高考理科数学专题高考中的三角函数与解三角形问题
高中数学理科专题讲解高考大题专项(二)《三角函数与解三角形》教学课件

典例剖析
典例剖析
解题心得在含有边角关系的等式中,利用正弦定理的变形a=2Rsin A,b=2Rsin B,c=2Rsin C,可直接将等式两边的边化为角;也能利用余弦定理的变形如 将角化为边.在三角形中利用三角变换求三角式的值时,要注意角的范围的限制.
典例剖析
解:(1)在△ABD中,∵∠DAC=75°,∠CAB=45°,∴∠DAB=120°.又∠DBA=30°,∴∠ADB=30°,∴△ABD为等腰三角形,∴AB=AD=50 m.由余弦定理可得BD2=502+502-2×50×50cos 120°=3×502,∴BD=50 m.△ABC中,∠CAB=45°,∠ABC=∠ABD+∠CBD=30°+75°=105°,∴∠ACB=30°,
典例剖析
2.三角恒等变换和解三角形的结合,一般有两种类型:一是先利用三角函数的平方关系、和角公式等求符合正弦定理、余弦定理中的边与角,再利用正弦定理、余弦定理求值;二是先利用正弦定理、余弦定理确定三角形的边与角,再代入到三角恒等变换中求值.具体解题步骤如下:第一步,利用正(余)弦定理进行边角转化;第二步,利用三角恒等变换求边与角;第三步,代入数据求值;第四步,查看关键点、易错点.3.解三角形的问题总体思路就是转化思想和消元,要注重正弦定理、余弦定理多种表达形式及公式的灵活应用.
典例剖析
典例剖析
典例剖析
1.在历年的高考试题中,三角中的解答题一般考查简单三角函数式的恒等变形、解三角形,有时也考查正弦定理、余弦定理的实际应用.特别是涉及解三角形的问题,经常出现的题型有:正弦定理、余弦定理与三角变换的综合;正弦定理、余弦定理与三角形面积的综合;正弦定理、余弦定理与三角变换及三角形面积的综合.把握住高考命题规律,有针对性的训练是提高成绩的有效措施.
高考数学三角函数与解三角形解答题专题

高考数学三角函数与解三角形解答题专题一、归类解析题型一:三角函数的图象和性质【解题指导】 三角函数的图象与性质是高考考查的重点,通常先将三角函数化为y =A sin(ωx +φ)+k 的形式,然后将t =ωx +φ视为一个整体,结合y =sin t 的图象求解.【例】设f (x )=23sin(π-x )sin x -(sin x -cos x )2.(1)求f (x )的单调递增区间;(2)把y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移π3个单位长度,得到函数y =g (x )的图象,求g )6( 的值.【变式训练】 已知函数f (x )=5sin x cos x -53cos 2x +532(其中x ∈R ),求: (1)函数f (x )的最小正周期;(2)函数f (x )的单调区间;(3)函数f (x )图象的对称轴和对称中心. 题型二:解三角形【解题指导】 根据三角形中的已知条件,选择正弦定理或余弦定理求解;在解决有关角的范围问题时,要注意挖掘题目中隐含的条件,对结果进行正确的取舍.【例】 △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +3cos A =0,a =27,b =2.(1)求角A 和边长c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积.【变式训练】在△ABC 中,∠A =60°,c =37a . (1)求sin C 的值;(2)若a =7,求△ABC 的面积.题型三:三角函数和解三角形的综合应用【解题指导】 三角函数和解三角形的综合问题要利用正弦定理、余弦定理进行转化,结合三角函数的性质,要注意角的范围对变形过程的影响.【例】如图,某机械厂欲从AB =2米,AD =2 2 米的矩形铁皮中裁剪出一个四边形ABEF 加工成某仪器的零件,裁剪要求如下:点E ,F 分别在边BC ,AD 上,且EB =EF ,AF <BE .设∠BEF =θ,四边形ABEF 的面积为f (θ)(单位:平方米).(1)求f (θ)关于θ的函数关系式,求出定义域;(2)当BE ,AF 的长为何值时,裁剪出的四边形ABEF 的面积最小,并求出最小值.【变式训练】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a sin B -b cos C =c cos B .(1)判断△ABC 的形状;(2)若f (x )=12cos 2x -23cos x +12,求f (A )的取值范围. 二、专题突破训练1.已知函数f (x )=A sin(ωx +φ)⎪⎭⎫⎝⎛<>>2,0,0πϕωA 的部分图象如图. (1)求函数f (x )的解析式.(2)求函数f (x )在区间]125,0[π上的最值,并求出相应的x 值.2.设函数f (x )=2tan x 4·cos 2x 4-2cos 2)124(π+x +1. (1)求f (x )的定义域及最小正周期.(2)求f (x )在[-π,0]上的最值.3.已知函数f (x )=A sin(ωx +φ)⎪⎭⎫ ⎝⎛<>>2,0,0πϕωA 的图象过点P )012(,π,图象上与P 点最近的一个最高点坐标为)63(,π. (1)求函数f (x )的解析式;(2)若f (x )<3,求x 的取值范围.4.已知点P (3,1),Q (cos x ,sin x ),O 为坐标原点,函数f (x )=OP →·QP →.(1)求函数f (x )的最小正周期;(2)若A 为△ABC 的内角,f (A )=4,BC =3,求△ABC 周长的最大值.5.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,且a cos C +3a sin C -b -c =0.(1)求A ;(2)若AD 为BC 边上的中线,cos B =17,AD =1292,求△ABC 的面积.6.已知函数f (x )=cos 2ωx +3sin 2ωx +t (ω>0),若f (x )的图象上相邻两条对称轴的距离为π4,图象过点(0,0). (1)求f (x )的表达式和f (x )的单调增区间;(2)将函数f (x )的图象向右平移π8个单位长度,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y =g (x )的图象,若函数F (x )=g (x )+k 在区间]2,0[ 上有且只有一个零点,求实数k 的取值范围.。
高考数学专题复习:三角函数与解三角形测试题及详解

高考数学专题复习:三角函数与解三角形第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。
)1.(2011·宁夏银川一中检测)y =(sin x +cos x )2-1是( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为π的奇函数[答案] D[解析] y =(sin x +cos x )2-1=2sin x cos x =sin2x ,所以函数y =(sin x +cos x )2-1是最小正周期为π的奇函数.2.(2011·宁夏银川月考、山东聊城一中期末)把函数y =sin(ωx +φ)(ω>0,|φ|<π)的图象向左平移π6个单位,再将图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)所得的图象解析式为y =sin x ,则( )A .ω=2,φ=π6B .ω=2,φ=-π3C .ω=12,φ=π6D .ω=12,φ=π12[答案] B[分析] 函数y =sin(ωx +φ)经过上述变换得到函数y =sin x ,把函数y =sin x 的图象经过上述变换的逆变换即可得到函数y =sin(ωx +φ)的图象.[解析] 把y =sin x 图象上所有点的横坐标缩小到原来的12倍得到的函数解析式是y =sin2x ,再把这个函数图象向右平移π6个单位,得到的函数图象的解析式是y =sin2⎝⎛⎭⎫x -π6=sin ⎝⎛⎭⎫2x -π3,与已知函数比较得ω=2,φ=-π3. [点评] 本题考查三角函数图象的变换,试题设计成逆向考查的方式更能考查出考生的分析解决问题的灵活性,本题也可以根据比较系数的方法求解,根据已知的变换方法,经过两次变换后函数y =sin(ωx +φ)被变换成y =sin ⎝⎛⎭⎫ωx 2+ωπ6+φ比较系数也可以得到问题的答案.3.(2011·辽宁沈阳二中阶段检测)若函数f (x )=sin ωx +cos ωx (ω>0)的最小正周期为1,则它的图像的一个对称中心为( )A.⎝⎛⎭⎫-π8,0 B.⎝⎛⎭⎫π8,0C .(0,0) D.⎝⎛⎭⎫-π4,0 [答案] A[分析] 把函数化为一个角的一种三角函数,根据函数的最小正周期求出ω的值,根据对称中心是函数图象与x 轴的交点进行检验或直接令f (x )=0求解.[解析] f (x )=sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π4,这个函数的最小正周期是2πω,令2πω=1,解得ω=2,故函数f (x )=sin ωx +cos ωx =2sin ⎝⎛⎭⎫2x +π4,把选项代入检验知点⎝⎛⎭⎫-π8,0为其一个对称中心.[点评] 函数y =A sin(ωx +φ)的图象的对称中心,就是函数图象与x 轴的交点. 4.(2011·江西南昌市调研)已知函数y =A sin(ωx +φ)+m (A >0,ω>0)的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则符合条件的函数解析式是( )A .y =4sin ⎝⎛⎭⎫4x +π6B .y =2sin ⎝⎛⎭⎫2x +π3+2 C .y =2sin ⎝⎛⎭⎫4x +π3+2 D .y =2sin ⎝⎛⎭⎫4x +π6+2 [答案] D[解析] 由最大值为4,最小值为0得⎩⎪⎨⎪⎧ A +m =4-A +m =0,∴⎩⎪⎨⎪⎧A =2m =2, 又因为正周期为π2,∴2πω=π2,∴ω=4,∴函数为y =2sin(4x +φ)+2,∵直线x =π3为其对称轴,∴4×π3+φ=π2+k π,k ∈Z ,∴φ=k π-5π6,取k =1知φ=π6,故选D.5.(文)(2011·北京朝阳区期末)要得到函数y =sin ⎝⎛⎭⎫2x -π4的图象,只要将函数y =sin2x 的图象( )A .向左平移π4个单位B .向右平移π4个单位C .向右平移π8个单位D .向左平移π8个单位[答案] C[解析] y =sin ⎝⎛⎭⎫2x -π4=sin2⎝⎛⎭⎫x -π8,故只要将y =sin2x 的图象向右平移π8个单位即可.因此选C.(理)(2011·东北育才期末)已知a =(cos x ,sin x ),b =(sin x ,cos x ),记f (x )=a ·b ,要得到函数y =cos 2x -sin 2x 的图像,只需将函数y =f (x )的图像( )A .向左平移π2个单位长度B .向右平移π2个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度[答案] C[解析] f (x )=a ·b =cos x sin x +sin x cos x =sin2x ,y =cos 2x -sin 2x =cos2x =sin ⎝⎛⎭⎫π2+2x =sin2⎝⎛⎭⎫x +π4,可将f (x )的图象向左平移π4个单位长度得到,故选C. 6.(文)(2011·北京西城区期末)已知△ABC 中,a =1,b =2,B =45°,则角A 等于( ) A .150° B .90° C .60° D .30°[答案] D[解析] 根据正弦定理得1sin A =2sin45°,∴sin A =12,∵a <b ,∴A 为锐角,∴A =30°,故选D.(理)(2011·福州期末)黑板上有一道解答正确的解三角形的习题,一位同学不小心把其中一部分擦去了,现在只能看到:在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知a =2,……,解得b = 6.根据以上信息,你认为下面哪个选项可以作为这个习题的其余已知..条件..( ) A .A =30°,B =45° B .c =1,cos C =13C .B =60°,c =3D .C =75°,A =45° [答案] D[分析] 可将选项的条件逐个代入验证. [解析] ∵2sin30°≠6sin45°,∴A 错;∵cos C =a 2+b 2-c 22ab =4+6-146≠13,∴B 错;∵a 2+c 2-b 22ac =4+9-612=712≠cos60°,∴C 错,故选D.7.(文)(2011·黄冈市期末)已知函数y =A sin(ωx +φ)+b 的一部分图象如图所示,如图A >0,ω>0,|φ|<π2,则( )A .φ=-π6B .φ=-π3[答案] D[解析] 由图可知⎩⎪⎨⎪⎧ A +b =4-A +b =0,∴⎩⎪⎨⎪⎧A =2b =2, 又T 4=5π12-π6=π4,∴T =π,∴ω=2, ∴y =2sin(2x +φ)+2,将⎝⎛⎭⎫5π12,2代入得sin ⎝⎛⎭⎫5π6+φ=0,结合选项知选D. (理)(2011·蚌埠二中质检)函数y =cos(ωx +φ)(ω>0,0<φ<π)为奇函数,该函数的部分图象如右图所表示,A 、B 分别为最高与最低点,并且两点间的距离为22,则该函数的一条对称轴为( )A .x =2πB .x =π2C .x =1D .x =2[答案] C[解析] ∵函数y =cos(ωx +φ)为奇函数,0<φ<π,∴φ=π2,∴函数为y =-sin ωx ,又ω>0,相邻的最高点与最低点A 、B 之间距离为22,∴ω=π2,∴y =-sin π2x ,其对称轴方程为π2x=k π+π2,即x =2k +1(k ∈Z ),令k =0得x =1,故选C.8.(文)(2011·安徽百校联考)已知cos ⎝⎛⎭⎫3π2-φ=32,且|φ|<π2,则tan φ等于( ) A .-33B.33C. 3 D .- 3[答案] D[解析] 由cos ⎝⎛⎭⎫3π2-φ=32得,sin φ=-32, 又|φ|<π2,∴cos φ=12,∴tan φ=- 3.(理)(2011·山东日照调研)已知cos α=-45且α∈⎝⎛⎭⎫π2,π,则tan ⎝⎛⎭⎫α+π4等于( )C.17 D .7[答案] C[解析] ∵cos α=-45,π2≤α≤π,∴sin α=35,∴tan α=-34,∴tan ⎝⎛⎭⎫α+π4=tan α+tan π41-tan α·tan π4=-34+11-⎝⎛⎭⎫-34×1=17,故选C. 9.(2011·巢湖质检)如图是函数y =sin(ωx +φ)的图象的一部分,A ,B 是图象上的一个最高点和一个最低点,O 为坐标原点,则OA →·OB →的值为( )A.12π B.19π2+1 C.19π2-1 D.13π2-1 [答案] C[解析] 由图知T 4=5π12-π6=π4,∴T =π,∴ω=2,∴y =sin(2x +φ),将点⎝⎛⎭⎫-π12,0的坐标代入得sin ⎝⎛⎭⎫-π6+φ=0, ∴φ=π6,∴A ⎝⎛⎭⎫π6,1,B ⎝⎛⎭⎫2π3,-1,∴OA →·OB →=π29-1,故选C. 10.(2011·潍坊一中期末)已知函数f (x )=2sin ωx (ω>0)在区间[-π3,π4]上的最大值是2,则ω的最小值等于( )A.23B.32 C .2 D .3[答案] C[解析] 由条件知f ⎝⎛⎭⎫π4=2sin π4ω=2,∴ω=8k +2,∵ω>0,∴ω最小值为2. 11.(文)(2011·烟台调研)已知tan α=2,则2sin 2α+1sin2α=( )A.53 B .-134C.135D.134[答案] D[解析] ∵tan α=2,∴2sin 2α+1sin2α=3sin 2α+cos 2α2sin αcos α=3tan 2α+12tan α=134.(理)(2011·四川广元诊断)tan10°+tan50°+tan120°tan10°·tan50°的值应是( )A .-1B .1C .- 3 D. 3 [答案] C [解析]原式=tan (10°+50°)(1-tan10°tan50°)-tan60°tan10°tan50°=3-3tan10°tan50°-3tan10°tan50°=- 3.12.(2011·温州八校期末)在△ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,设命题p :a sin B =b sin C =csin A,命题q :△ABC 是等边三角形,那么命题p 是命题q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件[答案] C[解析] ∵a sin B =b sin C =csin A ,∴由正弦定理得sin A sin B =sin B sin C =sin Csin A,∴sin A =sin B =sin C ,即a =b =c ,∴p ⇔q ,故选C.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.(文)(2011·山东日照调研)在△ABC 中,若a =b =1,c =3,则∠C =________. [答案]2π3[解析] cos C =a 2+b 2-c 22ab =1+1-32=-12,∴C =2π3.(理)(2011·四川资阳模拟)在△ABC 中,∠A =π3,BC =3,AB =6,则∠C =________.[答案] π4[解析] 由正弦定理得3sin π3=6sin C ,∴sin C =22,∵AB <BC ,∴C <A ,∴C =π4.14.(2011·山东潍坊一中期末)若tan α=2,tan(β-α)=3,则tan(β-2α)的值为________. [答案] 17[解析] tan(β-2α)=tan[(β-α)-α] =tan (β-α)-tan α1+tan (β-α)·tan α=3-21+3×2=17.15.(2011·安徽百校论坛联考)已知f (x )=2sin ⎝⎛⎭⎫2x -π6-m 在x ∈[0,π2]上有两个不同的零点,则m 的取值范围是________.[答案] [-1,2][解析] f (x )在[0,π2]上有两个不同零点,即方程f (x )=0在[0,π2]上有两个不同实数解,∴y =2sin ⎝⎛⎭⎫2x -π6,x ∈[0,π2]与y =m 有两个不同交点, ∵0≤x ≤π2,∴-π6≤2x -π6≤5π6,∴-12≤sin(2x -π6)≤1,∴-1≤y ≤2,∴-1≤m ≤2.16.(2011·四川广元诊断)对于函数f (x )=2cos 2x +2sin x cos x -1(x ∈R )给出下列命题:①f (x )的最小正周期为2π;②f (x )在区间[π2,5π8]上是减函数;③直线x =π8是f (x )的图像的一条对称轴;④f (x )的图像可以由函数y =2sin2x 的图像向左平移π4而得到.其中正确命题的序号是________(把你认为正确的都填上).[答案] ②③[解析] f (x )=cos2x +sin2x =2sin ⎝⎛⎭⎫2x +π4,最小正周期T =π;由2k π+π2≤2x +π4≤2k π+3π2(k ∈Z )得k π+π8≤x ≤k π+5π8,故f (x )在区间[π2,5π8]上是减函数;当x =π8时,2x +π4=π2,∴x =π8是f (x )的图象的一条对轴称;y =2sin2x 的图象向左平移π4个单位得到的图象对应函数为y =2sin2⎝⎛⎭⎫x +π4,即y =2sin ⎝⎛⎭⎫2x +π2,因此只有②③正确. 三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)(2011·烟台调研)向量m =(a +1,sin x ),n =(1,4cos(x +π6)),设函数g (x )=m ·n (a ∈R ,且a 为常数).(1)若a 为任意实数,求g (x )的最小正周期;(2)若g (x )在[0,π3)上的最大值与最小值之和为7,求a 的值.[解析] g (x )=m ·n =a +1+4sin x cos(x +π6)=3sin2x -2sin 2x +a +1 =3sin2x +cos2x +a =2sin(2x +π6)+a(1)g (x )=2sin(2x +π6)+a ,T =π.(2)∵0≤x <π3,∴π6≤2x +π6<5π6当2x +π6=π2,即x =π6时,y max =2+a .当2x +π6=π6,即x =0时,y min =1+a ,故a +1+2+a =7,即a =2.18.(本小题满分12分)(2011·四川资阳模拟)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)在x =π6取得最大值2,方程f (x )=0的两个根为x 1、x 2,且|x 1-x 2|的最小值为π.(1)求f (x );(2)将函数y =f (x )图象上各点的横坐标压缩到原来的12,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在[-π4,π4]上的值域.[解析] (1)由题意A =2,函数f (x )最小正周期为2π,即2πω=2π,∴ω=1.从而f (x )=2sin(x +φ),∵f ⎝⎛⎭⎫π6=2,∴sin ⎝⎛⎭⎫π6+φ=1,则π6+φ=π2+2k π,即φ=π3+2k π, ∵0<φ<π,∴φ=π3.故f (x )=2sin ⎝⎛⎭⎫x +π3. (2)可知g (x )=2sin ⎝⎛⎭⎫2x +π3, 当x ∈[-π4,π4]时,2x +π3∈[-π6,5π6],则sin ⎝⎛⎭⎫2x +π3∈[-12,1],故函数g (x )的值域是[-1,2].19.(本小题满分12分)(2011·山西太原调研)在△ABC 中,A 、B 、C 的对边分别为a 、b 、c ,已知a +b =5,c =7,且4sin 2A +B 2-cos2C =72.(1)求角C 的大小; (2)求△ABC 的面积.[解析] (1)∵A +B +C =180°,4sin 2A +B 2-cos2C =72.∴4cos 2C 2-cos2C =72,∴4·1+cos C 2-(2cos 2C -1)=72,∴4cos 2C -4cos C +1=0,解得cos C =12,∵0°<C <180°,∴C =60°. (2)∵c 2=a 2+b 2-2ab cos C , ∴7=(a +b )2-3ab ,解得ab =6. ∴S △ABC =12ab sin C =12×6×32=332.20.(本小题满分12分)(2011·辽宁大连联考)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求函数f (x )的解析式;(2)若f ⎝⎛⎭⎫α2=45,0<α<π3,求cos α的值. [解析] (1)由图象知A =1f (x )的最小正周期T =4×⎝⎛⎭⎫5π12-π6=π,故ω=2πT =2 将点⎝⎛⎭⎫π6,1代入f (x )的解析式得sin ⎝⎛⎭⎫π3+φ=1, 又|φ|<π2,∴φ=π6故函数f (x )的解析式为f (x )=sin ⎝⎛⎭⎫2x +π6 (2)f ⎝⎛⎭⎫α2=45,即sin ⎝⎛⎭⎫α+π6=45,又0<α<π3,∴π6<α+π6<π2,∴cos ⎝⎛⎭⎫α+π6=35. 又cos α=[(α+π6)-π6]=cos ⎝⎛⎭⎫α+π6cos π6+sin ⎝⎛⎭⎫α+π6sin π6=33+410. 21.(本小题满分12分)(文)(2011·浙江宁波八校联考)A 、B 是单位圆O 上的动点,且A 、B 分别在第一、二象限,C 是圆O与x 轴正半轴的交点,△AOB 为等腰直角三角形.记∠AOC =α.(1)若A 点的坐标为⎝⎛⎭⎫35,45,求sin 2α+sin2αcos 2α+cos2α的值; (2)求|BC |2的取值范围. [解析] (1)∵tan α=4535=43,∴原式=tan 2α+2tan α2-tan 2α=20.(2)A (cos α,sin α),B (cos(α+π2),sin(α+π2)),且C (1,0)|BC |2=[cos(α+π2)-1]2+sin 2(α+π2)=2+2sin α而A ,B 分别在第一、二象限,α∈⎝⎛⎭⎫0,π2, ∴|BC |2的取值范围是(2,4).(理)(2011·华安、连城、永安、漳平、龙海、泉港六校联考)A 、B 、C 为△ABC 的三个内角,且其对边分别为a 、b 、c ,若m =⎝⎛⎭⎫-cos A 2,sin A 2,n =⎝⎛⎭⎫cos A 2,sin A 2,且m ·n =12. (1)求角A 的大小;(2)若a =23,三角形面积S =3,求b +c 的值. [解析] (1)m ·n =-cos 2A 2+sin 2A 2=-cos A =12,∴cos A =-12,∵A ∈(0°,180°),∴A =120°.(2)S △ABC =12bc sin120°= 3含详解答案 ∴bc =4,又∵a 2=b 2+c 2-2bc cos120°=b 2+c 2+bc =(b +c )2-bc =12,∴b +c =4.22.(本小题满分12分)(2011·黑龙江哈六中期末)在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3. (1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin2A ,求△ABC 的面积.[解析] (1)由余弦定理及已知条件得,a 2+b 2-ab =4,又因为△ABC 的面积等于3,所以12ab sin C =3,得ab =4.联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得a =2,b =2. (2)由题意得sin(B +A )+sin(B -A )=4sin A cos A ,即sin B cos A =2sin A cos A ,当cos A =0时,A =π2,B =π6,a =433,b =233, 当cos A ≠0时,得sin B =2sin A ,由正弦定理得b =2a ,联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a , 解得a =233,b =433. 所以△ABC 的面积S =12ab sin C =233.。
高考数学-三角函数及解三角形(含22年真题讲解)

高考数学-三角函数及解三角形(含22年真题讲解)1.【2022年全国甲卷】将函数f(x)=sin (ωx +π3)(ω>0)的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是( ) A .16 B .14C .13D .12【答案】C 【解析】 【分析】先由平移求出曲线C 的解析式,再结合对称性得ωπ2+π3=π2+kπ,k ∈Z ,即可求出ω的最小值.【详解】由题意知:曲线C 为y =sin [ω(x +π2)+π3]=sin(ωx +ωπ2+π3),又C 关于y 轴对称,则ωπ2+π3=π2+kπ,k ∈Z ,解得ω=13+2k,k ∈Z ,又ω>0,故当k =0时,ω的最小值为13. 故选:C.2.【2022年全国甲卷】沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,AB ⌢是以O 为圆心,OA 为半径的圆弧,C 是的AB 中点,D 在AB ⌢上,CD ⊥AB .“会圆术”给出AB ⌢的弧长的近似值s 的计算公式:s =AB +CD 2OA.当OA =2,∠AOB=60°时,s =( )A .11−3√32B .11−4√32C .9−3√32D .9−4√32【解析】【分析】连接OC,分别求出AB,OC,CD,再根据题中公式即可得出答案. 【详解】解:如图,连接OC,因为C是AB的中点,所以OC⊥AB,又CD⊥AB,所以O,C,D三点共线,即OD=OA=OB=2,又∠AOB=60°,所以AB=OA=OB=2,则OC=√3,故CD=2−√3,所以s=AB+CD2OA =2+(2−√3)22=11−4√32.故选:B.3.【2022年全国甲卷】设函数f(x)=sin(ωx+π3)在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是()A.[53,136)B.[53,196)C.(136,83]D.(136,196]【答案】C 【解析】由x 的取值范围得到ωx +π3的取值范围,再结合正弦函数的性质得到不等式组,解得即可. 【详解】解:依题意可得ω>0,因为x ∈(0,π),所以ωx +π3∈(π3,ωπ+π3),要使函数在区间(0,π)恰有三个极值点、两个零点,又y =sinx ,x ∈(π3,3π)的图象如下所示:则5π2<ωπ+π3≤3π,解得136<ω≤83,即ω∈(136,83]. 故选:C .4.【2022年全国乙卷】函数f (x )=cosx +(x +1)sinx +1在区间[0,2π]的最小值、最大值分别为( ) A .−π2,π2 B .−3π2,π2C .−π2,π2+2 D .−3π2,π2+2【答案】D 【解析】 【分析】利用导数求得f (x )的单调区间,从而判断出f (x )在区间[0,2π]上的最小值和最大值. 【详解】f ′(x )=−sinx +sinx +(x +1)cosx =(x +1)cosx ,所以f (x )在区间(0,π2)和(3π2,2π)上f ′(x )>0,即f (x )单调递增; 在区间(π2,3π2)上f ′(x )<0,即f (x )单调递减, 又f (0)=f (2π)=2,f (π2)=π2+2,f (3π2)=−(3π2+1)+1=−3π2, 所以f (x )在区间[0,2π]上的最小值为−3π2,最大值为π2+2.5.【2022年新高考1卷】记函数f(x)=sin(ωx+π4)+b(ω>0)的最小正周期为T.若2π3<T<π,且y=f(x)的图象关于点(3π2,2)中心对称,则f(π2)=()A.1B.32C.52D.3【答案】A【解析】【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.【详解】由函数的最小正周期T满足2π3<T<π,得2π3<2πω<π,解得2<ω<3,又因为函数图象关于点(3π2,2)对称,所以3π2ω+π4=kπ,k∈Z,且b=2,所以ω=−16+23k,k∈Z,所以ω=52,f(x)=sin(52x+π4)+2,所以f(π2)=sin(54π+π4)+2=1.故选:A6.【2022年新高考2卷】若sin(α+β)+cos(α+β)=2√2cos(α+π4)sinβ,则()A.tan(α−β)=1B.tan(α+β)=1C.tan(α−β)=−1D.tan(α+β)=−1【答案】C【解析】【分析】由两角和差的正余弦公式化简,结合同角三角函数的商数关系即可得解.【详解】由已知得:sinαcosβ+cosαsinβ+cosαcosβ−sinαsinβ=2(cosα−sinα)sinβ,即:sinαcosβ−cosαsinβ+cosαcosβ+sinαsinβ=0,即:sin(α−β)+cos(α−β)=0,所以tan(α−β)=−1,故选:C7.【2022年北京】已知函数f(x)=cos2x−sin2x,则()A.f(x)在(−π2,−π6)上单调递减B.f(x)在(−π4,π12)上单调递增C.f(x)在(0,π3)上单调递减D.f(x)在(π4,7π12)上单调递增【答案】C【解析】【分析】化简得出f(x)=cos2x,利用余弦型函数的单调性逐项判断可得出合适的选项.【详解】因为f(x)=cos2x−sin2x=cos2x.对于A选项,当−π2<x<−π6时,−π<2x<−π3,则f(x)在(−π2,−π6)上单调递增,A错;对于B选项,当−π4<x<π12时,−π2<2x<π6,则f(x)在(−π4,π12)上不单调,B错;对于C选项,当0<x<π3时,0<2x<2π3,则f(x)在(0,π3)上单调递减,C对;对于D选项,当π4<x<7π12时,π2<2x<7π6,则f(x)在(π4,7π12)上不单调,D错.故选:C.8.【2022年浙江】设x∈R,则“sinx=1”是“cosx=0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】【分析】由三角函数的性质结合充分条件、必要条件的定义即可得解.【详解】因为sin2x+cos2x=1可得:当sinx=1时,cosx=0,充分性成立;当cosx=0时,sinx=±1,必要性不成立;所以当x∈R,sinx=1是cosx=0的充分不必要条件.故选:A.9.【2022年浙江】为了得到函数y =2sin3x 的图象,只要把函数y =2sin (3x +π5)图象上所有的点( )A .向左平移π5个单位长度B .向右平移π5个单位长度C .向左平移π15个单位长度D .向右平移π15个单位长度【答案】D 【解析】 【分析】根据三角函数图象的变换法则即可求出. 【详解】因为y =2sin3x =2sin [3(x −π15)+π5],所以把函数y =2sin (3x +π5)图象上的所有点向右平移π15个单位长度即可得到函数y =2sin3x 的图象.故选:D.10.【2022年新高考2卷】(多选)已知函数f(x)=sin(2x +φ)(0<φ<π)的图像关于点(2π3,0)中心对称,则( ) A .f(x)在区间(0,5π12)单调递减B .f(x)在区间(−π12,11π12)有两个极值点 C .直线x =7π6是曲线y =f(x)的对称轴D .直线y =√32−x 是曲线y =f(x)的切线 【答案】AD 【解析】 【分析】根据三角函数的性质逐个判断各选项,即可解出. 【详解】由题意得:f (2π3)=sin (4π3+φ)=0,所以4π3+φ=k π,k ∈Z , 即φ=−4π3+k π,k ∈Z ,又0<φ<π,所以k =2时,φ=2π3,故f(x)=sin (2x +2π3). 对A ,当x ∈(0,5π12)时,2x +2π3∈(2π3,3π2),由正弦函数y =sinu 图象知y =f(x)在(0,5π12)上是单调递减;对B ,当x ∈(−π12,11π12)时,2x +2π3∈(π2,5π2),由正弦函数y =sinu 图象知y =f(x)只有1个极值点,由2x +2π3=3π2,解得x =5π12,即x =5π12为函数的唯一极值点; 对C ,当x =7π6时,2x +2π3=3π,f(7π6)=0,直线x =7π6不是对称轴; 对D ,由y′=2cos (2x +2π3)=−1得:cos (2x +2π3)=−12,解得2x +2π3=2π3+2k π或2x +2π3=4π3+2k π,k ∈Z ,从而得:x =k π或x =π3+k π,k ∈Z , 所以函数y =f(x)在点(0,√32)处的切线斜率为k =y′|x=0=2cos2π3=−1,切线方程为:y −√32=−(x −0)即y =√32−x .故选:AD .11.【2022年全国甲卷】已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当AC AB取得最小值时,BD =________.【答案】√3−1##−1+√3 【解析】 【分析】设CD =2BD =2m >0,利用余弦定理表示出AC 2AB 2后,结合基本不等式即可得解.【详解】设CD =2BD =2m >0,则在△ABD 中,AB 2=BD 2+AD 2−2BD ⋅ADcos∠ADB =m 2+4+2m , 在△ACD 中,AC 2=CD 2+AD 2−2CD ⋅ADcos∠ADC =4m 2+4−4m , 所以AC 2AB 2=4m 2+4−4m m 2+4+2m =4(m 2+4+2m)−12(1+m)m 2+4+2m=4−12(m+1)+3m+1≥42√(m+1)⋅3m+1=4−2√3,当且仅当m +1=3m+1即m =√3−1时,等号成立,所以当ACAB 取最小值时,m =√3−1. 故答案为:√3−1.12.【2022年全国乙卷】记函数f(x)=cos(ωx +φ)(ω>0,0<φ<π)的最小正周期为T ,若f(T)=√32,x =π9为f(x)的零点,则ω的最小值为____________.【答案】3 【解析】 【分析】首先表示出T ,根据f (T )=√32求出φ,再根据x =π9为函数的零点,即可求出ω的取值,从而得解; 【详解】解: 因为f (x )=cos (ωx +φ),(ω>0,0<φ<π) 所以最小正周期T =2πω,因为f (T )=cos (ω⋅2πω+φ)=cos (2π+φ)=cosφ=√32, 又0<φ<π,所以φ=π6,即f (x )=cos (ωx +π6),又x =π9为f (x )的零点,所以π9ω+π6=π2+kπ,k ∈Z ,解得ω=3+9k,k ∈Z , 因为ω>0,所以当k =0时ωmin =3; 故答案为:313.【2022年北京】若函数f(x)=Asinx −√3cosx 的一个零点为π3,则A =________;f(π12)=________.【答案】 1 −√2 【解析】 【分析】先代入零点,求得A 的值,再将函数化简为f(x)=2sin(x −π3),代入自变量x =π12,计算即可.【详解】∵f(π3)=√32A−√32=0,∴A=1∴f(x)=sinx−√3cosx=2sin(x−π3)f(π12)=2sin(π12−π3)=−2sinπ4=−√2故答案为:1,−√214.【2022年浙江】我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是S=√14[c2a2−(c2+a2−b22)2],其中a,b,c是三角形的三边,S是三角形的面积.设某三角形的三边a=√2,b=√3,c=2,则该三角形的面积S=___________.【答案】√234.【解析】【分析】根据题中所给的公式代值解出.【详解】因为S=√14[c2a2−(c2+a2−b22)2],所以S=√14[4×2−(4+2−32)2]=√234.故答案为:√234.15.【2022年浙江】若3sinα−sinβ=√10,α+β=π2,则sinα=__________,cos2β=____ _____.【答案】3√10104 5【解析】【分析】先通过诱导公式变形,得到α的同角等式关系,再利用辅助角公式化简成正弦型函数方程,可求出α,接下来再求β.【详解】α+β=π2,∴sinβ=cosα,即3sinα−cosα=√10,即√10(3√1010sinα−√1010cosα)=√10,令sinθ=√1010,cosθ=3√1010,则√10sin(α−θ)=√10,∴α−θ=π2+2kπ,k∈Z,即α=θ+π2+2kπ,∴sinα=sin(θ+π2+2kπ)=cosθ=3√1010,则cos2β=2cos2β−1=2sin2α−1=45.故答案为:3√1010;45.16.【2022年全国乙卷】记△ABC的内角A,B,C的对边分别为a,b,c﹐已知sinCsin(A−B)= sinBsin(C−A).(1)若A=2B,求C;(2)证明:2a2=b2+c2【答案】(1)5π8;(2)证明见解析.【解析】【分析】(1)根据题意可得,sinC=sin(C−A),再结合三角形内角和定理即可解出;(2)由题意利用两角差的正弦公式展开得sinC(sinAcosB−cosAsinB)=sinB(sinCcosA−cosCsinA),再根据正弦定理,余弦定理化简即可证出.(1)由A=2B,sinCsin(A−B)=sinBsin(C−A)可得,sinCsinB=sinBsin(C−A),而0<B<π2,所以sinB∈(0,1),即有sinC=sin(C−A)>0,而0<C<π,0<C−A<π,显然C≠C−A,所以,C+C−A=π,而A=2B,A+B+C=π,所以C=5π8.(2)由sinCsin(A−B)=sinBsin(C−A)可得,sinC(sinAcosB−cosAsinB)=sinB(sinCcosA−cosCsinA),再由正弦定理可得,accosB−bccosA=bccosA−abcosC,然后根据余弦定理可知,1 2(a2+c2−b2)−12(b2+c2−a2)=12(b2+c2−a2)−12(a2+b2−c2),化简得:2a2=b2+c2,故原等式成立.17.【2022年全国乙卷】记△ABC的内角A,B,C的对边分别为a,b,c,已知sinCsin(A−B)=sinBsin(C−A).(1)证明:2a2=b2+c2;(2)若a=5,cosA=2531,求△ABC的周长.【答案】(1)见解析(2)14【解析】【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证;(2)根据(1)的结论结合余弦定理求出bc,从而可求得b+c,即可得解.(1)证明:因为sinCsin(A−B)=sinBsin(C−A),所以sinCsinAcosB−sinCsinBcosA=sinBsinCcosA−sinBsinAcosC,所以ac⋅a2+c2−b22ac −2bc⋅b2+c2−a22bc=−ab⋅a2+b2−c22ab,即a2+c2−b22−(b2+c2−a2)=−a2+b2−c22,所以2a2=b2+c2;(2)解:因为a=5,cosA=2531,由(1)得b2+c2=50,由余弦定理可得a2=b2+c2−2bccosA,则50−5031bc=25,所以bc=312,故(b+c)2=b2+c2+2bc=50+31=81,所以b+c=9,所以△ABC的周长为a+b+c=14.18.【2022年新高考1卷】记△ABC的内角A,B,C的对边分别为a,b,c,已知cosA1+sinA =sin2B1+cos2B.(1)若C=2π3,求B;(2)求a2+b2c2的最小值.【答案】(1)π6; (2)4√2−5. 【解析】 【分析】(1)根据二倍角公式以及两角差的余弦公式可将cosA 1+sinA =sin2B1+cos2B 化成cos (A +B )=sinB ,再结合0<B <π2,即可求出; (2)由(1)知,C =π2+B ,A =π2−2B ,再利用正弦定理以及二倍角公式将a 2+b 2c 2化成4cos 2B +2cos 2B−5,然后利用基本不等式即可解出.(1)因为cosA1+sinA =sin2B1+cos2B =2sinBcosB 2cos 2B=sinBcosB ,即sinB =cosAcosB −sinAsinB =cos (A +B )=−cosC =12,而0<B <π2,所以B =π6; (2)由(1)知,sinB =−cosC >0,所以π2<C <π,0<B <π2, 而sinB =−cosC =sin (C −π2), 所以C =π2+B ,即有A =π2−2B . 所以a 2+b 2c 2=sin 2A+sin 2Bsin 2C=cos 22B+1−cos 2Bcos 2B=(2cos 2B−1)2+1−cos 2Bcos 2B=4cos 2B +2cos 2B −5≥2√8−5=4√2−5.当且仅当cos 2B =√22时取等号,所以a 2+b 2c 2的最小值为4√2−5.19.【2022年新高考2卷】记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为S 1,S 2,S 3,已知S 1−S 2+S 3=√32,sinB =13.(1)求△ABC 的面积; (2)若sinAsinC =√23,求b .【答案】(1)√28(2)12 【解析】 【分析】(1)先表示出S 1,S 2,S 3,再由S 1−S 2+S 3=√32求得a 2+c 2−b 2=2,结合余弦定理及平方关系求得ac ,再由面积公式求解即可; (2)由正弦定理得b 2sin 2B=acsinAsinC ,即可求解. (1)由题意得S 1=12⋅a 2⋅√32=√34a 2,S 2=√34b 2,S 3=√34c 2,则S 1−S 2+S 3=√34a 2−√34b 2+√34c 2=√32, 即a 2+c 2−b 2=2,由余弦定理得cosB =a 2+c 2−b 22ac,整理得accosB =1,则cosB >0,又sinB=13,则cosB =√1−(13)2=2√23,ac =1cosB=3√24,则S △ABC =12acsinB =√28; (2)由正弦定理得:bsinB =asinA =csinC ,则b 2sin 2B =asinA ⋅csinC =acsinAsinC =3√24√23=94,则b sinB =32,b =32sinB =12.20.【2022年北京】在△ABC 中,sin2C =√3sinC . (1)求∠C ;(2)若b =6,且△ABC 的面积为6√3,求△ABC 的周长. 【答案】(1)π6 (2)6+6√3 【解析】 【分析】(1)利用二倍角的正弦公式化简可得cosC 的值,结合角C 的取值范围可求得角C 的值; (2)利用三角形的面积公式可求得a 的值,由余弦定理可求得c 的值,即可求得△ABC 的周长. (1)解:因为C ∈(0,π),则sinC >0,由已知可得√3sinC =2sinCcosC ,可得cosC =√32,因此,C =π6.(2)解:由三角形的面积公式可得S △ABC =12absinC =32a =6√3,解得a =4√3.由余弦定理可得c 2=a 2+b 2−2abcosC =48+36−2×4√3×6×√32=12,∴c =2√3,所以,△ABC 的周长为a +b +c =6√3+6.21.【2022年浙江】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知4a =√5c,cosC =35. (1)求sinA 的值;(2)若b =11,求△ABC 的面积.【答案】(1)√55;(2)22. 【解析】 【分析】(1)先由平方关系求出sinC ,再根据正弦定理即可解出; (2)根据余弦定理的推论cosC =a 2+b 2−c 22ab以及4a =√5c 可解出a ,即可由三角形面积公式S=12absinC 求出面积.(1)由于cosC =35, 0<C <π,则sinC =45.因为4a =√5c , 由正弦定理知4sinA =√5sinC ,则sinA =√54sinC =√55.(2)因为4a =√5c ,由余弦定理,得cosC =a 2+b 2−c 22ab =a 2+121−165a 222a=11−a 252a=35,即a 2+6a −55=0,解得a =5,而sinC =45,b =11, 所以△ABC 的面积S =12absinC =12×5×11×45=22.1.(2022·宁夏·银川一中模拟预测(文))已知点12P ⎛- ⎝⎭在角θ的终边上,且[)0,2πθ∈,则角θ的大小为( ). A .π3B .2π3C .5π3D .4π3【答案】B 【解析】 【分析】根据给定条件,确定角θ的范围,再利用三角函数定义求解作答. 【详解】依题意,点12P ⎛- ⎝⎭在第二象限,又[)0,2πθ∈,则ππ2θ<<,而tan θ=所以2π3θ=. 故选:B2.(2022·安徽省舒城中学三模(理))将函数π()2sin()(0)3f x x ωω=->的图象向左平移3ωπ个单位,得到函数()y g x =的图象,若()y g x =在π[0,]4上为增函数,则ω最大值为( )A .2B .3C .4D .52【答案】A 【解析】 【分析】根据平移法则求出函数()g x 的解析式,进而求出()g x 的含有数0的单调区间,再借助集合的包含关系即可解出. 【详解】依题意,()2sin[()]2sin 33g x x x ππωωω=+-=,由ππ22x ω-≤≤,0>ω得:ππ22x ωω-≤≤,于是得()y g x =的一个单调递增区间是ππ,22[]ωω-,因()y g x =在π[0,]4上为增函数,因此,ππ[π[0,]2]24,ωω-⊆,即有ππ24ω≥,解得02ω<≤,即ω最大值为2. 故选:A.3.(2022·甘肃·武威第六中学模拟预测(理))已知函数()12sin 32f x x πϕϕ⎛⎫⎛⎫=+< ⎪⎪⎝⎭⎝⎭,直线x π=-为()f x 图象的一条对称轴,则下列说法正确的是( )A .6π=ϕ B .()f x 在区间,2ππ⎡⎤--⎢⎥⎣⎦单调递减C .()f x 在区间[],ππ-上的最大值为2D .()f x θ+为偶函数,则()23k k Z θππ=+∈【答案】D 【解析】 【分析】由已知得()2sin 23f ππϕ⎛⎫-=-+= ⎪⎝⎭,由2πϕ<可求得ϕ,可判断A 选项,由此有()12sin 36x f x π⎛⎫=- ⎪⎝⎭;对于B ,由,2x ππ⎡⎤∈--⎢⎥⎣⎦得12363x πππ-≤-≤-,由正弦函数的单调性可判断;对于C ,由[],x ππ∈-得12366x πππ-≤-≤,由此得()f x 在区间[],ππ-上的最大值为2sin16π=;对于D ,()11+2sin +336f x x πθθ⎛⎫=- ⎪⎝⎭,由()1+362k k Z ππθπ-=∈,解得()23k k Z θππ=+∈.【详解】解:因为函数()12sin 32f x x πϕϕ⎛⎫⎛⎫=+< ⎪⎪⎝⎭⎝⎭,直线x π=-为()f x 图象的一条对称轴,所以()2sin 23f ππϕ⎛⎫-=-+=± ⎪⎝⎭,所以+,32k k Z ππϕπ-+=∈,又2πϕ<,所以6πϕ=-,故A 不正确;所以()12sin 36x f x π⎛⎫=- ⎪⎝⎭,对于B ,当,2x ππ⎡⎤∈--⎢⎥⎣⎦时,12363x πππ-≤-≤-,所以()f x 在区间,2ππ⎡⎤--⎢⎥⎣⎦单调递增,故B 不正确;对于C ,当[],x ππ∈-时,12366x πππ-≤-≤,()f x 在区间[],ππ-上的最大值为2sin 16π=,故C 不正确;对于D ,若()f x θ+为偶函数,则()()111+2sin +2sin +36336f x x x ππθθθ⎡⎤⎛⎫=-=- ⎪⎢⎥⎣⎦⎝⎭,所以()1+362k k Z ππθπ-=∈,解得()23k k Z θππ=+∈,故D 正确,故选:D.4.(2022·全国·模拟预测)已知α,()0,πβ∈,πtan 3α⎛⎫+= ⎪⎝⎭,πcos 6β⎛⎫+= ⎪⎝⎭,则()cos 2αβ-=( )A. B.CD【答案】D 【解析】 【分析】根据待求式的结构,πππ22362αβαβ⎛⎫⎛⎫-=+-+- ⎪ ⎪⎝⎭⎝⎭求解即可.【详解】解:因为πππππcos(2)cos 2sin 236236αβαβαβ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=+-+-=+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦=ππsin 2()cos()36αβ++-ππcos 2()sin()36αβ++.222πππ2tan 2sin()cos()πππ333sin 22sin()cos()πππ333sin ()cos ()tan 1333ααααααααα⎛⎫+++ ⎪⎡⎤⎛⎫⎝⎭+=++=== ⎪⎢⎥⎛⎫⎝⎭⎣⎦+++++ ⎪⎝⎭,22222222π1tan cos ()sin ()π1333cos 2cos ()sin ()π3333cos ()sin ()tan 1333ππαααππαααππααα⎛⎫-++-+ ⎪⎡⎤⎛⎫⎝⎭+=+-+=== ⎪⎢⎥⎛⎫⎝⎭⎣⎦+++++ ⎪⎝⎭;πcos 6β⎛⎫+ ⎪⎝⎭ππ0,62β⎛⎫⎛⎫+∈ ⎪ ⎪⎝⎭⎝⎭,所以πsin 6β⎛⎫+ ⎪⎝⎭故cos(2)αβ-=. 故选:D.5.(2022·全国·模拟预测(文))已知函数()()()sin 0f x x ωϕω=+>的一个对称中心为,03π⎛-⎫⎪⎝⎭,()f x 在区间5,6ππ⎛⎫⎪⎝⎭上不单调,则ω的最小正整数值为( ) A .1 B .2 C .3 D .4【答案】B【分析】根据题意可得()sin()033f ππωϕ-=-+=,所以13k πϕωπ=+,1k Z ∈,由()f x 在区间5,6ππ⎛⎫⎪⎝⎭上不单调可得()()cos 0f x x ωωϕ'=+=在区间5,6ππ⎛⎫⎪⎝⎭上有解,所以22()2x k k Z πωϕπ+=+∈,在区间5,6ππ⎛⎫ ⎪⎝⎭上有解,最终可得23k x ππωπ+=+,k Z ∈,取值即可得解.【详解】由函数()()()sin 0f x x ωϕω=+>的一个对称中心为,03π⎛-⎫⎪⎝⎭,可得()sin()033f ππωϕ-=-+=,所以13k πωϕπ-+=,1k Z ∈,13k πϕωπ=+,1k Z ∈,()()cos f x x ωωϕ'=+,由()f x 在区间5,6ππ⎛⎫⎪⎝⎭上不单调, 所以()()cos 0f x x ωωϕ'=+=在区间5,6ππ⎛⎫⎪⎝⎭上有解, 所以22()2x k k Z πωϕπ+=+∈,在区间5,6ππ⎛⎫⎪⎝⎭上有解, 所以122()32x k k k Z ππωωππ++=+∈,所以23k x ππωπ+=+,21k k k Z =-∈,又5,6x ππ⎛⎫∈⎪⎝⎭,所以74(,)363x πππ+∈, 所以36362(,)873k k k x ππωπ+++=∈+, 当2k =时,1515(,)87ω∈,此时ω的最小正整数为2.6.(2022·河南省杞县高中模拟预测(理))已知π02θ<<,若πsin 24θ⎛⎫-= ⎪⎝⎭,则sin cos θθ+=( )A B C D 【答案】B 【解析】 【分析】根据题中所给的角的范围以及三角函数值,可以确定πcos 24θ⎛⎫- ⎪⎝⎭和角正弦求得3sin 25θ=,从而求得()28sin cos 1sin 25θθθ+=+=,根据角的范围确定符号,开方即可得结果. 【详解】 因为π02θ<<,所以ππ3π2444θ-<-<,又πsin 24θ⎛⎫-= ⎪⎝⎭,所以ππ2044θ-<-<,所以πcos 24θ⎛⎫- ⎪⎝⎭所以ππππππ3sin 2sin 2sin 2cos cos 2sin 4444445θθθθ⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以()28sin cos 1sin 25θθθ+=+=,又sin cos 0θθ+>,sin cos θθ+= 故选:B .7.(2022·全国·模拟预测(理))函数()f x 的图象按以下次序变换:①横坐标变为原来的12;②向左平移23π个单位长度;③向上平移一个单位长度;④纵坐标变为原来的2倍,得到sin y x =的图象,则()f x 的解析式为( )A .()112sin 1223f x x π⎛⎫=-- ⎪⎝⎭B .()11sin 1223f x x π⎛⎫=-- ⎪⎝⎭C .()12sin 2123f x x π⎛⎫=-- ⎪⎝⎭D .()1sin 2123f x x π⎛⎫=-- ⎪⎝⎭【答案】A 【解析】 【分析】根据三角函数图象变换的性质逆推求解即可 【详解】由题意,④纵坐标变为原来的2倍,得到sin y x =的图象,故④变换前为1sin 2y x =;③向上平移一个单位长度,故③变换前为1sin 12y x =-;②向左平移23π个单位长度,故②变换前为1si 123n 2y x π⎛⎫=-- ⎪⎝⎭;①横坐标变为原来的12,故①变换前为211si 3n 122y x π⎛⎫=-- ⎪⎝⎭,故()f x 的解析式为()112sin 1223f x x π⎛⎫=-- ⎪⎝⎭故选:A8.(2022·黑龙江·哈九中三模(文))已知函数()()()sin 0,0,0πf x A x A ωϕωϕ=+>><<的部分图象如图所示,且13π23f ⎛⎫= ⎪⎝⎭.将()f x 图象上所有点的横坐标缩小为原来的14,再向上平移一个单位长度,得到()g x 的图象.若()()129g x g x =,1x ,[]20,4πx ∈,则21x x -的最大值为( )A .πB .2πC .3πD .4π【答案】C 【解析】 【分析】根据函数图象求得()12sin 23f x x π⎛⎫=+ ⎪⎝⎭,再根据图象变换可得()g x 的解析式,结合()()129g x g x =,1x ,[]20,4x π∈,求得21,x x 的值,可得答案.【详解】设()f x 的最小正周期为T ,则由图可知372433T ππ⎛⎫=-- ⎪⎝⎭,得4T π=,则212T πω==,所以()1sin 2f x A x ϕ⎛⎫=+ ⎪⎝⎭,又由题图可知()f x 图象的一个对称中心为点2,03π⎛⎫-⎪⎝⎭, 故1223k πϕπ⎛⎫⨯-+= ⎪⎝⎭,Z k ∈,故3k πϕπ=+,Z k ∈, 因为0ϕπ<<,所以3πϕ=,所以()1sin 23f x A x π⎛⎫=+ ⎪⎝⎭.又因为1323f π⎛⎫= ⎪⎝⎭,故131135sin sin sin 2323322f A A A A πππππ⎛⎫⎛⎫=⨯+==== ⎪ ⎪⎝⎭⎝⎭, 所以()12sin 23f x x π⎛⎫=+ ⎪⎝⎭;将()f x 图象上所有点的横坐标缩小为原来的14,再向上平移一个单位长度,得到()2sin 213g x x π⎛⎫=++ ⎪⎝⎭的图象;因为()()129g x g x =,所以12,x x 同时令()g x 取得最大值3,由()2sin 2133g x x π⎛⎫=++= ⎪⎝⎭,可得()11212k x π+=,Z k ∈,又[]12,0,4x x π∈,要求21x x -的最大值,故令0k =,得112x π=;令3k =,得23712x π=,所以21x x -的最大值为3731212πππ-=, 故选:C.9.(2022·全国·模拟预测)为了得到函数4sin 23y x π⎛⎫=+⎪⎝⎭的图象,只需将函数sin 26y x π⎛⎫=+ ⎪⎝⎭的图象( ) A .向左平移712π个单位长度 B .向左平移76π个单位长度 C .向右平移712π个单位长度 D .向右平移76π个单位长度 【答案】A 【解析】 【分析】根据图像平移的规律,算出答案即可. 【详解】由题意,由于函数477sin(2)sin(2)sin 2()366126y x x x πππππ⎡⎤=+=++=++⎢⎥⎣⎦, 观察发现可由函数sin 26y x π⎛⎫=+ ⎪⎝⎭向左平移712π个单位长度,得到函数4sin 23y x π⎛⎫=+⎪⎝⎭的图象, 故选:A.10.(2022·贵州·贵阳一中模拟预测(文))如图是函数()()sin (0,0,0)2f x A x A πωϕωϕ=+>><<的图像的一部分,则要得到该函数的图像,只需要将函数()2cos2g x x x -的图像( )A .向左平移4π个单位长度 B .向右平移4π个单位长度 C .向左平移2π个单位长度D .向右平移2π个单位长度【答案】A 【解析】 【分析】先由图像求得()2sin 32f x x π⎛⎫=+ ⎪⎝⎭,再由辅助角公式化简()g x ,最后由三角函数的平移变换即可求解. 【详解】 由题图知:712,1234T T ππππω-=∴==,又()()0,2,sin 2f x A x ωωϕ>∴=∴=+,20,sin 0,0332f A πππϕϕ⎛⎫⎛⎫=∴+=<< ⎪ ⎪⎝⎭⎝⎭,解得(),sin 233f x A x ππϕ⎛⎫=∴=+ ⎪⎝⎭,又()()()0sin2,2sin 2,cos233f A A f x x g x x x ππ⎛⎫=∴==∴=+=-= ⎪⎝⎭2sin 26x π⎛⎫- ⎪⎝⎭,将()g x 向左平移4π得()2sin 22sin 22sin 246263x x x f x πππππ⎡⎤⎛⎫⎛⎫⎛⎫+-=+-=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故选:A.11.(2022·青海西宁·二模(文))在①6a =;②8a =;③12a =这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求cos A 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,且2224a b c S +-=,c =________?【答案】答案不唯一,具体见解析 【解析】 【分析】根据题干条件及余弦定理、面积公式,可求得角C 的值,若选①6a =,根据正弦定理,可求得sin A 的值,根据大边对大角原则,可得角A 只有一解,根据同角三角函数关系,可求得cos A 的值;若选②8a =,根据正弦定理,可求得sin A 的值,根据大边对大角原则,可得角A 有两解,根据同角三角函数关系,可求得cos A 的值;若选③12a =,根据正弦定理,可求得sin A 的值,因为sin 1A >,则三角形无解. 【详解】由题意可知在ABC 中, 因为2224a b c S +-=,且in 12s S ab C =, 所以222sin 2a b c C ab+-=, 由余弦定理可知222cos 2a b c C ab+-=, 所以cos sin C C = 因为(0,)C π∈, 所以4Cπ;若选①6a =,由正弦定理可得sin sin a cA C=,解得3sin sin5a A C c ==,在ABC 中,因为c a >,所以C A >, 又因为4Cπ,则角A 只有一解,且0,4A π⎛⎫∈ ⎪⎝⎭,所以4cos 5A ==.若选②8a =,由正弦定理可得sin sin a c A C=,解得4sin sin5a A C c ==, 在ABC 中,因为c a <,所以C A <, 又因为4Cπ,则角A 有两解,所以3cos 5A ==±.若选③12a =,由正弦定理可得sin sin a c A C=,解得6sin sin5a A C c ==, 因为sin 1A >,所以ABC 无解,即三角形不存在.12.(2022·河南·开封市东信学校模拟预测(理))在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sinsin 2B Cb a B +=. (1)求角A 的大小;(2)若D 为BC 边中点,且2AD =,求a 的最小值. 【答案】(1)π3【解析】 【分析】(1)利用三角恒等变形及正弦定理即可求解; (2)利用余弦定理及基本不等式即可求解. (1)△sinsin 2B C b a B +=,△πsin sin 2A b aB -=,即cos sin 2Ab a B =.由正弦定理得cos sin sin 2sin AB A B ⋅=⋅. △sin 0B ≠,△cos sin 2sin cos 222A A A A ==. △cos02A ≠,△1sin 22A =,又△π022A <<, △π26A =,△π3A =;(2)△D 为BC 边中点,△2AD AB AC =+,即224()AD AB AC =+, △2AD =,△22162cos c b bc A =++,△2216b c bc +=-,△22216bc b c bc ≤+=-,即163≤bc , 当且仅当b c ==, △222222cos 162a b c bc A b c bc bc =+-=+-=-,△2161616233a ≥-⨯=,即a .故a . 13.(2022·山东聊城·三模)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin cos()6b Cc B π=-.(1)求角B ;(2)若b =4,求ABC 周长的最大值. 【答案】(1)3B π=;(2)12. 【解析】 【分析】(1)利用差角的余弦公式,结合正弦定理,化简计算作答. (2)利用余弦定理,结合均值不等式求出a +c 的最大值 (1)因为sin cos()6b C c B π=-,则1sin sin )2b Cc B B =+,在ABC 中,由正弦定理得,1sin sin sin sin )2B C C B B =+,而(0,π)C ∈,即sin 0C >,整理得sin B B =,即tan B =()0,πB ∈,解得π3B =, 所以π3B =. (2)在ABC 中,由余弦定理2222cos b a c ac B =+-得:2216a c ac =+-,即()2163a c ac +-=, 而2()2a c ac +≤,于是得()264a c +≤,当且仅当a =c =4时取“=”, 因此,当a =c =4时,a +c 取最大值8,从而a +b +c 取最大值12, 所以ABC 周长的最大值为12.14.(2022·河南·平顶山市第一高级中学模拟预测(理))在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且22(cos )2b a b c a B -=-.(1)求角A 的大小;(2)若8c =,ABC 的面积为BC 边上的高. 【答案】(1)3A π=【解析】 【分析】(1)由余弦定理化简可得答案;(2)由三角形的面积公式可得b 值,由余弦定理可得a 值,结合面积公式可得高. (1)22cos 2b a b c a B ⎛⎫-=- ⎪⎝⎭,即222()2cos a b ca B bc -=-.222222()a b c a b bc ∴-=+--,222b c a bc ∴+-=,2221cos =22b c a A bc +-∴=.又(0,)A π∈,3A π∴=.(2)11sin 8sin 223S bc A b π==⨯⨯==2b ∴=.故由余弦定理可知a ==而1122S ah h ==⨯=解得h =,所以BC . 15.(2022·四川省泸县第二中学模拟预测(理))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c cos A A +=b =①:2a =,222sin sin sin B A C >+;条件②:a b <,21cos cos sin 2a A C c A a =+.这两个条件中选择一个作为已知,求:(1)tan 2A 的值; (2)c 和面积S 的值.【答案】(1)条件选择见解析,tan 2A =(2)条件选择见解析,2c =,S =【解析】 【分析】(1)若选①,由已知条件可得πsin 6A ⎛⎫+= ⎪⎝⎭,得π6A =或π2,由于a b <,则可得π6A =,进而可求出tan 2A ,若选②,由已知条件可得πsin 6A ⎛⎫+ ⎪⎝⎭,得π6A =或π2,由于a b <,则可得π6A =,进而可求出tan 2A ,(2)若选①,由正弦定理得sin B =222sin sin sin B A C >+得222b a c >+,再由余弦定理得cos 0B <,则2π3B =,求得π6C =,然后利用三角形面积公式可求得结果,若选②,由正弦定理结合三角函数恒等变换公式可得1cos 2B =-,从而可得2π3B =,则π6C =,然后利用三角形面积公式可求得结果, (1)若选①:2a =,222sin sin sin B A C >+,在ABC cos A A +=πsin 6A ⎛⎫+= ⎪⎝⎭,而ππ7π,666A ⎛⎫+∈ ⎪⎝⎭,故ππ63A +=或2π3, 则π6A =或π2,△2a b =<=π6A =,△πtan 2tan3A == 若选②:a b <,21cos cos sin 2a A C c A a =+在ABC cos A A +=πsin 6A ⎛⎫+= ⎪⎝⎭,而ππ7π,666A ⎛⎫+∈ ⎪⎝⎭,故ππ63A +=或2π3,则π6A =或π2,由a b <,得:π6A =,△πtan 2tan 3A ==(2)若选①:2a =,222sin sin sin B A C >+,由正弦定理得:sin sin a b A B =,2πsin 6=sin B =, 由222222sin sin sin B A C b a c >+⇒>+知:222cos 02a c b B ac+-=<,故2π3B =, 则π6C =,△2c a ==,11πsin 2sin 226S ab C ==⨯⨯= 若选②:a b <,21cos cos sin 2a A C c A a =+由正弦定理得:21sin cos cos sin sin sin 2A A C C A A =+,△sin 0A ≠△1cos cos sin sin 2A C A C -=,即()1cos 2A C +=,1cos 2B =-, △0πB <<,故2π3B =,则π6C =, △a c =△由余弦定理得2222cos b a c ac B =+-,22211222c c c ⎛⎫=+-⋅- ⎪⎝⎭,得2c =,△11πsin 2sin 226S bc A ==⨯⨯=。
高考中三角函数和解三角形的真题(常见的题型)汇总

三角函数类型一:角度的概念、弧长和三角函数的概念1已知角q 的顶点为坐标原点,始边为x 轴的正半轴,若),4(y P 是角q 终边上的一点,且552sin -=q ,则y的值的值2已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是,则这个圆心角所对的弧长是 3若0cos sin <q q ,则角q 在第在第___________________________象限角。
象限角。
象限角。
4 4 已知已知q 为第二象限角;则2q可能为第可能为第_____________________象限角。
象限角。
象限角。
5已知q 为第二象限角;则24a p +所在的象限是所在的象限是_____________________。
6已知角a 的终边过点)60cos 6,8(--m P ,且54cos -=a ,则m 的值为的值为7在平面直角坐标系中,若角a 的顶点在坐标原点,始边在x 轴的非负半轴上,终点经过点)4,3(a a P -)0(<a ,则a a cos sin +的值为的值为8 8 已知角已知角a 的终边经过点)3,4(-,则a cos 等于等于答案:1 -8-8;;21sin 2;3 二或四;4 一或三;5 一或三;6 21;7 51;8 54-。
类型二:同角三角函数的求值与化解(a a a a a cos tan sin ,1cos sin 22×==+)1求300sin =_______=_______。
2已知3cos sin cos sin =-+xx x x ,则x tan 的值是的值是________________________。
3若点)9,(a 在函数xy 3=的图像上,则6tanpa 的值为的值为 4已知a 是第二象限角,135sin =a ,则a cos 的值的值5已知51)25sin(=+a p ,那么a cos 的值的值6已知21tan -=a ,则1cos 22sin 2--a a 等于等于7)1410tan(-的值的值8 8 记记cos(80)k -°=,那么tan100°= 9已知11-tan tan -=a a,则2cos sin sin 2++a a a = 10 已知角)2,0(p Îx ,21cos 22££-x 的解集是_____。
三角函数与解三角形中的最值(范围)问题

sin
2
2
(sin+cos)
sin
=
π
4
)
sin
2
1
(1+
),
2
tan
π
π
因为 B ∈[ , ),所以tan
6
4
因为函数 y =
sin(+
B ∈[
3
,1),
3
2
1
3
(1+ )在[ ,1)上单调递减,
2
3
所以 的取值范围为(
2,
6+ 2
].
2
=
高中总复习·数学
2. (2024·湖北三校联考)记△ ABC 的内角 A , B , C 的对边分别为
π
≤ )的图象离原点最近的对称轴为 x = x 0,若满足| x 0|≤
2
π
,则称 f ( x )为“近轴函数”.若函数 y =2
6
“近轴函数”,则φ的取值范围是(
)
sin (2 x -φ)是
高中总复习·数学
解析: y =2 sin
π
(2 x -φ),令2 x -φ= + k π, k ∈Z,∴图象
6
6
π
[0, ]上的值域为[-1,2].故选D.
2
高中总复习·数学
2.
4
3
sin+5
函数 y =
的最大值是
2−sin
6 ,最小值是
解析:法一
2−5
sin x =
,而-1≤
+1
原函数可化为
.
sin x ≤1,所以
2−5
4
-1≤
≤1,所以 ≤ y ≤6,因此原函数的最大值是6,最小值
近八年的广东高考理科数学试题汇总(三角函数与解三角形)
近八年的广东高考理科数学试题汇总三角函数与解三角形(2007年高考广东卷第3小题)3、若函数21()sin 2f x x =-(x R ∈),则()f x 是A .最小正周期为2π的奇函数 B. 最小正周期为π的奇函数C .最小正周期为2π的偶函数 D. 最小正周期为π的偶函数【解释】22111()sin (12sin )cos 2222f x x x x =-=--=- 故选(D )(2007年高考广东卷第16小题) (本小题满分12分)16、 已知ΔABC 三个顶点的直角坐标分别为A(3,4)、B(0,0)、C(c ,0). (1) 若5c =,求sin ∠A 的值; (2)若∠A 是钝角, 求c 的取值范围. 【解释】(1)当5c =时,5255,5,25cos sin 55AB BC AC A A ===⇒∠=⇒∠=(2)2(3)16,AC c BC c =-+=,A 为钝 222AB AC AB +<⇒2225(3)16c c +-+<253c ∴>(2008年高考广东卷第8小题)8.在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD交于点F .若AC =a ,BD =b ,则AF =( B )A .1142+a bB .2133+a bC .1124+a b D .1233+a b【解析】此题属于中档题.解题关键是利用平面几何知识得出:1:2DF FC =,然后利用向量的加减法则易得答案B. (2008年高考广东卷第12小题)12、已知函数()(sin cos )sin f x x x x =-,x ∈R ,则()f x 的最小正周期是 .【解析】21cos 21()sin sin cos sin 222x f x x x x x -=-=-, 此时可得函数的最小正周期22T ππ==。
2007 2008 2009 2010 2011 2012 2013 2014 17分17分22分19分12分12分12分17(2008年高考广东卷第16小题) (本小题满分13分) 16、已知函数()sin()(00π)f x A x A ϕϕ=+><<,,x ∈R 的最大值是1,其图像经过点π132M ⎛⎫⎪⎝⎭,.(1)求()f x 的解析式;(2)已知π02αβ⎛⎫∈ ⎪⎝⎭,,,且3()5f α=,12()13f β=,求()f αβ-的值.【解析】(1)依题意有1A =,则()sin()f x x ϕ=+,将点1(,)32M π代入得1sin()32πϕ+=,而0ϕπ<<,536πϕπ∴+=,2πϕ∴=,故()sin()cos 2f x x x π=+=;(2)依题意有312cos ,cos 513αβ==,而,(0,)2παβ∈,2234125sin 1(),sin 1()551313αβ∴=-==-=,3124556()cos()cos cos sin sin 51351365f αβαβαβαβ-=-=+=⨯+⨯=。
高考数学一轮复习三角函数与解三角形中的最值(范围)问题
,∵函数f(x)=cos(2x+φ)(0<φ<π)在区间
π π
− ,
6 6
上单调递
π
− ≥ 0,
π
π
π
2π
减,∴ − + , + ⊆[0,π],即ቐ 3π
解得 ≤φ≤ .令f(x)=cos
3
3
3
3
+ ≤ π,
3
π
π π
(2x+φ)=0,则2x+φ= +kπ(k∈Z),即x= - + (k∈Z),又函数f
4
解:(2)f(x)=-
1 2 5
sin−
+ +a.
2
4
17
, 5
4 ⇒൝4
()max ≤
由题意得ቐ
()min ≥ 1
17
,
4 ⇒2≤a≤3,
+ ≤
−1 ≥ 1
即实数a的取值范围是[2,3].
三角形中的最值(范围)问题
考向1 利用三角函数的性质求最值(范围)
【例4】 △ABC中,sin2A-sin2B-sin2C=sin Bsin C.
重难专攻(四)
三角函数与解
三角形中的最值(范围)问题
三角函数与解三角形中的最值(范围)问题是高考的热点,主要涉及:
(1)三角函数式的最值(范围)问题;(2)利用三角函数性质求某些量的最
值(范围);(3)三角形中的最值(范围)(周长、面积等),其求解方法多
样,一般常用方法有:(1)利用三角函数的单调性(正、余弦函数的有界性)
3
3
答案
3
3
-
3
3
2
1+ 2
,
|解题技法|
sin+
专题15 三角函数解答题【2023高考必备】2013-2022十年全国高考数学真题分类汇编
(2)若 ,求b.
【答案】(1)
(2)
解析:(1)由题意得 ,则 ,
即 ,由余弦定理得 ,整理得 ,则 ,又 ,
则 , ,则 ;
(2)由正弦定理得: ,则 ,则 , .
【题目栏目】三角函数\正弦定理和余弦定理\正、余弦定理的综合应用
【题目来源】2022新高考全国II卷·第18题
3.(2022新高考全国I卷·第18题)记 的内角A,B,C的对边分别为a,b,c,已知 .
可得 , ,
与条件 矛盾,则问题中的三角形不存在.
解法二:∵ ,
∴ ,
,
∴ ,∴ ,∴ ,∴ ,
若选①, ,∵ ,∴ ,∴c=1;
若选②, ,则 , ;
若选③,与条件 矛盾.
【题目栏目】三角函数\正弦定理和余弦定理\正、余弦定理的综合应用
【题目来源】2020新高考II卷(海南卷)·第17题
8.(2020年高考数学课标Ⅱ卷理科·第17题) 中,sin2A-sin2B-sin2C=sinBsinC.
【题目栏目】三角函数\正弦定理和余弦定理\三角形中的面积问题
【题目来源】2017年高考数学新课标Ⅰ卷理科·第17题
13.(2017年高考数学课标Ⅲ卷理科·第17题)(12分) 的内角 的对边分别为 .已知 , , .
(1)求 ;
(2)设 为 边上一点,且 ,求 的面积.
【答案】(1) ;(2)
【解析】(1)由 可得 ,因为 ,故 .
问题:是否存在 ,它的内角 的对边分别为 ,且 , ,________?
注:如果选择多个条件分别解答,按第一个解答计分.
【答案】解法一:
由 可得: ,
不妨设 ,
则: ,即 .
专题05 三角函数与解三角形-高考数学(理)十年真题(2010-2019)分类汇编(新课标Ⅰ卷)(解析版)_最新修正版
专题05三角函数与解三角形历年考题细目表历年高考真题汇编1.【2019年新课标1理科11】关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数②f(x)在区间(,π)单调递增③f(x)在[﹣π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③【解答】解:f(﹣x)=sin|﹣x|+|sin(﹣x)|=sin|x|+|sin x|=f(x)则函数f(x)是偶函数,故①正确,当x∈(,π)时,sin|x|=sin x,|sin x|=sin x,则f(x)=sin x+sin x=2sin x为减函数,故②错误,当0≤x≤π时,f(x)=sin|x|+|sin x|=sin x+sin x=2sin x,由f(x)=0得2sin x=0得x=0或x=π,由f(x)是偶函数,得在[﹣π,)上还有一个零点x=﹣π,即函数f(x)在[﹣π,π]有3个零点,故③错误,当sin|x|=1,|sin x|=1时,f(x)取得最大值2,故④正确,故正确是①④,故选:C.2.【2017年新课标1理科09】已知曲线C1:y=cos x,C2:y=sin(2x),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x)=cos(2x)=sin(2x)的图象,即曲线C2,故选:D.3.【2016年新课标1理科12】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|),x为f(x)的零点,x为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【解答】解:∵x为f(x)的零点,x为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则,即T,解得:ω≤12,当ω=11时,φ=kπ,k∈Z,∵|φ|,∴φ,此时f(x)在(,)不单调,不满足题意;当ω=9时,φ=kπ,k∈Z,∵|φ|,∴φ,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B.4.【2015年新课标1理科02】sin20°cos10°﹣cos160°sin10°=()A.B.C.D.【解答】解:sin20°cos10°﹣cos160°sin10°=sin20°cos10°+cos20°sin10°=sin30°.故选:D.5.【2015年新课标1理科08】函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ,kπ),k∈z B.(2kπ,2kπ),k∈zC.(k,k),k∈z D.(,2k),k∈z【解答】解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为2()=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得ϕ,k∈z,即ϕ,f(x)=cos(πx).由2kπ≤πx2kπ+π,求得2k x≤2k,故f(x)的单调递减区间为(,2k),k∈z,故选:D.6.【2014年新课标1理科08】设α∈(0,),β∈(0,),且tanα,则()A.3α﹣βB.3α+βC.2α﹣βD.2α+β【解答】解:由tanα,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α﹣β)=sin()=cosα成立.故选:C.7.【2012年新课标1理科09】已知ω>0,函数f(x)=sin(ωx)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C.D.(0,2]【解答】解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选:A.8.【2011年新课标1理科05】已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x 上,则cos2θ=()A.B.C.D.【解答】解:根据题意可知:tanθ=2,所以cos2θ,则cos2θ=2cos2θ﹣1=21.故选:B.9.【2011年新课标1理科11】设函数f(x)=sin(ωx+φ)+cos(ωx+φ)的最小正周期为π,且f(﹣x)=f(x),则()A.f(x)在单调递减B.f(x)在(,)单调递减C.f(x)在(0,)单调递增D.f(x)在(,)单调递增【解答】解:由于f(x)=sin(ωx+ϕ)+cos(ωx+ϕ),由于该函数的最小正周期为T,得出ω=2,又根据f(﹣x)=f(x),得φkπ(k∈Z),以及|φ|,得出φ.因此,f(x)cos2x,若x∈,则2x∈(0,π),从而f(x)在单调递减,若x∈(,),则2x∈(,),该区间不为余弦函数的单调区间,故B,C,D都错,A正确.故选:A.10.【2010年新课标1理科09】若,α是第三象限的角,则()A.B.C.2 D.﹣2【解答】解:由,α是第三象限的角,∴可得,则,应选A.11.【2018年新课标1理科16】已知函数f(x)=2sin x+sin2x,则f(x)的最小值是.【解答】解:由题意可得T=2π是f(x)=2sin x+sin2x的一个周期,故只需考虑f(x)=2sin x+sin2x在[0,2π)上的值域,先来求该函数在[0,2π)上的极值点,求导数可得f′(x)=2cos x+2cos2x=2cos x+2(2cos2x﹣1)=2(2cos x﹣1)(cos x+1),令f′(x)=0可解得cos x或cos x=﹣1,可得此时x,π或;∴y=2sin x+sin2x的最小值只能在点x,π或和边界点x=0中取到,计算可得f(),f(π)=0,f(),f(0)=0,∴函数的最小值为,故答案为:.12.【2015年新课标1理科16】在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.【解答】解:方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD x,AE x,DE x,CD=m,∵BC=2,∴(x+m)sin15°=1,∴x+m,∴0<x<4,而AB x+m x x,∴AB的取值范围是(,).故答案为:(,).方法二:如下图,作出底边BC=2的等腰三角形EBC,B=C=75°,倾斜角为150°的直线在平面内移动,分别交EB、EC于A、D,则四边形ABCD即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C时,AB趋近最小,为;②直线接近点E时,AB趋近最大值,为;故答案为:(,).13.【2014年新课标1理科16】已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sin A﹣sin B)=(c﹣b)sin C,则△ABC面积的最大值为.【解答】解:因为:(2+b)(sin A﹣sin B)=(c﹣b)sin C⇒(2+b)(a﹣b)=(c﹣b)c⇒2a﹣2b+ab﹣b2=c2﹣bc,又因为:a=2,所以:,△ABC面积,而b2+c2﹣a2=bc⇒b2+c2﹣bc=a2⇒b2+c2﹣bc=4⇒bc≤4所以:,即△ABC面积的最大值为.故答案为:.14.【2013年新课标1理科15】设当x=θ时,函数f(x)=sin x﹣2cos x取得最大值,则cosθ=.【解答】解:f(x)=sin x﹣2cos x(sin x cos x)sin(x﹣α)(其中cosα,sinα),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ,又sin2θ+cos2θ=1,联立得(2cosθ)2+cos2θ=1,解得cosθ.故答案为:15.【2011年新课标1理科16】在△ABC中,B=60°,AC,则AB+2BC的最大值为.【解答】解:设AB=cAC=bBC=a由余弦定理cos B所以a2+c2﹣ac=b2=3设c+2a=m代入上式得7a2﹣5am+m2﹣3=0△=84﹣3m2≥0 故m≤2当m=2时,此时a,c符合题意因此最大值为2另解:因为B=60°,A+B+C=180°,所以A+C=120°,由正弦定理,有2,所以AB=2sin C,BC=2sin A.所以AB+2BC=2sin C+4sin A=2sin(120°﹣A)+4sin A=2(sin120°cos A﹣cos120°sin A)+4sin Acos A+5sin A=2sin(A+φ),(其中sinφ,cosφ)所以AB+2BC的最大值为2.故答案为:216.【2010年新课标1理科16】在△ABC中,D为边BC上一点,BD DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=.【解答】解:由△ADC的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°,,则.故∠BAC=60°.17.【2019年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A ﹣sin B sin C.(1)求A;(2)若a+b=2c,求sin C.【解答】解:(1)∵△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A﹣sin B sin C.则sin2B+sin2C﹣2sin B sin C=sin2A﹣sin B sin C,∴由正弦定理得:b2+c2﹣a2=bc,∴cos A,∵0<A<π,∴A.(2)∵a+b=2c,A,∴由正弦定理得,∴解得sin(C),∴C,C,∴sin C=sin()=sin cos cos sin.18.【2018年新课标1理科17】在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:,即,∴sin∠ADB,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB,∵DC=2,∴BC5.19.【2017年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S△ABC ac sin B,∴3c sin B sin A=2a,由正弦定理可得3sin C sin B sin A=2sin A,∵sin A≠0,∴sin B sin C;(2)∵6cos B cos C=1,∴cos B cos C,∴cos B cos C﹣sin B sin C,∴cos(B+C),∴cos A,∵0<A<π,∴A,∵2R2,∴sin B sin C•,∴bc=8,∵a2=b2+c2﹣2bc cos A,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c∴周长a+b+c=3.20.【2016年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sin C≠0已知等式利用正弦定理化简得:2cos C(sin A cos B+sin B cos A)=sin C,整理得:2cos C sin(A+B)=sin C,即2cos C sin(π﹣(A+B))=sin C2cos C sin C=sin C∴cos C,∴C;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S ab sin C ab,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5.21.【2013年新课标1理科17】如图,在△ABC中,∠ABC=90°,AB,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB,求P A;(2)若∠APB=150°,求tan∠PBA.【解答】解:(I)在Rt△PBC中,,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得P A2=PB2+AB2﹣2PB•AB cos30°.∴P A.(II)设∠PBA=α,在Rt△PBC中,PB=BC cos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.22.【2012年新课标1理科17】已知a,b,c分别为△ABC三个内角A,B,C的对边,a cos C a sin C﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为,求b,c.【解答】解:(1)由正弦定理得:a cos C a sin C﹣b﹣c=0,即sin A cos C sin A sin C=sin B+sin C∴sin A cos C sin A sin C=sin(A+C)+sin C,即sin A﹣cos A=1∴sin(A﹣30°).∴A﹣30°=30°∴A=60°;(2)若a=2,△ABC的面积,∴bc=4.①再利用余弦定理可得:a2=b2+c2﹣2bc•cos A=(b+c)2﹣2bc﹣bc=(b+c)2﹣3×4=4,∴b+c=4.②结合①②求得b=c=2.考题分析与复习建议本专题考查的知识点为:同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形等.预测明年本考点题目会比较稳定,备考方向以同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等为重点较佳.最新高考模拟试题1.函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象如图所示.则函数()f x 的单调递增区间为( )A .,63k k ππππ轾犏-+犏臌,k z ∈B .,33k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈C .,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈D .,66k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈【答案】C 【解析】根据函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象, 可得:332113441264T ππππω=⋅=-=, 解得:2ω=, 由于点,26π⎛⎫⎪⎝⎭在函数图象上,可得:2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭,可得:2262k ππϕπ⨯+=+,k ∈Z ,解得:26k πϕπ=+,k ∈Z ,由于:0ϕπ<<, 可得:6π=ϕ,即2sin 26y x π⎛⎫=+ ⎪⎝⎭,令222262k x k πππππ-≤+≤+,k ∈Z 解得:36k x k ππππ-≤≤+,k ∈Z ,可得:则函数()f x 的单调递增区间为:,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈Z .故选C .2.将函数()2sin(2)3f x x π=+的图像先向右平移12π个单位长度,再向上平移1个单位长度,得到()g x 的图像,若()()129g x g x =且12,[2,2]x x ππ∈-,则122x x -的最大值为( ) A .4912π B .356π C .256π D .174π 【答案】C 【解析】由题意,函数()2sin(2)3f x x π=+的图象向右平移12π个单位长度,再向上平移1个单位长度,得到()2sin[2()]12sin(2)11236g x x x πππ=-++=++的图象, 若()()129g x g x =且12,[2,2]x x ππ∈-, 则()()123g x g x ==,则22,62x k k Z πππ+=+∈,解得,6x k k Z ππ=+∈,因为12,[2,2]x x ππ∈-,所以121157,{,,,}6666x x ππππ∈--, 当12711,66x x ππ==-时,122x x -取得最大值,最大值为711252()666πππ⨯--=, 故选C.3.将函数222()2cos4x f x ϕ+=(0πϕ-<<)的图像向右平移3π个单位长度,得到函数()g x 的图像,若()(4)g x g x π=-则ϕ的值为( )A .23-π B .3π-C .6π-D .2π-【答案】A 【解析】 因为222()2coscos()14x f x x ϕϕ+==++, 将其图像向右平移3π个单位长度,得到函数()g x 的图像, 所以()cos()13g x x πϕ=-++,又()(4)g x g x π=-,所以()g x 关于2x π=对称, 所以2()3k k Z ππϕπ-+=∈,即(2)()3k k Z πϕπ=+-∈,因为0πϕ-<<,所以易得23πϕ=-.故选A4.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的图象经过两点(0,(,0)24A B π, ()f x 在(0,)4π内有且只有两个最值点,且最大值点大于最小值点,则()f x =( ) A .sin 34x π⎛⎫+ ⎪⎝⎭B .3sin 54x π⎛⎫+⎪⎝⎭C .sin 74x π⎛⎫+⎪⎝⎭D .3sin 94x π⎛⎫+⎪⎝⎭【答案】D 【解析】根据题意可以画出函数()f x 的图像大致如下因为(0)sin 2f ϕ==32,()4k k Z πϕπ=+∈ 又因为0ϕπ<<,所以34πϕ=,所以3()sin()4f x x πω=+, 因为3()sin()0444f πππω=+=,由图可知,3244k ππωππ+=+,解得18,k k Z ω=+∈, 又因为24T ππω=<,可得8ω>,所以当1k =时,9ω=, 所以3()sin(9)4f x x π=+, 故答案选D.5.已知函数()cos f x x x =-,则下列结论中正确的个数是( ). ①()f x 的图象关于直线3x π=对称;②将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象;③,03π⎛⎫- ⎪⎝⎭是()f x 图象的对称中心;④()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增. A .1 B .2C .3D .4【答案】A由题意,函数1()cos 2cos 2cos 23f x x x x x x π⎛⎫⎛⎫=-=-=+ ⎪ ⎪⎪⎝⎭⎝⎭, ①中,由22cos 133f ππ⎛⎫==-⎪⎝⎭不为最值,则()f x 的图象不关于直线3x π=对称,故①错; ②中,将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象,故②对; ③中,由2cos 023f π⎛⎫-== ⎪⎝⎭,可得,03π⎛⎫- ⎪⎝⎭不是()f x 图象的对称中心,故③错; ④中,由22,3k Z x k k ππππ-+≤∈≤,解得422,33k x k k Z ππππ-≤-∈≤,即增区间为42k ,2k ,33k Z ππππ⎡⎤--⎢⎥⎣⎦∈, 由22,3k x k k Z ππππ≤+≤+∈,解得22,233k x k k Z ππππ-≤≤+∈,即减区间为22,2,33k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,可得()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递减,故④错. 故选:A .6.在ABC ∆中,角A 、B 、C 的对边长分别a 、b 、c ,满足()22sin 40a a B B -++=,b =则ABC △的面积为A .BC .D 【答案】C 【解析】把22(sin )40a a B B -++=看成关于a 的二次方程,则2224(sin )164(3cos 4)B B sin B cos B B B =-=++-24(2cos 3)4(cos 222)cos B B B B B =+-=+- 4[2sin(2)2]06B π=+-…,故若使得方程有解,则只有△0=,此时6B π=,b =代入方程可得,2440a a -+=,由余弦定理可得,2428cos3022c c+-︒=⨯,解可得,c =∴111sin 2222ABC s ac B ∆==⨯⨯=故选:C .7.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,则b 的取值范围为( )A .(0,4)B .(2,C .D .4)【答案】C 【解析】由锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,∴ 022A π<<,3A B A +=,32A ππ∴<< 63A ππ∴<<,04A π<<cos 22A <<2,2a B A ==,由正弦定理得12cos 2b b A a ==,即4cos b A =4cos A ∴<<则b 的取值范围为,故选C.8.已知V ABC 的内角,,A B C 所对的边分别为,,a b c ,若6sin c os 7sin2C A A =,53a b =,则C =( ). A .3πB .23π C .34π D .56π 【答案】B 【解析】由题意,因为672sinCcosA sin A =,可得:614sinCcosA sinAcosA =, 即(614)0sinC sinA cosA -⋅=,可得∴614sinC sinA =或0cosA =, 又由a b <,则A 为锐角,所以0cosA =不符合舍去, 又由正弦定理可得:37c a =,即:73a c =, 由余弦定理可得22222257133cos 52223a a a a b c C a ab a ⎛⎫⎛⎫+- ⎪ ⎪+-⎝⎭⎝⎭===-⎛⎫⋅ ⎪⎝⎭, ∵(0,)C π∈,∴23C π=. 故选:B .9.若函数()2sin()f x x ωϕ=+ (01ω<<,02πϕ<<)的图像过点,且关于点(2,0)-对称,则(1)f -=_______. 【答案】1 【解析】函数()()2sin f x x ωϕ=+的图像过点(2s i n ϕ∴=sin ϕ= 02πϕ<<3πϕ∴=又函数图象关于点()2,0-对称 2sin 203πω⎛⎫∴-+= ⎪⎝⎭,即:23k πωπ-+=,k Z ∈126k πωπ∴=-+,k Z ∈01ω<< 6πω∴=()2sin 63f x x ππ⎛⎫∴=+⎪⎝⎭,()12sin 2sin 1636f πππ⎛⎫∴-=-+== ⎪⎝⎭本题正确结果:110.若实数,x y 满足()()()2221122cos 11x y xyx y x y ++--+-=-+.则xy 的最小值为____________【答案】1.4【解析】∵()()()2221122cos 11x y xyx y x y ++--+-=-+,∴10x y -+>, ()()()()2221121111111x y xyx y x y x y x y x y ++---++==-++-+-+-+()1121x y x y ∴-++≥=-+,当且仅当11x y -+=时即=x y 时取等号()22cos 12x y +-≥,当且仅当()1x y k k Z π+-=∈时取等号∴()()()2221122cos 12111x y xyx y x y x y ,即++--=+-=-+=-+且()1x y k k Z π+-=∈,即()12k x y k Z π+==∈, 因此21124k xy π+⎛⎫=≥ ⎪⎝⎭(当且仅当0k =时取等号), 从而xy 的最小值为1.411.设函数()sin(2)3f x x π=+,若120x x <,且12()()0f x f x +=,则21x x -的取值范围是_______.【答案】(3π,+∞) 【解析】不妨设120x x <<,则2121x x x x -=-,由图可知210()33x x ππ->--=.故答案为:(3π,+∞) 12.已知角α为第一象限角,sin cos a αα-=,则实数a 的取值范围为__________.【答案】(1,2] 【解析】由题得sin 2sin()3a πααα==+,因为22,,2k k k Z ππαπ<<+∈所以52++2,,336k k k Z ππππαπ<<+∈ 所以1sin()1,12sin()2233ππαα<+≤∴<+≤. 故实数a 的取值范围为(1,2]. 故答案为:(1,2]13.已知函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,则cos 2ϕ=___. 【答案】35【解析】因为函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,322f f ππ⎛⎫⎛⎫∴= ⎪⎪⎝⎭⎝⎭, 即cos 2sin cos 2sin ϕϕϕϕ+=--,即cos 2sin ϕϕ=-, 即1tan 2ϕ=-, 则22222211cos sin 1tan 34cos 21cos sin 1tan 514ϕϕϕϕϕϕϕ---====+++, 故答案为35.14.如图,四边形ABCD 中,4AB =,5BC =,3CD =,90ABC ∠=︒,120BCD ∠=°,则AD 的长为______【解析】连接AC ,设ACB θ∠=,则120ACD θ∠=-,如图:故在Rt ABC ∆中,sin θθ==, ()11cos 120cos 2222θθθ-=-+=-=, 又在ACD ∆中由余弦定理有()2223cos 120AD θ+--==,解得265AD =-即AD =15.在锐角ABC ∆中,角A B C ,,的对边分别为a b c ,,.且c o s c o s A B a b+=b =.则ac +的取值范围为_____.【答案】(6,【解析】cos cos 3A B C a b a +=cos cos sin 3b A a BC ∴+= ∴由正弦定理可得: sin cos sin cos sin B A A B B C +=,可得:sin()sin sin A B C B C +==,sin B ∴=, 又ABC ∆为锐角三角形,3B π∴=,∴可得:sin sin 24(sin sin )4sin 4sin sin sin 3b A b C a c A C A A B B π⎛⎫+=+=+=+- ⎪⎝⎭3A π⎛⎫=- ⎪⎝⎭ 2,3A A π-均为锐角,可得:,62636A A πππππ<<-<-<,(6,a c ∴+∈.故答案为: (6,.16.在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B成等差数列,则AB 的长为________.【解析】因为1tan A ,1tan C ,1tan B 成等差数列, 所以211tan tan tan C A B =+,即2cos cos cos sin()sin sin sin sin sin sin sin sin C A B A B CC A B A B A B+=+==, 所以2sin 2cos sin sin C C A B =,由正弦定理可得2cos 2c C ab=,又由余弦定理可得222cos 2a b c C ab +-=,所以222222a b c c ab ab+-=,故2222a b c +=, 又因为AB 边上的中线1CM =,所以1CM =,因为()12CM CA CB =+, 所以22222422cos CMCA CB CA CB CA CB CA CB C =++⋅=++,即22224232c b a ab c ab=++⋅=,解c =即AB 的长为3.17.在ABC ∆中,A B C ,,的对边分别a b c ,,,60,cos A B ︒==(Ⅰ)若D 是BC 上的点,AD 平分BAC ∠,求DCBD的值; (Ⅱ)若 ccos cos 2B b C +=,求ABC ∆的面积. 【答案】(Ⅰ)4;【解析】(Ⅰ)因为cos 3B =,∴sin 3B =, ()1sin sin sin cos cos sin 2C A B A B A B =+=+==, 由正弦定理得sin sin sin AD BD AD B BAD C ==∠,sin DCCAD∠, 因为AD 平分BAC ∠,所以sin 4sin DC BBD C ===.(Ⅱ)由cos cos 2c B b C +=,即222222cos cos 222a c b a b c c B b C c b a ac ab+-+-+=⋅+⋅==,所以sin sin a b A B =,∴sin sin 3a Bb A ==,故11sin 222ABCSab C ==⨯=18.在ABC ∆中,角,,A B C 所对的边分别,,a b c ,()()()()2sin cos sin f x x A x B C x R =-++∈,函数()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称.(1)当0,2x π⎛⎫∈ ⎪⎝⎭时,求()f x 的值域;(2)若7a =且sin sin B C +=ABC ∆的面积.【答案】(1)2⎛⎤-⎥ ⎝⎦(2)【解析】(1)()()()2sin cos sin f x x A x B C =-++ ()2sin cos sin x A x A =-+=2sin()cos sin(())x A x x x A -+--=2sin()cos sin cos()sin()cos x A x x x A x A x -+--- =sin()cos sin cos()x A x x x A -+-()sin 2x A =-∵函数()f x 的图像关于点π,06⎛⎫⎪⎝⎭对称, ∴π06f ⎛⎫=⎪⎝⎭∴π3A =∴()πsin 23f x x ⎛⎫=-⎪⎝⎭∵()f x 在区间5π0,12⎛⎤ ⎥⎝⎦上是增函数,5ππ,122⎛⎫⎪⎝⎭上是减函数,且()0f =,5π112f ⎛⎫= ⎪⎝⎭,π2f ⎛⎫=⎪⎝⎭∴()f x 的值域为,12⎛⎤- ⎥ ⎝⎦(2)∵sin sin B C +=1313sin sin sin 1377B C A b c a ∴+=∴+=⨯= ∴13b c +=由余弦定理,2222cos a b c bc A =+- ∴40bc =∴1sinA 2ABCSbc == 19.在ABC ∆中,已知2AB =,cos 10B =,4C π=.(1)求BC 的长; (2)求sin(2)3A π+的值.【答案】(1)5BC =(2【解析】解:(1)因为cos B =,0B π<<,所以sin B ===在ABC ∆中,A B C π++=,所以()A B C π=-+, 于是sin sin(())sin()A B C B C π=-+=+4sin cos cos sin 1021025B C B C =+=⨯+⨯=. 在ABC ∆中,由正弦定理知sin sin BC AB A C=,所以4sin sin 55AB BC A C =⨯==. (2)在ABC ∆中,A B C π++=,所以()A B C π=-+, 于是cos cos(())cos()A B C B C π=-+=-+3(cos cos sin sin )1021025B C B C ⎛⎫=--=--= ⎪ ⎪⎝⎭,于是4324sin 22sin cos 25525A A A ==⨯⨯=, 2222347cos 2cos sin 5525A A A ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭.因此,sin 2sin 2cos cos 2sin 333A A A πππ⎛⎫+=+ ⎪⎝⎭24172425225250-⎛⎫=⨯+-⨯= ⎪⎝⎭.20.如图,在四边形ABCD 中,60A ∠=︒,90ABC ∠=︒.已知AD =BD =(Ⅰ)求sin ABD ∠的值;(Ⅱ)若2CD =,且CD BC >,求BC 的长.【答案】(Ⅰ)4(Ⅱ)1BC = 【解析】(Ⅰ)在ABD 中,由正弦定理,得sin sin AD BD ABD A =∠∠.因为60,A AD BD ︒∠===所以sin sin sin 604AD ABD A BD ︒∠=⨯∠==(Ⅱ)由(Ⅰ)可知,sin ABD ∠=, 因为90ABC ︒∠=,所以()cos cos 90sin CBD ABD ABD ︒∠=-∠=∠=. 在BCD ∆中,由余弦定理,得2222cos CD BC BD BC BD CBD =+-⋅∠.因为2,CD BD ==所以2462BC BC =+-,即2320BC BC -+=,解得1BC =或2BC =.又CD BC >,则1BC =.21.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且234cos2sin 22A b b a B =+. (1)求cos A ;(2)若a =5c =,求b .【答案】(1) 3cos 5A =(2) 1b =或5. 【解析】解:(1)由题意知234cos 2sin 22A b b aB =+, 化简得4cos 3sin b A a B =,由正弦定理得4sin cos 3sin sin B A A B =, 因为sin 0B ≠, 所以4tan 3A =,且A 为ABC ∆的内角, 即3cos 5A =. (2)由余弦定理得2222cos a b c bc A =+-, 所以220256b b =+-,所以2650b b -+=,所以1b =或5.22.已知在△ABC 中,222a c ac b +-=. (Ⅰ)求角B 的大小;(Ⅱ)求cos cos A C +的最大值.【答案】(Ⅰ)3π;(Ⅱ)1. 【解析】 (Ⅰ)由余弦定理得2221cos ==222a cb ac B a c a c +-⋅=⋅⋅ 因为角B 为三角形内角3B π∴∠=(Ⅱ)由(Ⅰ)可得23A C B ππ∠+∠=-∠= 23A C π∴∠=-∠ cos cos A C ∴+=2cos cos 3C C π⎛⎫-+⎪⎝⎭ =22cos cos sin sin cos 33C C C ππ⋅+⋅+=1cos sin cos 2C C C -⋅++=1sin cos 22C C ⋅+⋅ =cos sin sin cos 66C C ππ⋅+⋅ =sin 6C π⎛⎫+ ⎪⎝⎭ 203C π<<5666C πππ∴<+< 1sin 126C π⎛⎫∴<+≤ ⎪⎝⎭ cos cos A C ∴+的最大值是1。