果,那么的最小值是()A.2B.3C.4D.5【答案】B【解析】根据题意,由于,那么可知,当a=1时等号成立,故答案为3.【考点】均值不等式的运用点评:主要是考查了运用均值不等式来求解函数的最值的运用属于基础题。

高考数学《基本不等式》真题练习含答案

高考数学《基本不等式》真题练习含答案一、选择题1.函数y =2x +22x 的最小值为( )A .1B .2C .22D .4 答案:C解析:因为2x >0,所以y =2x +22x ≥22x ·22x =22 ,当且仅当2x =22x ,即x =12时取“=”.故选C.2.若a >0,b >0且2a +b =4,则1ab的最小值为( )A .2B .12C .4D .14答案:B解析:∵a >0,b >0,∴4=2a +b ≥22ab (当且仅当2a =b ,即:a =1,b =2时等号成立),∴0<ab ≤2,1ab ≥12 ,∴1ab 的最小值为12.3.下列结论正确的是( )A .当x >0且x ≠1时,lg x +1lg x≥2B .当x ∈⎝⎛⎦⎤0,π2 时,sin x +4sin x的最小值为4 C .当x >0时,x +1x ≥2D .当0<x ≤2时,x -1x无最大值答案:C解析:当x ∈(0,1)时,lg x <0,故A 不成立,对于B 中sin x +4sin x≥4,当且仅当sinx =2时等号成立,等号成立的条件不具备,故B 不正确;D 中y =x -1x在(0,2]上单调递增,故当x =2时,y 有最大值,故D 不正确;又x +1x ≥2x ·1x=2(当且仅当x =1x即x =1时等号成立).故C 正确. 4.下列不等式恒成立的是( )A .a 2+b 2≤2abB .a 2+b 2≥-2abC .a +b ≥2|ab |D .a +b ≥-2|ab | 答案:B解析:对于A ,C ,D ,当a =0,b =-1时,a 2+b 2>2ab ,a +b <2ab ,a +b <-2|ab | ,故A ,C ,D 错误;对于B ,因为a 2+b 2=|a |2+|b |2≥2|a |·|b |=2|ab |≥-2ab ,所以B 正确.故选B.5.若x >0,y >0,x +2y =1,则xy2x +y的最大值为( )A .14B .15C .19D .112答案:C解析:x +2y =1⇒y =1-x 2 ,则xy2x +y =x -x 23x +1 .∵x >0,y >0,x +2y =1,∴0<x <1.设3x +1=t (1<t <4),则x =t -13,原式=-t 2+5t -49t =59 -⎝⎛⎭⎫t 9+49t ≤59 -2481 =19 ,当且仅当t 9 =49t ,即t =2,x =13 ,y =13 时,取等号,则xy 2x +y 的最大值为19 ,故选C.6.已知a >0,b >0,c >0,且a 2+b 2+c 2=4,则ab +bc +ac 的最大值为( )A .8B .4C .2D .1 答案:B解析:∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,b 2+c 2≥2bc ,∴2(a 2+b 2+c 2)≥2(ab +bc +ca ),∴ab +bc +ca ≤a 2+b 2+c 2=4.7.若直线x a +yb=1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5 答案:C解析:因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b=1.所以a +b =(a +b )·⎝⎛⎭⎫1a +1b =2+a b +b a ≥2+2a b ·b a =4,当且仅当a b =b a 即a =b =2时取“=”,故选C.8.若向量a =(x -1,2),b =(4,y ),a 与b 相互垂直,则9x +3y 的最小值为( ) A .12 B .2 C .3 D .6 答案:D解析:∵a ⊥b ,∴a ·b =(x -1,2)·(4,y )=4(x -1)+2y =0,即2x +y =2, ∴9x +3y =32x +3y ≥232x +y =232 =6,当且仅当2x =y =1时取等号,∴9x +3y 的最小值为6.9.用一段长8 cm 的铁丝围成一个矩形模型,则这个模型面积的最大值为( ) A .9 cm 2 B .16 cm 2 C .4 cm 2 D .5 cm 2 答案:C解析:设矩形模型的长和宽分别为x cm ,y cm ,则x >0,y >0,由题意可得2(x +y )=8,所以x +y =4,所以矩形模型的面积S =xy ≤(x +y )24 =424 =4(cm 2),当且仅当x =y =2时取等号,所以当矩形模型的长和宽都为2 cm 时,面积最大,为4 cm 2.故选C.二、填空题10.已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.答案:14解析:∵a -3b +6=0,∴ a -3b =-6,∴ 2a +18b =2a +2-3b ≥22a ·2-3b =22a -3b=22-6 =14 .当且仅当2a =2-3b ,即a =-3,b =1时,2a +18b 取得最小值为14.11.已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________.答案:36解析:∵x >0,a >0,∴4x +a x ≥24x ·ax=4 a ,当且仅当4x =a x ,即:x =a 2 时等号成立,由a2 =3,a =36.12.[2024·山东聊城一中高三测试]已知a >0,b >0,3a +b =2ab ,则a +b 的最小值为________.答案:2+3解析:由3a +b =2ab , 得32b +12a=1, ∴a +b =(a +b )⎝⎛⎭⎫32b +12a =2+b 2a +3a2b ≥2+2b 2a ·3a 2b =2+3 (当且仅当b 2a =3a2b即b =3 a 时等号成立).[能力提升]13.[2024·合肥一中高三测试]若a ,b 都是正数,则⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4ab 的最小值为( ) A .7 B .8C .9D .10 答案:C解析:⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4a b =5+b a +4ab≥5+2b a ·4a b =9(当且仅当b a =4ab即b =2a 时等号成立).14.(多选)已知a >0,b >0,且a +b =1,则( )A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2D . a + b ≤2 答案:ABD解析:对于选项A ,∵a 2+b 2≥2ab ,∴2(a 2+b 2)≥a 2+b 2+2ab =(a +b )2=1,∴a 2+b 2≥12,正确;对于选项B ,易知0<a <1,0<b <1,∴-1<a -b <1,∴2a -b >2-1=12,正确;对于选项C ,令a =14 ,b =34 ,则log 214 +log 234 =-2+log 234 <-2,错误;对于选项D ,∵2 =2(a +b ) ,∴[2(a +b ) ]2-( a + b )2=a +b -2ab =( a - b )2≥0,∴ a + b ≤2 ,正确.故选ABD.15.(多选)已知a ,b ,c 为正实数,则( )A .若a >b ,则ab <a +c b +cB .若a +b =1,则b 2a +a 2b 的最小值为1C .若a >b >c ,则1a -b +1b -c ≥4a -cD .若a +b +c =3,则a 2+b 2+c 2的最小值为3 答案:BCD解析:因为a >b ,所以a b -a +c b +c =c (a -b )b (b +c ) >0,所以ab >a +c b +c ,选项A 不正确;因为a +b =1,所以b 2a +a 2b =⎝⎛⎭⎫b 2a +a +⎝⎛⎭⎫a 2b +b -(a +b )≥2b +2a -(a +b )=a +b =1,当且仅当a =b =12 时取等号,所以b 2a +a 2b的最小值为1,故选项B 正确;因为a >b >c ,所以a -b >0,b -c >0,a -c >0,所以(a -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =[](a -b )+(b -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =2+b -c a -b +a -b b -c≥2+2b -c a -b ·a -bb -c=4,当且仅当b -c =a -b 时取等号,所以1a -b +1b -c ≥4a -c,故选项C 正确;因为a 2+b 2+c 2=13 [(a 2+b 2+c 2)+(a 2+b 2)+(b 2+c 2)+(c 2+a 2)]≥13(a 2+b 2+c 2+2ab +2bc +2ca )=13 [(a +b )2+2(a +b )c +c 2]=13 (a +b +c )2=3,当且仅当a =b =c =1时等号成立,所以a 2+b 2+c 2的最小值为3,故选项D 正确.16.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.答案:30解析:一年的总运费为6×600x =3 600x(万元).一年的总存储费用为4x 万元. 总运费与总存储费用的和为⎝⎛⎭⎫3 600x +4x 万元.因为3 600x +4x ≥2 3 600x ·4x =240,当且仅当3 600x =4x ,即x =30时取得等号,所以当x =30时,一年的总运费与总存储费用之和最小.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【基本要求】掌握两个基本不等式,并能用于解决一些简单问题;掌握比较法、综合法、分析法证明不等式的基本思路,并会用这些不等式。

【重点】基本不等式的及其证明。

【难点】用比较法、综合法、分析法证明简单的不等式。

【知识精要】1、 基本不等式若,a b R ∈,222a b ab +≥,当且仅当a =b 时取等号 均值不等式:若a 、b 为正数,则2a bab +≥a b =时取等号 变式:222()22a b a b ab ++≥≥ 推广:123,,,,n a a a a 是n 个正数,则12na a a n+++ 称为这n 个正数的算术平均数,12nn a a a ⋅⋅⋅ 称为这n 个正数的几何平均数,它们的关系是:12n a a a n+++ ≥12nn a a a ⋅⋅⋅ ,当且仅当12n a a a === 时等号成立。

利用不等式求最值:(1)“积定和最小”:ab b a 2≥+⇔如果积ab 是定值P ,那么当a b =时,和a b +有最小值2P(2)“和定积最大”:22⎪⎭⎫ ⎝⎛+≤b a ab ⇔如果和a b +是定值S ,那么当a b =时,积ab 有最大值214S 。

2、 不等式的证明比较法:要证明a b >,只需要证明0a b ->。

分析法:从求证的不等式出发,分析使这个不等式成立的条件,把这个不等式转化为判定这些条件是否成立的问题,如果能够肯定这些条件都已成立,那么可以断定原不等式成立。

综合法:从已知条件出发,利用某些已经证明过的不等式为基础,再运用不等式的性质推导出所要求证的不等式。

1、基本不等式1、已知实数,a b 判断下列不等式中哪些一定是正确的?(1)ab ba ≥+2; (2)ab b a 222-≥+; (3)ab b a ≥+22; (4)2≥+b a a b(5)21≥+a a ; (6) 2≥+abb a (7)222)(2b a b a +≥+)( (2)(3)(6)(7)2、若1,1,,a b a b >>≠且则22,2,2,a b ab ab a b ++中值最小的是2ab3、设0a b<<,1a b +=,比较下列四个数的大小关系2222,,2,b a b a ab b ++_____22222ab a b a b b <+<+________。

4、不等式2≥+baa b 成立的充要条件是___ 0ab >_____ 5、已知0a >,0b >,4a b +=,则下列各式中正确的是( C )(A )1a b ≤+41 (B )1a b≥+ 1 (C ab ≤2 (D ab ≥1 6、若正数b a ,满足2=ab ,则≥+22b a 4 ,≥+b a 227、若a R b ∈,,且2,=+≠b a b a ,则2,,122b a ab +的大小关系为 222a b +8、不等式2a b ab +> D )A .a R b ∈, B. a ,b R +∈C.a Rb ∈,,且b a ≠ D. a ,b R +∈,且b a ≠9、若a R b ∈,,且221a b +=,则a b +的最大值是2 ,最小值是 2-10、若a ,b R +∈,且2222a b +=,则21a b +的最大值是3211、已知正数,a b 满足4a b +≤,则下列各式中,恒成立的是( B )A .112ab ≥ B .111a b +≥ C 2ab ≥ D .22114a b ≤+ 12、如果0a b >>,那么下列各式中正确的是( A )A .2a b a ab b +>>> B .2a ba ab b +>>> C .2a b a b ab +>>> D .2a bab a b +>>> 13、如果b a ,为实数,且0>ab ,那么下列各式中正确的是( B )A 、≥+b a ab 2B 、2≥+abb a C 、abb a 211≥+ D 、ab b a 222>+ 14、若a 、b 是正数,则2a b +ab 2ab a b +222a b +这四个数的大小顺序是( C )ab 2a b +≤2ab a b +222a b +222a b +ab 2a b +≤2ab a b +C.2ab a b +ab 2a b +222a b + ab 2a b +222a b +≤2ab a b +15、若+∈R x ,则xx 212+有最 小 值,且值为 116、若32>x ,则x x 326--的最小值为 22317、若+∈R y x ,,1x y +=,则yx 11+的最小值是 4 18、已知x 为非零实数,则下列不等式中恒成立的是( D )A 0122>++x xB 21≥+xx C 4422>+xx D 12222+≥+x x 19、下列不等式一定成立的是 ( D )A xy y x 2≥+B xy y x 2≥+C xy y x 2≥+D xyy x 2≥+20、设0,x >则2352x x--的最大值是3533-21、设21,2x x R x++∈有最小值,且此最值为122、若13,3a a a >+-有最小值,是5,此时a =4 23、若长方形面积为S ,则其周长的最小值为4S24、设12x >,则821x x +-的最小值为9225、设220,0,12y x y x ≥≥+=,则21y +3226、设,,,a b c R +∈则b c c a a b a b c+++++的最小值是6 27、代数式)214x xx R -∈的最大值是1428、若1<x ,则1322-+-x x x 有最 大 值,且值为 22-29、设1a >,1b >,且()1ab a b -+=,那么( A )(A )a b +有最小值)12(2+ (B )a b +有最大值2)12(+ (C )ab 有最大值12+ (D )ab 有最小值)12(2+30、当1x <时,有()222411x x a a x -++≤-≠--成立,且当0x x =时等号成立,则a =3,0x =1-31、设,,x y R +∈且4x y +=,则使得不等式14k x y+≥恒成立的实数k 的取值范围是9(,4-∞32、已知不等式1|2|2x a x+>对一切x R ∈恒成立,则a 的取值范围是2a 33x y x y ≤+,x y R +∈都成立,则k 的最小值为234、已知,x R +∈由不等式221442,3,,22x x x x x x x+≥+≥++≥ 启发我们可以得出推广结论:()*1,n a x n n N x+≥+∈则a =nn35、已知,,a b R ∈且0ab >,则代数式22a b ab+的最值为(是否有最值?最大还是最小值)【有最小值,无最大值】 36、若01,x <<则491y x x=+-的最小值为25 37、设,,4,a R b R a b ++∈∈+=则下列不等式中恒成立的是()B()()(()221111111224A B C ab D ab a ba b ≥+≥≥≤+38、若12120,0,a a b b <<<<且12121a a b b +=+=,则下列代数式值最大的是()A()()()()11221212122112A a b a bB a a b bC a b a bD +++ 39、设0,0,x y >>且21x y +=,求11x y+的最小值。

22322,212x y ⎛⎫+== ⎪ ⎪⎝⎭当时取得 40、一批救灾物资随26辆汽车从某市以/v km h 的速度直达灾区,已知两地公路长400km ,为了安全起见,两车的间距不得小于220v km ⎛⎫ ⎪⎝⎭,求这批物资全部运到灾区至少要多少小时?(不计车身长度)2540010400v v ⎛⎫+≥ ⎪⎝⎭小时2、不等式的证明1、已知b a ,0>,求证411)((≥++ba b a2、已知1,0,0>+>>y x y x ,求证911)(11(≥++yx3、已知()21xf x x=+且1201,x x <<<求证:()()21.f x f x >4、设函数()221,1x f x x -=+求证:对于任意不小于3的自然数n 都有()1n f n n >+.()()()2221111n n n f n n n n ⎛⎫-- ⎪-= ⎪+++⎝⎭5、已知0,n >求证:22 1.n n n>+ 提示: 原不等式(2212210n n n n ⎛⇔>+⇔> ⎝6、设,αβ是房产230x ax ++=的两个实数根,且||||4αβ+<,求实数a 的取值范围(4,23][23,4)a ∈-7、已知,a b 是两个不相等的正数,且3322,a b a b -=-求证413a b <+<(提示:利用22a b a ab b +=++)8、已知0,0a b ≥≥,求证:3322a b a b b a +≥+9、已知,,,a b x y 是正数,1a b +=,求证:()()ax by ay bx xy ++≥10、已知,,,a b c R +∈求证:32a b c b c c a a b ++≥+++. 提示:左边=111a b c a b c a b c a b c ++++++⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭b c a c a ba b c +++=⋅⋅8≥11、已知,a b R ∈,且||1a <,若||11a bab+<+,求b 的取值范围 ||1b <12、已知,,a b c 是实数,1a b c ++=,求证:22213a b c ++≥3、 综合题1、已知,x y R +∈,4x y +=,求22log log x y +的最大值。

22、已知,,,a b x y R +∈,且1a bx y+=,求x y +的最小值。

2a b ab ++3、求证:()()*222111135421n N n +++<∈+ 提示:()()22111111441414121k k k k k k k ⎛⎫=<=- ⎪++++⎝⎭+。

相关文档
最新文档