2.8拉普拉斯定理。行列式的乘法规则
§8拉普拉斯(Laplace)定理·行列式的乘法规则

这里 cij = ai 1b1 j + ai 2b2 j + L + ainbnj , i , j = 1,2,L , n.
∴ D = ( −1)
1+ 2+L+ n+ ( n+1)+L+ 2 n
cij ( −1) = cij
n
从而
aij bij = cij ,
cij = ai 1b1 j + ai 2b2 j + L + ainbnj , i , j = 1,2,L , n.
按照原来次序组成一个 k 级行列式 M,称为行列 按照原来次序组成一个 ,称为行列 级子式; 式 D 的一个 k 级子式;在 D 中划去这 k 行 k 列后 余下的元素按照原来的次序组成的 n − k 级 行列 余子式; 式 M ′ ,称为 k 级子式 M 的余子式;
中所在的行、 若 k 级子式 M 在 D 中所在的行、列指标分别是
−1 2 = 5 A = ( −1)1+ 3+1+ 2 0 1 = 0 , 4 , 1 3 0 1 0 2 = 0 , A = ( −1)1+ 3+1+ 2 0 −1 = 0 . 6 0 3 0 1
4+1+1+ 3
∴ D = (−2) 1 + 0 (−2) + (−1) 5 + 2 0 + 6 0 + (−1) 0 = −7
又对D作初等行变换: 又对 作初等行变换: 作初等行变换
ri = ai 1rn+1 + ai 2 rn+ 2 + L + ain r2 n , i = 1,2,L , n.
Laplace展开定理.

由此可知,D1 和D的展开式中出现的项是一样的,只不过每一
项都相差符号为 1 i1 ik j1 jk
…,第n列加到第n+1列,用 b12,b22, bn2 乘第1列,第2列,
第二章
行列式
…,第n列加到第n+2列,…,用 b1n ,b2n ,
…,第n列加到第2n列,则 D2n 化为
a11 a12
a1n a11b11 a12b21 a1nbn1
a21 a22
a2n a21b11 a22b21 a2nbn1
§2.8 Laplace展开定理
利用行列式的依行(列)展开可以把n阶行列式化为n-1 阶行列式来处理,这在简化计算以及证明中都有很好的应用。 但有时我们希望根据行列式的构造把n阶行列式一下降为n-k 阶行列式来处理,这是必须利用Laplace展开定理。为了说明 这个方法,先把余子式和代数余子式的概念加以推广。
k 1 k n 1 行,由这k行元素所组成的一切k阶子式与它们
的代数余子式的乘积的和等于行列式D。
证明:设D中取定k行后所得的子式为M1, M 2 , , Mt , 它的
代数余子式分别为 A1, A2, , At , 下证 D M1A1 M 2 A2 M t At
—(1)
2、M是N的余子式,N便是M的余子式,M、N互为余子式。
abcd
例2.8.1 写出行列式 D g h p q 中取定第一行和
stuv
wx y z
第三行所得的所有二阶子式及它们的余子式和代数余式。 二阶子式共有 C42 6 个。
行列式乘法法则

首先验证$n=1$时,行列式乘法法则是否成立。
归纳假设
假设当$n=k$时,行列式乘法法则成立。
归纳步骤
证明当$n=k+1$时,行列式乘法法则也成立。
证明方法二:反证法
由于存在矛盾,所以行列式乘法 法则成立。
根据行列式的性质和假设条件, 推导出矛盾。
假设行列式乘法法则不成立。
反证假设
导出矛盾
行列式乘法法则
contents
目录
• 行列式乘法法则的概述 • 行列式乘法法则的证明 • 行列式乘法法则的实例 • 行列式乘法法则的扩展 • 行列式乘法法则的注意事项
01 行列式乘法法则的概述
定义与性质
定义
行列式乘法法则是线性代数中一个重 要的法则,用于计算两个矩阵的乘积 的行列式值。
性质
行列式乘法法则是可交换的,即 A×B=B×A,同时满足结合律,即 (A×B)×C=A×(B×C)。
04
```
三个三阶行列式的乘法
三个三阶行列式的乘法
| a11 a12 a13 |
```
例如
01
03 02
三个三阶行列式的乘法
| a21 a22 a23 |
| a31 a32 a33 |
| b11 b12 b13 ||
| b31 b32 b33 |
行列式乘法与线性变换的运算
线性变换的运算可以通过行列式乘法来实现,例如,一个矩阵乘以 一个行列式可以表示一个线性变换作用于一个向量。
行列式乘法的几何意义
行列式乘法的结果可以表示一个线性变换后的新向量相对于原向量 的方向和大小的变化。
行列式乘法与向量的关系
向量可以看作是行列式的特例
一个向量可以看作是一个1x1的行列式,因此,行列式乘法也可以应用于向量的运算。
拉普拉斯(Laplace)定理

§2-8 拉普拉斯(Laplace)定理 行列式的乘法规则一、拉普拉斯定理定义9 在一个n 级行列式D 中任意选定k 行k 列(n k ≤),位于这些行和列的交点上的2k 个元素按照原来的次序组成一个k 级行列式M ,称为行列式D 的一个k 级子式.在D 中划去这k 行k 列后余下的元素按照原来的次序组成的k n -级行列式M '称为k 级子式M 的余子式.从定义立刻看出,M 也是M '的余子式.所以M 和M '可以称为D 的一对互余的子式.例1 在四级行列式 310120012104121-=D 中选定第一、三行,第二、四列得到一个二级子式M : 1042=M , M 的余子式为 1020='M .例2 在五级行列式555453525125242322211514131211a a a a a a a a a a a a a a a D=中,454342252322151312a a a a a a a a a M =和54513431a a a aM ='是一对互余的子式. 定义10:设D 的k 级子式M 在D 中所在的行、列指标分别是k k j j j i i i ,,,;,,,2121 ,则M 的余子式M '前面加上符号)()(2121)1(k k j j j i i i +++++++- 后称做M 的代数余子式.因为M 与M '位于行列式D 中不同的行和不同的列,所以有下述引理 行列式D 的任一个子式M 与它的代数余子式A 的乘积中的每一项都是行列式D 的展开式中的一项,而且符号也一致.定理6(拉普拉斯定理) 设在行列式D 中任意取定了k (11-≤≤n k )个行.由这k 行元素所组成的一切k 级子式与它们的代数余子式的乘积的和等于行列式D .例3 利用拉普拉斯定理计算行列式131310112104121-=D从这个例子来看,利用拉普拉斯定理来计算行列式一般是不方便的.这个定理主要是理论方面的应用.二、行列式的乘积法则 定理7 两个n 级行列式nnn n nn a a a a a a a a a D2122221112111=和nnn n nn b b b b b b b b b D 2122221112112=的乘积等于一个n 级行列式nnn n nn c c c c c c c c c C212222111211=,其中ij c 是1D 的第i 行元素分别与2D 的第j 列的对应元素乘积之和:∑==+++=nk kj ik nj in j i j i ij b a b a b a b a c 12211 .这个定理也称为行列式的乘法定理.它的意义到第四章§3中就完全清楚了.。
§2.8拉普拉斯(Laplace)定理

从而
a ij b ij c ij ,
c ij a i 1 b1 j a i 2 b 2 j a in b n j ,
i , j 1, 2 , , n .
§2.8 Laplace定理
例2:证明齐次性方程组
ax1 bx1 cx 1 dx1 bx2 ax2 dx2 cx 2 cx 3 dx3 ax3 bx3 dx4 cx 4 bx4 ax4 0 0 0 0
A 1 , A 2 , , A t , 则 D M 1 A 1 M 2 A 2 M t A t. .
§2.8 Laplace定理
注:
① k 1 时,D M 1 A1 M 2 A 2 M t A t 即为行列式 D 按某行展开;
a11 a1 k 0 a k 1 a kk 0 D b1 1 * br 1 0 a 1 1 a 1 k b1 1 b1 r 0 b1 r a k 1 a k k b r 1 b rr b rr
只有零解.其中 a , b , c , d 不全为0.
§2.8 Laplace定理
证:系数行列式
a b c d b a d c D c d a b d c b a a b c d b a d c c d a b d c b a
D
2
a b c d b a d c DD c d a b d c b a
二、拉普拉斯(Laplace)定理
引理
行列式 D 的任一子式 M 与它的代数余子式 A的乘积中的每一项都是行列式 D 的展开式中 的一项,而且符号也一致.
§2.8 Laplace定理
2.8 Laplace定理(简介)

a
k 1
n
ik kj
b
(i, j 1, 2, , n) .
cij ai1b1 j ai 2b2 j ainbnj aik bkj ,即乘积为 n 级行列式,其第 i
k 1
n
行、 j 列上元素 cij 为行列式 D1 中第 i 行元素与行列式 D2 中第 j 行对应 第 元素乘积的和. 该定理也称为行列式的乘法定理,其意义在第四章讨论.
1 0 例 1: D 0 0 2 1 0 0 1 2 2 1 4 1 中选定第 1,3 行,第 2,4 列得 2 级子式: 1 3
M
2 0
4 , 1
M 的余子式:M /
a12 a22 a32 a42 a52 a13 a23 a33 a43 a53 a14 a24 a34 a44 a54
D
3. 定理 7
a11 D1 ai1 an1
a12 a1n a11 a1 j a1n a21 a2 j a2 n ai 2 ain , D2 an1 anj ann an 2 ann
c11 c1 j c1n D1 D2 C ci1 cij cin , 其中 cij cn1 cnj cnn
k级(代数)余子式的概念 Laplace定理 行列式乘法规则
拉普拉斯(749-1827):法国数 学家,物理学家,16岁入开恩大学 学习数学,后为巴黎军事学院教授. 曾任拿破仑的内政部长,后被拿破仑 革职.也曾担任过法兰西学院院长. 写了《天体力学》(共5卷),《关 于几率的分析理论》的不朽著作, 赢得‚法兰西的牛顿‛的美誉.拉普拉斯的成就巨大 , 现在数学中有所谓的拉普拉斯变换、拉普拉斯方程、 拉普拉斯展开式等. 他正好死于牛顿死亡的第100年 ,他的最后一句话是‘我们知之甚少,不知道的却 甚多’.
高等代数 第二章§2.8 Laplace定理 行列式的乘法规则

aij bij = cij ,
cij = ai 1b1 j + ai 2b2 j + ⋯ + ainbnj , i , j = 1,2,⋯ , n.
§2.8 Laplace定理 Laplace定理
例2:证明齐次性方程组 :
ax1 + bx2 + cx3 + dx4 bx1 − ax2 + dx3 − cx4 cx − dx − ax + bx dx1 + cx2 − bx3 − ax4 2 3 4 1
c d −a −b b −a d −c
d −c b −a c −d −a b d c −b −a
a2 +b2 +c2 +d2 0 0 0 0 0 0 a2 +b2 +c2 +d2 = 0 0 a2 +b2 +c2 +d2 0 a2 +b2 +c2 +d2 0 0 0
§2.8 Laplace定理 Laplace定理
−1 2 = 5 A = ( −1)1+ 3+1+ 2 0 1 = 0 , 4 , 1 3 0 1 0 2 = 0 , A = ( −1)1+ 3+1+ 2 0 −1 = 0 . 6 0 3 0 1
A3 = ( −1) A5 = ( −1)
1+ 343; 3
∴ D = (−2)i1 + 0i(−2) + (−1)i 5 + 2i 0 + 6i 0 + (−1)i0 = −7
§2.8 Laplace定理 Laplace定理
又对D作初等行变换: 又对 作初等行变换: 作初等行变换
拉普拉斯(Laplace)定理

行运用Laplace 定理结果. 定理结果. 为行列式 D 取定前 k 行运用
§2.8 Laplace定理 Laplace定理
1 0 例1:计算行列式 D = 1 : 0
M 1 = 1 2 = −2, 解: 1 0
2 1 4 −1 2 1 0 1 3 1 3 1 M 2 = 1 1 = 0, 1 1
从而
aij bij = cij ,
cij = ai 1b1 j + ai 2b2 j + ⋯ + ainbnj , i , j = 1,2,⋯ , n.
§2.8 Laplace定理 Laplace定理
例2:证明齐次性方程组 :
ax1 + bx2 + cx3 + dx4 bx1 − ax2 + dx3 − cx4 cx − dx − ax + bx dx1 + cx2 − bx3 − ax4 2 3 4 1
c d −a −b b −a d −c
d −c b −a c −d −a b d c −b −a
a2 +b2 +c2 +d2 0 0 0 0 0 0 a2 +b2 +c2 +d2 = 0 0 a2 +b2 +c2 +d2 a2 +b2 +c2 +d2 0 0 0
§2.8 Laplace定理 Laplace定理
级子式与余子式、 一、k 级子式与余子式、代数余子式
定义 在一个 n 级行列式 D 中任意选定 k 行 k 列
k 2个元素 ( k ≤ n),位于这些行和列的交叉点上的 位于这些行和列的交叉点上的
按照原来次序组成一个 k 级行列式 M,称为行列 按照原来次序组成一个 ,称为行列 级子式; 式 D 的一个 k 级子式;在 D 中划去这 k 行 k 列后 余下的元素按照原来的次序组成的 n − k 级 行列 余子式; 式 M ′ ,称为 k 级子式 M 的余子式;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若 k 级子式 M 在 D 中所在的行、列指标分别是
i1 , i2 ,
, ik ; j1 , j2 ,
, jk ,则在 M 的余子式 M 前
后称之为 M 的代数
加上符号 ( 1)
i1 i2 ik j1 j2 jk
余子式,记为 A ( 1)i1 i2
ainbnj , i , j 1,2,
, n.
D ( 1)1 2
n ( n1) 2 n
cij ( 1)n cij
从而
aij bij cij ,
cij ai 1b1 j ai 2b2 j
ainbnj , i , j 1,2,
, n.
§2.8 Laplace定理
2 1 M4 2, 0 1 M 6 1 4 1 1 3
它们的代数余子式为
§2.8 Laplace定理
A1 ()1 3 2 4 1 1 2 , , 2 1 1 0 1 1 2 5 A ( 1)1 31 2 0 1 0 , 4 , 1 3 0 1
i , j 1,2,
§2.8 Laplace定理
,n
k 1
证: 作一个2n级的行列式
a11 a n1 D 1 a1n 0 ann 0 b11 1 bn1 0 0 b1n bnn
由拉普拉斯定理
D
a11 a n1
a1n b11 ann bn1
b1n bnn
aij bij
§2.8 Laplace定理
§2.8 Laplace定理
(a 2 b2 c 2 d 2 )4
2 2 2 2 4 a , b , c , d 由 不全为0,有 (a b c d ) 0
即 D 0,故方程组只有零解.
§2.8 Laplace定理
M t At
② D
ak 1 *
为行列式 D 取定前 k 行运用Laplace 定理结果.
§2.8 Laplace定理
1 0 例1:计算行列式 D 1 0
1 2 2, M 解: 1 1 0 M 3 1 4 1, 1 3 M 5 2 4 6, 0 3
2 1 4 1 2 1 0 1 3 1 3 1 M 2 1 1 0, 1 1
例2:证明齐次性方程组
ax1 bx2 cx3 dx4 bx1 ax2 dx3 cx4 cx dx ax bx dx1 cx2 bx3 ax4 2 3 4 1
0 0 0 0
只有零解.其中 a, b, c, d 不全为0.
§2.8 Laplace定理
定义 在一个 n 级行列式 D 中任意选定 k 行 k 列
2 k ( k n),位于这些行和列的交叉点上的 个元素
按照原来次序组成一个 k 级行列式 M,称为行列 式 D 的一个 k 级子式;在 D 中划去这 k 行 k 列后 余下的元素按照原来的次序组成的 n k 级 行列 式 M ,称为 k 级子式 M 的余子式;
A3 ( 1)
1 3 2 3
A5 ( 1)411 3 0 2 0 , A6 ( 1)1 31 2 0 1 0 . 0 3 0 1
∴ D ( 2) 1 0 ( 2) ( 1) 5 2 0 6 0 ( 1) 0 7
§2.8 Laplace定理
又对D作初等行变换:
ri ai 1rn1 ai 2rn 2
可得
0 0 D 1 0 c11
ainr2n , i 1,2,
c1n cnn b1n bnn
, n.
0 c n1 b11 1 bn1
这里 cij ai 1b1 j ai 2b2 j
§2.8 Laplace定理
证:系数行列式
a b 2 D DD c d
a D b c d b a d c c d a b
b a d c d c b a a b c d
c d a b b a d c
d c b a c d a b d c b a
a 2 b2 c 2 d 2 0 0 0 2 2 2 2 0 a b c d 0 0 0 0 a 2 b2 c 2 d 2 0 2 2 2 2 0 0 0 a b c d
行列式 D 的任一子式 M 与它的代数余子式 A的乘积中的每一项都是行列式 D 的展开式中 的一项,而且符号也一致.
§2.8 Laplace定理
Laplace 定理
设在行列式 D 中任意取 k ( 1 k n 1 )行, 由这 k 行元素所组成的一切k级子式与它们的 代数余子式的乘积和等于 D.即 若 D 中取定 k 行后,由这 k 行得到的 k 级子式 为 M1 , M 2 ,
, M t ,它们对应的代数余子式分别为 M t At. .
A1 , A2 ,
, At , 则 D M1 A1 M 2 A2
§2.8 Laplace定理
注:
① k 1 时,D M1 A1 M 2 A2 即为行列式 D 按某行展开;
a11 a1k 0 akk 0 b11 br 1 0 0 b1r a k1 brr a11 a1k b11 akk br 1 b1r brr
ik j1 j2 jk
M .
注: ① k 级子式不是唯一的.
k k (任一 n 级行列式有 C n C n个 k 级子式).
② k 1 时,D中每个元素都是一个1级子式;
k n 时,D本身为一个n级子式.
§2.8 Laplace定理
二、拉普拉斯(Laplace)定理
引理
第二章 行列式
§1 引言 §2 排列 §3 n 级行列式 §4 n 级行列式的性质 §5 行列式的计算 §6 行列式按行(列)展开 §7 Cramer法则 §8 Laplace定理 行列式乘法法则
一、k 级子式
余子式
代数余子式
二、拉普拉斯(Laplace)定理 三、行列式乘法法则
一、k 级子式与余子式、代数余子式
三、行列式乘法法则
设有两个n 级行列式 a11 a12 a1n b11 b12 a21 a22 a2 n b21 b22 D1 , D2
b1n b2n bnn
a n1 a n 2
则 D1 D2
ann c1n c2 n
bn1 bn 2
c11 c12 c21 c22
c n1 c n 2 cnn n 其中 cij ai 1b1 j ai 2b2 j ainbnj aik bkj ,