第十四章整式的乘除与因式分解综合测试题

合集下载

第14章 整式乘除与因式分解 单元同步检测试题 2022—2023学年人教版数学八年级上册

第14章 整式乘除与因式分解 单元同步检测试题 2022—2023学年人教版数学八年级上册

第十四章《整式的乘法与因式分解》单元检测题题号一二三总分19 20 21 22 23 24分数一、选择题(每题3分,共30分)1.下列运算正确的是()A.x2+x2=x4B. (a-b)2=a2-b2C.(-a2)3=-a6D.3a2·2a3=6a62.下列因式分解正确的是()A. x2﹣4=(x+4)(x﹣4) B. x2+2x+1=x(x+2)+1C. 3mx﹣6my=3m(x-6y) D. 2x+4=2(x+2)3.下列因式分解错误的是()A. 2a﹣2b=2(a-b) B. x2﹣9=(x+3)(x﹣3)C. a2+4a-4=(a+2)2 D. -x2-x+2=-(x-1)(x+2)4.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.15.下列计算中,正确的个数有()①3x3•(﹣2x2)=﹣6x5;②4a3b÷(﹣2a2b)=﹣2a;③(a3)2=a5;④(﹣a)3÷(﹣a)=﹣a2.A.1个B.2个 C.3个 D.4个6.下列各式中能用平方差公式是()A.(x+y)(y+x)B.(x+y)(y-x)C.(x+y)(-y-x)D.(-x+y)(y-x)7. 如果单项式-2x a-2b y2a+b与x3y8b是同类项,那么这两个单项式的积是()A.-2x6y16 B.-2x6y32 C.-2x3y8 D.-4x6y168. 化简(-2)2n+1+2(-2)2n的结果是()A.0 B.-22n+1 C.22n+1 D.22n9. 因式分解x2-ax+b,甲看错了a的值,分解的结果是(x+6)(x-1),乙看错了b的值,分解的结果为(x-2)(x+1),那么x2+ax+b分解因式正确的结果为()A.(x-2)(x+3) B.(x+2)(x-3)C.(x-2)(x-3) D.(x+2)(x+3)10. 如图,设k =甲阴影部分的面积乙阴影部分的面积(a >b >0),则有( )A .k >2B .1<k <2C .12<k <1D .0<k <12二、填空题(每题3分,共24分)11.计算:223()32x y --=__________.12.计算:(-a 2)3+(-a 3)2-a 2·a 4+2a 9÷a 3=__________. 13.当x __________时,(x -4)0=1.14.若多项式x 2+ax +b 分解因式的结果为(x +1)(x -2),则a +b 的值为_______. 15.若|a -2|+b 2-2b +1=0,则a =__________,b =__________. 16.已知3a =5,9b =10,则3a +2b 的值为________. 17.已知A =2x +y ,B =2x -y ,计算A 2-B 2=________. 18.如下图(1),边长为a 的大正方形中一个边长为b 的 小正方形,小明将图(1)的阴影部分拼成了一个矩形, 如图(2)。

八年级数学上册第十四章《整式的乘法与因式分解》综合测试卷-人教版(含答案)精选全文完整版

八年级数学上册第十四章《整式的乘法与因式分解》综合测试卷-人教版(含答案)精选全文完整版

可编辑修改精选全文完整版八年级数学上册第十四章《整式的乘法与因式分解》综合测试卷-人教版(含答案)一、单选题1.下列多项式:①244x x +;②2224x xy y -+;③2214a ab b -+;④224a b -+中,能用公式法分解因式的有( ).A .1个B .2个C .3个D .4个 2.计算()()9910022-+-的结果为( ) A .992- B .992 C .2- D .23.因式分解2x ax b ++,甲看错了a 的值,分解的结果是()()61x x +-,乙看错了b 的值,分解的结果为()()21x x -+,那么x ax b ++分解因式正确的结果为( ).A .()()23x x -+B .()()23x x +-C .()()23x x --D .()()23x x ++4.若a+b=1,则22a b 2b -+的值为( )A .4B .3C .2D .1 5.在边长为a 的正方形中挖去一个边长为b 的小正方形(a b >)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A .()()22a b a b a b -=+-B .()2222a b a ab b -=-+C .()2222a b a ab b +=++ D .()()2222a b a b a ab b +-=+- 6.如果(x -2)(x+3)=x 2+px+q ,那么p 、q 的值是( )A .p=5,q=6B .p=1,q=6C .p=5,q=-6D .p=1,q=-67.下列各式子的运算,正确的是( )A .(3a +2b )(3a ﹣2b )=3a 2﹣2b 2B .222(2)44x y x xy y -+=-+C .221136222x y xy xy xy x y ⎛⎫⎛⎫-+÷-=-+ ⎪ ⎪⎝⎭⎝⎭ D .(a +2)(a ﹣3)=a 2﹣68.已知(x ﹣2)(x 2+mx +n )的乘积项中不含x 2和x 项,则m ,n 的值分别为( )A .m =2,n =4B .m =3,n =6C .m =﹣2,n =﹣4D .m =﹣3,n =﹣69.图(1)是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .aB .2()a b +C . 2()a b -D .22a b -10.观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x +a )(x +b )=x 2-7x +12,则a ,b 的值可能分别是( )A .3-,4-B .3-,4C .3,4-D .3,411.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .0二、填空题12.分解因式:24xy x -=__________.13.边长为m 、n 的长方形的周长为14,面积为10,则33m n mn +的值为_________.14.如图是一个长和宽分别为a 、b 的长方形,它的周长为14、面积为10,则a 2b +ab 2的值为___.15.若多项式225a ka ++是完全平方式,则k 的值是______.16.已知2310a a -+=,求441a a +的值为____.17.若2260x x --=,则()()()22321212x x x x -++--的值为__________.三、解答题18.因式分解(1)229(3)4(32)a b a b +--(2)()()22252732x x x x +++-+ 19.计算:(1)(﹣2a 2b )2•ab 2÷(﹣a 3b );(2)(x ﹣1)(x +1)(x 2+1);(3)20202﹣2022×2018(用乘法公式计算);(4)(a ﹣b ﹣3)(a ﹣b +3).20.(1)已知4 m =a ,8n =b ,用含a 、b 的式子表示下列代数式:①求:22 m+3n 的值;②求:24 m -6n 的值;(2)已知2×8x ×16=226,求x 的值.21.(1)先化简,再求值:x 2﹣3x ﹣5=0,求代数式(x ﹣3)2+(x +y )(x ﹣y )+y 2的值;(2)已知x +y =4,xy =3,求x 2+y 2,(2x ﹣2y )2的值.22.我们知道几个非负数的和等于0,只有这几个数同时等于0才成立,如|x -2|+(y +3)2=0,因为|x -2|,(y +3)2都是非负数,则x -2=0,y +3=0,即可求x =2,y =-3,应用知识解决下列各题:(1)若(x +4)2+(y -3)2=0,求x ,y 的值.(2)若x 2+y 2-2x+4y=-5,求y x .(2)若2x 2+3y 2+8x -6y =-11,求(x +y )2020的值.23.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如22424x y x y --+,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了。

《第十四章 整式的乘除与因式分解》单元测试卷含答案(共六套)

《第十四章 整式的乘除与因式分解》单元测试卷含答案(共六套)

《第十四章 整式的乘除与因式分解》单元测试卷(一)(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分)1. 计算a 10÷a 2(a≠0)的结果是( )A.a 5B.a -5C.a 8D.a -82. 下列计算中,正确的是( )A .(a 3)4= a 12B .a 3· a 5= a 15C .a 2+a 2= a 4D .a 6÷ a 2= a 33. 运用乘法公式计算(x +3)2的结果是( )A .x 2+9B .x 2-6x +9C .x 2+6x +9D .x 2+3x +94. 将下列多项式因式分解,结果中不含有因式1a +的是( )A .21a -B .2a a +C .22a a +-D .2(2)2(2)1a a +-++5. 下列运算正确的是( )A .(12)﹣1=﹣12 B .6×107=6000000C .(2a )2=2a 2D .a 3•a 2=a 56. 把x n+3+x n+1分解因式得( )A .x n+1(x 2+1)B .n 3x x +x ()C .x (n+2x +n x )D .x n+1(x 2+x ) 7. 若4x 2+axy+25y 2是一个完全平方式,则a=( )A .20B .﹣20C .±20D .±108. 将图(甲)中阴影部分的小长方形变换到图(乙)位置,根据两个图形的面积关系得到的数学公式是( )9. 20042-2003×2005的计算结果是( )A .1B .-1C .0D .2×20042-110. 将代数式2x +4x-1化成()2x+p +q 的形式为( )A .(x-2)2+3B .(x+2)2-4C .(x+2)2 -5D .(x+2)2+4二、填空题(共6小题,每小题3分,共18分)11. 因式分解:a 3-a=12. 计算:(-5a 4)•(-8ab 2)= . 13. 已知a m =3,a n =4,则a 3m-2n =__________14. 若3x =,则代数式269x x -+的值为__________.15. 若x +y =10,xy =1 ,则x 3y +xy 3= .16. 若整式22x ky +(k 为不等于零的常数)能在有理数范围内因式分解,则k 的值可以是 _______________(写出一个即可).三、解答题(共8题,共72分)17. (本题8分)计算:(a+b )2﹣b (2a+b )18. (本题8分)分解因式:2m (m ﹣n )2﹣8m 2(n ﹣m )19. (本题8分)如图(1),是一个长为2a 宽为2b (a >b )的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,求中间空白部分的面积(用含a 、b 的式子表示 )20. (本题8分)计算(2126)3×(1314)4×(43)321. (本题8分)简便计算:1.992+1.99×0.0122. (本题10分)当a=3,b=-1时,求()()a b a b +-的值。

(完整版)第十四章---整式乘除及因式分解(知识点+题型分类练习).doc

(完整版)第十四章---整式乘除及因式分解(知识点+题型分类练习).doc
10. 下列计算正确的是()
A. x2 x 3 x5
B. x 2 x3 x6
C. (x 2 ) 3 x5
D. x 5 x3 x 2
11. 下列计算正确的是()
A. a 2a 3a2
B. a2 a3 a5
C. a3 a 3
D. ( a)3 a3
12.下列运算正确的是 ( ).
A. a3a3 2 a6
B.a6 a 3a3
影部分的周长和是()
A.4mcm
B.4ncm
C.2 ( m+n)cm
D.4 ( m- n) cm
考点 4、计算
1. 如果
a8 写成下列各式,正确的共有()
① a 4 a 4;② (a 2 ) 4;③ a16 a2;④ ( a 4 ) 2;⑤ (a 4 ) 4;⑥ a20 a12;⑦ a4 a4;⑧ 2a8 a 8 a8
(完整版)第十四章---整式乘除及因式分解(知识点+题型分类练习).doc
整式乘除及因式分解
知识点梳理
一、幂的运算:
1、同底数幂的乘法法则: a m ? a n a m n(m, n都是正整数)同底数幂相乘,底数不变,指数相加。注意
底数可以是多项式或单项式。
2、幂的乘方法则:(a m ) n a mn(m, n都是正整数)幂的乘方,底数不变,指数相乘。如:( 35 )2 310
2.( 2016?上海)下列单项式中,与a2b 是同类项的是()
A. 2a2b B . a2b2 C . ab2 D .3ab 3.( 2015?崇左)下列各组中,不是同类项的是()
A. 52与 25 B .﹣ ab 与 ba C .0.2a 2b 与﹣a2b D . a2b3与﹣ a3b2 4.( 2015?柳州)在下列单项式中,与2xy 是同类项的是()

人教版八年级数学上册第十四章《整式乘法与因式分解》测试带答案解析

人教版八年级数学上册第十四章《整式乘法与因式分解》测试带答案解析

人教版八年级数学上册第十四章《整式乘法与因式分解》测试学校:___________姓名:___________班级:___________考号:___________一、单选题1.计算3325a a 的结果是( ) A .610aB .910aC .37aD .67a2.下列运算正确的是( ) A .22a a a ⋅=B .824a a a ÷=C .()2242a b a b =D .()325a a =3.下列计算正确的是( ) A .623a a a ÷=B .()326a a =C .248a a a ⋅=D .532a a a -=4.下列计算结果正确的是( ) A .()336a a =B .632a a a ÷=C .()248ab ab =D .()2222a b a ab b +=++5.下列计算正确的是( ) A .25611a a a += B .()235326b b b -⋅= C .623623b a a ÷=D .()()22339b a a b a b +-=-6.已知实数m ,n 满足222+=+m n mn ,则2(23)(2)(2)-++-m n m n m n 的最大值为( ) A .24B .443C .163D .4-7.已知()()2221x x x +--=,则2243x x -+的值为( ) A .13B .8C .-3D .58.若2022202020222022202320222021-=⨯⨯n ,则n 的值是( ) A .2023B .2022C .2021D .20209.如图是一个运算程序的示意图,若开始输入的x 值为81,我们看到第一次输出的结果为27.第二次输出的结果为9,…,第2022次输出的结果为( )A .1B .3C .9D .2710.下列等式从左到右的变形,其中属于因式分解的是( ) A .2221(1)--=-x x x B .22221(1)x y xy xy ++=+ C .2(3)(3)9x x x +-=-D .32822(41)a a a a -=-11.有一台特殊功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数1x ,只显示不运算,接着再输入整数2x 后则显示12x x -的结果.比如依次输入1,2,则输出的结果是121-=;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.有如下结论:①依次输入1,2,3,4,则最后输出的结果是2;②若将1,2,3,4这4个整数任意地一个一个输入,全部输入完毕后显示的结果的最大值是4;③若将1,2,3,4这4个整数任意地一个一个地输入,全部输入完毕后显示的结果的最小值是0;④若随意地一个一个地输入三个互不相等的正整数2,a ,b ,全部输入完毕后显示的最后结果设为k ,若k 的最大值为10,那么k 的最小值是6.上述结论中,正确的个数是( ) A .1个B .2个C .3个D .4个12.在数学中为了书写简便,18世纪数学家欧拉就引进了求和符号“∑”,如记1nk k =∑=1+2+3+…+(n ﹣1)+n ,()3n k x k =+∑=(x +3)+(x +4)+…+(x +n );已知()3nk x x k =⎡+⎤⎣⎦∑=9x 2+mx ,则m 的值是( ) A .45B .63C .54D .不确定二、填空题13.分解因式:216x y xy -=______.14.因式分解:322242m m n mn -+=________. 15.因式分解:32312x xy -=_________.16.已知2223,15a b b c a b c -=-=++=,则ab bc ca ++的值等于________.三、解答题 17.分解因式: (1)22a ab a ++; (2)()()222m n m n +-+18.化简:()()()482x y x y xy xy xy +---÷.19.先化简,再求值:(1)(1)(2)x x x x +-++,其中12x =. 20.先化简,再求值:22()()(2)34x y x y x y y y ⎡⎤+----÷⎣⎦,其中20201x y ==-,.21.已知有理数a ,b ,c 满足()222434|41|02aa cbc b +-+--+--=∣∣,试求313242n n n a b c +++-的值.22.先化简,再求值()()()22x y x y xy xy x +-+-÷,其中11,2x y ==. 23.已知x +1x =3,求下列各式的值:(1)(x ﹣1x)2;(2)x 4+41x . 24.阅读材料:若2222440m mn n n -+-+=,求m ,n 的值.解:∵2222440m mn n n -+-+=,∴()()2222440m mn n n n -++-+=,∴22()(2)0m n n -+-=,∴2()0m n -=,2(2)0n -=,∴2n =,2m =. 根据你的观察,探究下面的问题:(1)已知22228160x y xy y +-++=,则x =________,y =________;(2)已知ABC 的三边长a 、b 、c 都是正整数,且满足22248180a b a b +--+=,求ABC 的周长.25.如图,长为40,宽为x 的大长方形被分割为9小块,除阴影A ,B 两块外,其余7块是形状、大小完全相同的小长方形,其较短一边长为y .(1)分别用含x,y的代数式表示阴影A,B两块的周长,并计算阴影A,B两块的周长和.(2)分别用含x,y的代数式表示阴影A,B两块的面积,并计算阴影A,B的面积差.(3)当y取何值时,阴影A与阴影B的面积差不会随着x的变化而变化,并求出这个值.参考答案:1.A【分析】直接利用单项式乘以单项式运算法则计算得出答案. 【详解】解:6332510a a a =⋅, 故选:A .【点睛】此题主要考查了单项式乘以单项式,正确掌握相关运算法则是解题关键. 2.C【分析】根据同底数幂乘除法、积的乘方和幂的乘方法则进行计算,即可作出判断. 【详解】A :23a a a ⨯=,故A 错误,不符题意; B :826a a a ÷=,故B 错误,不符题意; C :()2242a b a b =,故C 正确,符合题意; D :()326a a =,故B 错误,不符题意; 故选:C.【点睛】此题考查了同底数幂乘除法、积的乘方和幂的乘方运算,熟练掌握运算法则是解本题的关键. 3.B【分析】根据同底数幂的除法法则对A 进行判断;根据幂的乘方法则对B 进行判断;根据同底数幂的乘法法则对C 进行判断;根据合并同类项对D 进行判断. 【详解】A. 624a a a ÷=,所以此项不正确; B. ()326a a =,所以此项正确;C. 246a a a ⋅=,所以此项不正确;D. 53a a -,不能合并,,所以此项不正确; 故选B .【点睛】本题考查了同底数幂的除法:am ÷an =am -n (m 、n 为正整数,m >n ).也考查了同底数幂的乘法、幂的乘方与积的乘方以及合并同类项. 4.D【分析】分别利用幂的乘方法则,同底数幂的除法,积的乘方法则,完全平方公式分别求出即可.【详解】A .()339a a =,故此选项计算错误,不符合题意;B .633a a a ÷=,故此选项计算错误,不符合题意;C .()2428ab a b =,故此选项计算错误,不符合题意;D .()2222a b a ab b +=++,故此选项计算正确,符合题意; 故选:D .【点睛】本题考查幂的乘方法则,同底数幂的除法,积的乘方法则,完全平方公式,熟练掌握相关计算法则是解答本题的关键.幂的乘方,底数不变,指数相乘;同底数幂相除,底数不变,指数相减;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;222()2a b a ab b +=++与222()2a b a ab b -=-+都叫做完全平方公式,为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式. 5.D【分析】根据合并同类项法则、同底数幂的乘除法、平方差公式计算即可求解. 【详解】A. 5611a a a +=,计算错误,本选项不符合题意;B. ()235326b b b -⋅=-,计算错误,本选项不符合题意;C. 6622362b b a a÷=,计算错误,本选项不符合题意;B. ()()22339b a a b a b +-=-,计算正确,本选项符合题意;故选:D .【点睛】本题考查整式的混合运算,解题的关键是熟练掌握合并同类项法则、同底数幂的乘除法、平方差公式计算法则. 6.B【分析】先将所求式子化简为107mn -,然后根据()22220m n m n mn +++=≥及222+=+m n mn 求出23mn ≥-,进而可得答案.【详解】解:2(23)(2)(2)-++-m n m n m n 222241294m mn n m n =-++- 225125m mn n =-+()5212mn mn =+- 107mn =-;∵()22220m n m n mn +++=≥,222+=+m n mn , ∴220mn mn ++≥, ∴32mn ≥-, ∴23mn ≥-,∴441073mn -≤, ∴2(23)(2)(2)-++-m n m n m n 的最大值为443, 故选:B .【点睛】本题考查了完全平方公式、平方差公式的应用,不等式的性质,正确对所求式子化简并求出mn 的取值范围是解题的关键. 7.A【分析】先化简已知的式子,再整体代入求值即可. 【详解】∵()()2221x x x +--= ∴225x x -=∴222432(2)313x x x x -+=-+= 故选:A .【点睛】本题考查平方差公式、代数式求值,利用整体思想是解题的关键. 8.D【分析】原式先提取公因式,再运用平方差公式进行计算即可. 【详解】解:2022202020222022- =202022022(20221)- =20202022(20221)(20221)+- =2020202220232021⨯⨯∵2022202020222022202320222021-=⨯⨯n ∴2020202220232021202320222021n ⨯⨯=⨯⨯ ∴202020222022n = ∴2020n =. 故选:D .【点睛】本题主要考查了整式的运算,熟练掌握平方差公式是解答本题的关键. 9.A【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案. 【详解】解:第1次,181273⨯=,第2次,12793⨯=,第3次,1933⨯=,第4次,1313⨯=,第5次,123+=,第6次,1313⨯=,⋯,依此类推,从第3次开始以3,1循环,(20222)21010-÷=,∴第2022次输出的结果为1.故选:A .【点睛】本题考查了求代数式的值,能根据求出的结果得出规律是解此题的关键. 10.B【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案. 【详解】解:2221(1)x x x -+=-,故A 不符合题意; 22221(1)x y xy xy ++=+,故B 符合题意;2(3)(3)9x x x +-=-是整式乘法,故C 不符合题意;32822(41)2(21)(21)a a a a a a a -=-=+-,故D 不符合题意;故选:B【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式,注意因式分解与整式乘法的区别. 11.D【分析】根据输入数据与输出结果的规则进行计算,判断①②③;只有三个数字时,当最后输入最大数时得到的结果取最大值,当最先输入最大数时得到的结果取最小值,由此通过计算判断④.【详解】解:根据题意,依次输入1,2,3,4时,1211-=-=, 1322-=-=,2422-=-=,故①正确;按照1,3,4,2的顺序输入时,1322-=-=, 2422-=-=,220-=,为最小值,故③正确; 按照1,3,2,4的顺序输入时,1322-=-=,220-=,0444-=-=,为最大值,故②正确;若随意地一个一个地输入三个互不相等的正整数2,a ,b ,全部输入完毕后显示的最后结果设为k , k 的最大值为10, 设b 为较大数字,当1a =时,2110a b b --=-=, 解得11b =,故此时任意输入后得到的最小数是:11128--=,设b 为较大数字,当2b a >>时,2210a b a b --=--=, 则210a b --=-,即8b a -= 故此时任意输入后得到的最小数是:2826b a --=-=,综上可知,k 的最小值是6,故④正确; 故选D .【点睛】此题考查绝对值有关的问题,解题的关键是要有试验观察和分情况讨论的能力. 12.B【分析】根据条件和新定义列出方程,化简即可得出答案.【详解】解:根据题意得:x (x +3)+x (x +4)+…+x (x +n )=x (9x +m ), ∴x (x +3+x +4+…+x +n )=x (9x +m ), ∴x [(n ﹣3+1)x +(31)(3)2n n -++]=x (9x +m ),∴n ﹣2=9,m =(31)(3)2n n -++,∴n =11,m =63. 故选:B .【点睛】本题考查了新定义,根据条件和新定义列出方程是解题的关键. 13.(16)xy x -【分析】利用提公因式法进行分解即可. 【详解】解:216(16)x y xy xy x -=-, 故答案为:(16)xy x -.【点睛】本题考查了因式分解-提公因式法,解题的关键是熟练掌握因式分解-提公因式法. 14.()22m m n -【分析】首先提取公因式2m ,再利用完全平方公式即可分解因式. 【详解】解:322242m m n mn -+()2222m m mn n =-+ ()22m m n =-故答案为:()22m m n -【点睛】本题考查了提公因式法和公式法分解因式,熟练掌握和运用分解因式的方法是解决本题的关键.15.()()322x x y x y +-【分析】先提取公因式3x ,然后根据平方差公式因式分解即可求解.【详解】解:原式=()()()2234322x x y x x y x y -=+-.故答案为:()()322x x y x y +-.【点睛】本题考查了因式分解,正确的计算是解题的关键.16.225- 【分析】利用完全平方公式求出(a −b ),(b −c ),(a −c )的平方和,然后代入数据计算即可求解.【详解】解:∵35a b b c -=-=, ∴65a c -=()()()2225425a b b c a c -+-+-= ∴()()222542225a b c ab bc ac ++-++=, ∵2221a b c ++=,∴()27125ab bc ac -++=, ∴225ab bc ca ++=-, 故答案为:225- 【点睛】本题考查了完全平方公式,解题的关键是分别把35a b -=,35b c -=,相加凑出,65a c -=三个式子两边平方后相加,化简求解. 17.(1)()2.a a b ++(2)()32.m m n +【分析】(1)提取公因式a 即可;(2)按照平方差公式进行因式分解即可.【详解】(1)解:22a ab a ++()2.a a b =++(2)()()222m n m n +-+()()22m n m n m n m n =++++--()32.m m n =+【点睛】本题考查的是多项式的因式分解,掌握“提公因式法与公式法分解因式”是解本题的关键.18.222x y -+【分析】根据整式的混合运算法则计算即可.【详解】解:原式()()2222224222x y xy xy x y x y =---÷=---=-+【点睛】本题考查整式的混合运算,熟练掌握该知识点是解题关键.19.12x + ;2 【分析】先利用平方差公式,单项式与多项式乘法化简,然后代入12x =即可求解. 【详解】(1)(1)(2)x x x x +-++2212x x x =-++ 12x =+ 当12x =时, 原式12x =+11222=+⨯=. 【点睛】本题考查了整式的化简求值,正确地把代数式化简是解题的关键.20.2,2022x y -【分析】根据平方差公式,完全平方公式,先计算括号内的,然后根据多项式除以单项式进行计算,最后将20201x y ==-,代入即可求解.【详解】解:原式=()222224434x y x xy y y y --+--÷()2484xy y y =-÷2x y =-.当20201x y ==-,时,原式=2020-2×(-1)=2022.【点睛】本题考查了整式的化简求值,掌握平方差公式,完全平方公式,多项式除以单项式是解题的关键.21.34-【分析】根据非负数的性质求出a ,b ,c 的值,然后代入计算即可. 【详解】解:由题得:22043404102a cbc a b ⎧⎪+-=⎪--=⎨⎪⎪--=⎩, 解得:4141a b c =⎧⎪⎪=⎨⎪=-⎪⎩, 所以313242n n n a b c +++-()3242311414n n n +++⎛⎫=⨯-- ⎪⎝⎭31114144n +⎛⎫=⨯⨯- ⎪⎝⎭34=-. 【点睛】本题考查了非负数的性质,解三元一次方程,积的乘方法则的逆用等知识,利用代入法或加减法把解三元一次方程组的问题转化为解二元一次方程组的问题是解题的关键.22.x 2-2y ,0【分析】首先运用平方差公式计算,再运用单项式乘以多项式计算,最后合并同类项,即可化简,然后把x 、y 值代入计算即可.【详解】解:()()()22x y x y xy xy x +-+-÷=x 2-y 2+y 2-2y=x 2-2y当x =1,y =12时,原式=12-2×12=0.【点睛】本题考查整式化简求值,熟练掌握整式混合运算法则是解题的关键.23.(1)5(2)47【分析】(1)由21()x x +=22112x x x x +⋅⋅+、21()x x -=22112x x x x -⋅⋅+,进而得到21()x x+﹣4x •1x即可解答; (2)由21()x x -=2212x x -+可得221x x +=7,又2221()x x +=4412x x ++,进而得到441x x+=2221()x x +﹣2即可解答. (1)解:∵21()x x +=22112x x x x +⋅⋅+∴21()x x -=22112x x x x -⋅⋅+=2211124x x x x x x+⋅+-⋅=21()x x +﹣4x •1x=32﹣4=5. (2)解:∵21()x x -=2212x x -+,∴221x x +=21()x x -+2=5+2=7,∵2221()x x +=4412x x++,∴441x x +=2221()x x +﹣2=49﹣2=47. 【点睛】本题主要考查通过对完全平方公式的变形求值.熟练掌握完全平方公式并能灵活运用是解答本题的关键.24.(1)-4,-4;(2)ABC 的周长为9.【分析】(1)利用完全平方公式配方,再根据非负数的性质即可得出x 和y 的值;(2)利用完全平方公式配方,再根据非负数的性质即可得出a 和b 的值,从而得出c 的取值范围,根据c 为整数即可得出c 的值,从而求得三角形的周长.【详解】解:(1)由22228160x y xy y +-++=得222)((2816)0x xy y y y -+++=+,22()(4)0x y y -++=,∴0x y -=,40y +=,∴4x y ==-,故答案为:-4,-4;(2)由22248180a b a b +--+=得:222428160a a b b -++-+=,222(1)(4)0a b -+-=,∴a -1=0,b -4=0,∴a =1,b =4,∴3<c <5,∵△ABC 的三边长a 、b 、c 都是正整数,∴c =4,∴ABC 的周长为9.【点睛】本题主要考查了配方法的应用及偶次方的非负性,同时考查了三角形的三边关系,本题难度中等.25.(1)阴影A 的周长为:21480x y -+,∴阴影B 的周长为:21680x y +-,则其周长和为:42x y +;(2)阴影A 的面积为:240120412x y xy y --+,阴影B 的面积为:2416016xy y y -+,阴影A ,B 的面积差为:2404084x y xy y +-- ; (3)当y =5时,阴影A 与阴影B 的面积差不会随着x 的变化而变化,这个值是100.【分析】(1)由图可知阴影A 的长为(404y -),宽为(3x y -),阴影B 的长为4y ,宽为()404x y --⎡⎤⎣⎦,从而可求解;(2)结合(1),利用长方形的面积公式进行求解即可;(3)根据题意,使含x 的项提公因式x ,再令另一个因式的系数为0,从而可求解.(1)解:(1)由题意得:阴影A 的长为(404y -),宽为(3x y -),∴阴影A 的周长为:()()()240432404321480y x y y x y x y -+-=-+-=-+⎡⎤⎣⎦∵阴影B 的长为4y ,宽为()404404x y x y --=-+⎡⎤⎣⎦,∴阴影B 的周长为:()()240424042168044y y x y x y x y +-+=+-+=+-⎡⎤⎣⎦,∴其周长和为:()()214802168042x y x y x y -+++-=+;(2)∵阴影A 的长为(404y -),宽为(3x y -),∴阴影A 的面积为:()()2404340120412y x y x y xy y --=--+. ∵阴影B 的长为4y ,宽为404x y -+,∴阴影B 的面积为:()24404416016y x y xy y y -+=-+, ∴阴影A ,B 的面积差为:()()22240120412416016404084x y xy y xy y y x y xy y --+--+=+--.(3)∵阴影A 与阴影B 的面积差不会随着x 的变化而变化,阴影A ,B 的面积差()22404084408404x y xy y y x y y =+--=-+-.∴当4080y -=,即5y =时,阴影A 与阴影B 的面积差不会随着x 的变化而变化.此时:阴影A ,B 的面积差()2408540545100x =-⨯+⨯-⨯=.【点睛】本题主要考查列代数式,代数式求值,与某个字母无关型问题,解答的关键是根据图表示出两个长方形的长与宽.。

人教版八年级数学上:第14章《整式的乘除与因式分解》单元测试(含答案)

人教版八年级数学上:第14章《整式的乘除与因式分解》单元测试(含答案)

第14章整式的乘法与因式分解一、选择题1.下列何者是22x7﹣83x6+21x5的因式?()A.2x+3 B.x2(11x﹣7)C.x5(11x﹣3)D.x6(2x+7)2.把多项式x3﹣2x2+x分解因式,正确的是()A.(x﹣1)2B.x(x﹣1)2C.x(x2﹣2x+1)D.x(x+1)23.多项式ax2﹣4ax﹣12a因式分解正确的是()A.a(x﹣6)(x+2) B.a(x﹣3)(x+4) C.a(x2﹣4x﹣12)D.a(x+6)(x﹣2)二、填空题4.若x2+x+m=(x﹣3)(x+n)对x恒成立,则n=______.5.因式分解:ax2﹣7ax+6a=______.6.分解因式:(a+2)(a﹣2)+3a=______.7.因式分解:ab2﹣a=______.8.分解因式:2m3﹣8m=______.9.因式分解4x﹣x3=______.10.分解因式x3﹣xy2的结果是______.11.分解因式:2﹣2a2=______.12.分解因式:12m2﹣3n2=______.13.分解因式:5x2﹣20=______.14.分解因式:2x(x﹣3)﹣8=______.15.因式分解:a3﹣ab2=______.16.分解因式:2a2﹣8=______.17.分解因式:m3﹣4m=______.18.分解因式:ax2﹣4a=______.19.分解因式:ab2﹣4ab+4a=______.20.分解因式:2a3﹣8a2+8a=______.21.分解因式:3a2﹣12ab+12b2=______.22.分解因式:4x2﹣8x+4=______.23.把多项式4ax2﹣ay2分解因式的结果是______.24.把多项式分解因式:ax2﹣ay2=______.25.分解因式: =______.26.因式分解:x3﹣5x2+6x=______.27.分解因式:3x2﹣18x+27=______.28.分解因式:a3b﹣9ab=______.29.分解因式:x2+3x(x﹣3)﹣9=______.30.分解因式:x2y﹣4y=______.第14章整式的乘法与因式分解参考答案一、选择题1.C;2.B;3.A;二、填空题4.4;5.a(x-1)(x-6);6.(a-1)(a+4);7.a(b+1)(b-1);8.2m(m+2)(m-2);9.-x (x+2)(x-2);10.x(x+y)(x-y);11.2(1+a)(1-a);12.3(2m+n)(2m-n);13.5(x+2)(x-2);14.2(x-4)(x+1);15.a(a+b)(a-b);16.2(a+2)(a-2);17.m(m-2)(m+2);18.a(x+2)(x-2);19.a(b-2)2;20.2a(a-2)2;21.3(a-2b)2;22.4(x-1)2;23.a(2x+y)(2x-y);24.a(x+y)(x-y);25.-(3x-1)2;26.x(x-3)(x-2);27.3(x-3)2;28.ab(a+3)(a-3);29.(x-3)(4x+3);30.y(x+2)(x-2);。

第十四章整式的乘除与因式分解(2)

第十四章整式的乘除与因式分解(2)

第十四章整式的乘除与因式分解(2)考试范围:第十四章整式的乘除与因式分解;考试时间:100分钟;命 题人:QQ2403336035注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(1--6题2分,7--16题3分,共计42分)1.已知3,5=-=+m n n m ,则22m n -等于( )A .5B .15C .25D .92.下列各式计算正确的是( ) A .x x x x x x 4128)132(4232---=-+- B .3322))((y x y x y x +=++C .2161)14)(14(x x x -=---D .22242)2(y xy x y x +-=-3.把(-2)2014+(-2)2015分解因式的结果是( ).A.22015B.-2 2015C.-2 2014D.220144.如(x +m )与(x +3)的乘积中不含x 的一次项,则m 的值为( ). A .-3 B .3 C .0 D .15.多项式251244522+++-x y xy x 的最小值为( ) A .4 B .5 C .16 D .256.已知3181=a ,4127=b ,619=c ,则a 、b 、c 的大小关系是( )A .a >b >cB .a >c >bC .a <b <cD .b >c >a7.如果二次三项式12-+ax x 可分解为()()b x x +⋅-2,那么a +b 的值为 ( )(A )-2 (B )-1(C )1 (D )28.设2251M a a =-+,237N a =+,其中a 为实数,则M 与N 的大小关系是( ) A .N M >B .N M ≥C .N M ≤D .不能确定.9.如果多项式x 2+mx +16是一个二项式的完全平方式,那么m 的值为 A .4 B .8 C .-8 D .±810.式子2014-a 2+2ab-b 2的最大值是( )A .2012B .2013C .2014D .201511.如图,边长为(m+3)的正方形纸片,剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是( ) A .m+3 B .m+6 C.2m+3 D .2m+612 13.选择题:在公式s=ab 中,若a 增大10%,b 减少10%,则 S ( ) A 、增大10% B 、减少1% C 、增大0.5% D 、不变14.不论a 为何实数,代数式245a a -+的值一定是()A .正数B .负数C .零D .不能确定15.如下图,左图是一个长为2a ,宽为2b (a>b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按右图那样拼成一个正方形,则中间空的部分的面积是()A .2abB .(a+b )2C .(a -b )2D .a 2-b 216.在求1+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:S=1+62+63+64+65+66+67+68+69① 然后在①式的两边都乘以6,得: 6S=6+62+63+64+65+66+67+68+69+610②②﹣①得6S ﹣S=610﹣1,即5S=610﹣1,所以如果把“6”换成字母“a”(a≠0且a≠1),能否求出1+a+a 2+a 3+a 4+…+a 2014的值?你的答案是( )A B C D .a 2014﹣1第II 卷(共计78分)二、填空题(每题3分,共计12分)17.分解因式:4x—9=_____________________ . 18 19.对于实数a ,b ,c ,d ,,×(-2)-0×2=-2,=27时,则x= .20.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为______________________.三、解答题(共6题66分)21.(1)计算:①xy xy y x 2)26(23÷+- ②2(a -3)(a +2)-(4+a )(4-a ). ③2014 2-2015×2013(2)分解因式:①9a 2(x -y )+4b 2(y -x ); ②-3x 2+6xy-3y 222x >1)求(1 (223.(1)若m x =4,m y =3,求m x+3y的值(2)、先化简,再求值:已知,其中x=﹣2,y=﹣0.5.24.已知:a ,b ,c 为△ABC 的三边长,且222222222a b c ab ac bc ++=++,试判断△ABC 的形状,并证明你的结论.25.如图,长为50cm ,宽为x cm 的大长方形被分割为8小块,除阴影A 、B 外, 其余6块是形状、大小完全相同的小长方形,其较短一边长为a cm . (1)从图可知,每个小长方形较长一边长是 cm (用含a 的代数式表示); (2)求图中两块阴影A 、B 的周长和(可以用x 的代数式表示);(3)分别用含x ,a 的代数式表示阴影A 、B 的面积,并求a 为何值时两块阴影 部分的面积相等.26.(1)已知(a-b)2=15,(a+b)2=7,计算ab 的值;(2)阅读理解:已知210a a +-=,求3223a a ++的值.解:3223a a ++3223a a a a a =+-+++22(1)14a a a a a =+-++-+ 004=++ 4=请你参照以上方法解答下面问题:如果2310a a a +++=,试求代数式2345678a a a a a a a a +++++++的值参考答案1.B 【解析】试题分析:根据题意把22m n -应用平方差公式22()()a b a b a b +-=-进行式因分解得(n+m )(n-m ),因此把3,5=-=+m n n m 整体代入即可求解(n+m )(n-m )=5×3=15. 故选B考点:因式分解,整体代入法 2.C 【解析】试题分析:因为2324(231)8124x x x x x x -+-=--+,所以A 错误; 因为223223()()x y x y x x y xy y ++=+++,所以B 错误; 因为2161)14)(14(x x x -=---,所以C 正确;因为222(2)44x y x xy y -=-+,所以D 错误;故选:C. 考点:整式的乘法. 3.C 【解析】 试题分析:根据题意知2014215(-2)+(-2)(2)(2).(2=-+--=-. 考点:幂的乘方 4.A 【解析】试题分析:由题意知(x+m )(x+3)=22x mx 3x 3m x (m 3)x 3m +++=+++,由于不含有x 项,因此m+3=0,即m=-3. 故选A考点:多项式乘以多项式 5.C . 【解析】试题分析:∵251244522+++-x y xy x =2224441225x xy y x x -++++ =22(2)4( 1.5)16x y x -+++,∴当2(2)x y -,24( 1.5)x +时,原式最小,∴多项式251244522+++-x y xy x 的最小值为16, 故选C .考点:1.完全平方公式;2.非负数的性质.【解析】试题分析:3181=a =431124(3)3=,4127=b =341123(3)3=,619=c =261122(3)3=, ∵a>0,b>0,c>0,且124>123>122,∴a >b >c .故选A . 考点:幂的乘方与积的乘方. 7.B 【解析】试题分析:∵2(2)()(2)2x x b x b x b -+=+--,二次三项式12-+ax x 可分解为()()b x x +⋅-2,∴221a b b =-⎧⎨-=-⎩,解得:B.考点:因式分解的意义.8.C . 【解析】试题分析:可设2251y a a =-+,237y a =+,则在关于a ,y 的直角坐标系中,可知图象如下,∴M 可以等于N , ∴N M ≤.故选C .考点:二次函数的性质.【解析】试题分析:∵(x±4)2=x 2±8x+16, 所以m=±2×4=±8. 故选D .考点:完全平方式. 10.C . 【解析】试题分析:2014-a 2+2ab-b 2=2014-(a 2-2ab+b 2)=2014-(a-b )2,∵(a-b )2≥0,∴原式的最大值为:2014. 故选C .考点:1.因式分解-运用公式法;2.偶次方. 11.C . 【解析】试题分析:依题意得剩余部分为(m+3)2﹣m 2=(m+3+m )(m+3﹣m )=3(2m+3)=6m+9, 而拼成的矩形一边长为3,. 故选C .考点:平方差公式的几何背景. 12.A【答案】B【解析】解:在公式s=ab 中, S=a×(1+10%)×b×(1-10%) =1.1a×0.9b =0.99ab即ab-0.99ab =0.01ab =1%ab故本题选择B 14.A . 【解析】试题分析:设y=a 2-4a+5,即y=(a-2)2+1,∵(a-2)2≥0,∴(a-2)2+1≥1,即245a a -+≥1,∴不论a 为何值,代数式245a a -+值大于等于1.根据以上的解答,故答案选A . 考点:二次函数的最值. 15.C 【解析】试题分析:由题意得四块形状和大小都一样的小长方形的长是a ,宽是b ,拼成的正方形的边长是a+b ,所以中间空的部分的面积=(a+b )2 -4 ab= a 2-2ab+b 2=(a -b )2.故选:C. 考点:完全平方公式. 16.B . 【解析】试题分析:设S=1+a+a 2+a 3+a 4+…+a 2014,① 则aS=a+a 2+a 3+a 4+…+a 2014+a 2015,②, ②﹣①得:(a ﹣1)S=a 2015﹣1,∴故选B . 试题解析:考点:1.同底数幂的乘法;2.有理数的乘方. 17.(2x-3)(2x-3) 【解析】试题分析:根据题意应用平方差公式22()()a b a b a b +-=-进行因式分解得24x 9-=(2x+3)(2x-3). 考点:因式分解 18.14 【解析】考点:1.完全平方公式;2.分式的值.19.22. 【解析】试题分析:得:(1)(1)(2)(3)27x x x x +--+-=,化简得:221(6)270x x x -----=, 去括号得:2216270x x x --++-=, 合并得:220x -=, 解得:22x =.故答案为:22.考点:1.整式的混合运算;2.解一元一次方程;3.新定义.20.a 2﹣b 2=(a+b )(a ﹣b ). 【解析】试题分析:左边阴影的面积等于边长为a 的正方形面积减去边长为b 的正方形面积,即a 2﹣b 2,右边平行四边形底边为a+b ,高为a ﹣b ,即面积=(a+b )(a ﹣b ),两面积相等所以等式成立.即:a 2﹣b 2=(a+b )(a ﹣b ).故答案是a 2﹣b 2=(a+b )(a ﹣b ). 考点:平方差公式的几何背景.21.(1)①-3x 2y+1 ② 3a 2-2a-28③ 1(2)①(x-y )(3a+2b )(3a-2b )②-3(x-y )2【解析】 试题分析:(1)①按照多项式除以单项式的除法法则计算便可;②先去括号,然后合并同类项即可;③将2015×2013改写成(2014+1)×(2014-1 )然后用平方差公式;(2)①先提公因式(x-y ),然后用平方差公式分解因式;②先提公因式-3,然后用完全平方公式分解因式.试题解析:①xy xy y x 2)26(23÷+-=32 6222x y xy xy xy -÷+÷=-3x 2y+1;②2(a -3)(a +2)-(4+a )(4-a )=222222212(16)2212163228a a a a a a a a ----=---+=--.③ 2014 2-2015×2013=2014 2-(2014+1)×(2014-1 )= 2014 2-(2014 2-1 )=2014 2-2014 2+1 =1;(2)①9a 2(x -y )+4b 2(y -x )= (x -y )(9a 2-4b 2)=(x-y )(3a+2b )(3a-2b );②-3x 2+6xy-3y 2=-3(x 2-2xy+y 2)=-3(x-y )2.考点:1.整式的乘除;2.平方差公式;3.因式分解.22.(1)23;(2【解析】试题分析:把已知等式两边平方,利用完全平方公式化简即可求出所求式子的值.2=x 2,,2,∵x >1考点:完全平方公式. 23.(1) 108 (2) 化简结果=20xy-32;求值结果=-12 【解析】试题分析:(1)逆用同底数幂的乘法运算x 3y x 3y x 3m m m m (m )y +=⋅=⋅;(2)先化简整式,然后将x=﹣2,y=﹣0.5代入计算即可.试题解析:(1)x 3y x 3y x 3m m m m (m )y +=⋅=⋅=4×27=108.(2)当x=﹣2,y=﹣0.5时,原式=-12.考点:1. 同底数幂的乘法;2.整式的化简求值. 24.等边三角形.证明见试题解析. 【解析】试题分析:由222222222a b c ab ac bc ++=++分组因式分解,利用非负数的性质得到三边关系,从而判定三角形形状.试题解析:△ABC 是等边三角形.证明如下:∵222222222a b c ab ac bc ++=++,∴2222222220a b c ab ac bc ++---=, 即2222222220a ab b a ac c b bc c -++-++-+=, ∴222()()()0a b a c b c -+-+-=,∴0a b -=,0a c -=,0b c -=,得a b =,a c =,b c =,即a b c ==,所以△ABC 是等边三角形.考点:因式分解的应用.25.(1) 50-3a ;(2)4x ;(3)()()5033A S a x a =-⨯-, ()3503B S a x a =-+;【解析】 试题分析:(1)由图形知:每个小长方形较长一边长为:(50-3a )cm; (2) 由图形知:A 的长+B 的宽=x ,A 的宽+B 的长=x ,可求周长和.(3)分别用含有x 、a 的代数式表示A 、B 的长和宽,从而可求阴影A 、B 的面积,列方程可求a 的值.试题解析:(1) 50-3a ;(2)由图形知:A 的长+B 的宽=x ,A 的宽+B 的长=x 所以周长和=4x ;(3)()()5033A S a x a =-⨯-, ()3503B S a x a =-+()()()50333503a x a a x a -⨯-=-+考点:1.列代数式;2.解一元一次方程. 26.(1)-2; (2)0. 【解析】试题分析:(1)把(a-b)2=15,(a+b)2=7,分别展开,相减,即可求出ab 的值; (2)将原式进行分组,提取公因式,代入求值即可求解.试题解析:(1)(a+b)2 -(a-b)2=4ab=7-15=-8, ∴ab=-2.(2)∵2310a a a +++=,∴原式=2345678a a a a a a a a +++++++()()23523=11a a a a a a a a +++++++()()5=000a a ⋅+⋅= .考点:1.完全平方公式;(2)代数式求值. 27.(1)()2m n -; (2)()()m n m n --或者()24m n m n +-;(3)(4)()222()472029a b a b ab -=+-=-=.【解析】试题分析:(1)由大正方形面积减去四个小长方形面积可得;(2)法一:由大正方形面积减去四个小长方形面积可得,法二,由小正方形的边长平方可得;(3)由完全平方差公式与完全平方和公式可得三者关系;(4)将上题中结论变形为()22()4a b a b ab -=+-,可求. (1)()2m n -;(2)()()m n m n --或者()24m n mn +-;(4)()222()472029a b a b ab -=+-=-=. 考点:1.整式乘法;2.完全平方公式.。

人教版八年级上册数学试题:第十四章 整式的乘除与因式分解单元测试题(A卷)

人教版八年级上册数学试题:第十四章 整式的乘除与因式分解单元测试题(A卷)

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯第十四章《整式的乘法与因式分解》单元测试(A卷)(时间;90分钟,满分:120分)一、选择题:(细心选一选,顺利闯首关,每小题3分,满分30分,温馨提示:只有一个正确)1.计算:.=()A.B.C.D.2.计算的结果是()A.B.C.D.3.下列运算中错误的是()A.B.C.D.4.计算的结果是()A. B. C.D.5.下列运算中,①.,②.,③.,④.,⑤.,其中运算正确的个数为()A.4 B.3 C.2D.16.下列各式中能用平方差公式是()A.(x+y)(y+x) B.(x+y)(y-x)C.(x+y)(-y-x) D.(-x+y)(y-x)7.代数式是一个完全平方式,则k的值是()A.4 B.4 C.2D.28.下列因式分解错误的是( )A.B.C.D.9.计算(11a+b)(-11a+b)+的结果是()A.22ab +2 B.121 +22ba C.22ab -2 D.22ab2-2ab- c2+b2的值:10.若a、b、c是三角形的三条边长,则代数式,aA、大于零B、小于零C、等于零D、与零的大小无关二、填空题:(精心填一填,勇闯第二关,每小题3分,满分30分,温馨提示:答案要简洁,规范)11.如果.=,那么m的值为.12.计算的结果是.13.计算3x=6+.14.a+b-c=a-().15.计算=.16.如果=n,则=.17.下列式子中,①②③④是完全平方式的有.(只填序号)18.化简的结果是.19.分解因式:= .20.若(x+m)(x+n)=-7x+mn,则-m-n的值为.三、解答题:(精准算,规范写,成功闯三关.本题共6个题,满分60.温馨提示:写出文字说明,必须的解答过程或规范的解题步骤)21.(满分10分)计算下列各题:(1)计算:(-2a)·() (2)÷ab22.(满分10分)因式分解:(1)3-27 (2)23.(满分10分)在学习中,小明发现:当n=1,2,3时,的值都是负数.于是小朋猜想:当n为任意正整数时,的值都是负数.小明的猜想正确吗?请简要说明你的理由.24.(满分10分)已知:=3,=2,求的值.25.(满分10分)化简求值:(a-2)(b-2),其中a+b= ab=1.26.(满分10分)已知:-1能被60和70之间的两个数整除.求出这两个数各是多少?参考答案:选择题:1.A2.B3.B4.B5.D6.B7.B8.D9.A 10.B分析:由a2-2ab- c2+ b2= (a-b)2- c2=(a-b+c)(a-b-c),因为a、b、c是三角形的三条边长,所以两边之和一定是大于第三边的,因此a+c>b,b+c>a,所以a-b+c>0,a-b-c <0,所以,(a-b+c)(a-b-c)<0,因此正确的答案是B.填空题:11.m=6.12.16.13.12.14.a+b-c=a-(c-b).15.50000.16.因为=n,所以n=1,所以=2010.17.考对完全平方公式的理解,填③④.18.考多项式除以单项式,=.19.=a(a+2)(a-2).20.多项式乘以多项式运算,-m-n=7.解答题:21.解:(1)计算:(-2a)·() =(-2×)(a.)=-.(2)÷ab=()+()+(ab÷ab)=a+b+122.解:(1)3-27=3.(2)=a.23.解:小明的猜想是错误的.因为=n(n-6),当n=6时,n-6=0,所以n(n-6)=0,不是负数,所以小明的猜想是错误的.24.解:因为= .=,因为=3,=2,所以= .===72.25.解:因为(a-2)(b-2)=ab-2a-2b+4=ab-2(a+b)+4=1-2×+4=2.因此(a-2)(b-2)的结果是2.26.解:因为48=2×24,所以==,所以-1=-=(+1)(-1)=(+1)【-】=(+1)(+1)(-1)=(+1)(+1)【-】=(+1)(+1)(+1)(-1)=(+1)(+1)(+1)【-】=(+1)(+1)(+1)(+1)(-1)=(224+1)(212+1)(26+1)【(23+1)(23-1)】=(+1)(+1)(+1)×9×7=(+1)(+1)×65×63,因为整除的两个数在60和70之间,且60<63<70,60<65<70,所以这两个数分别是63、65.一天,毕达哥拉斯应邀到朋友家做客。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 2
8、(x +px+8)(x -3x+q)乘积中不含
C 、(x 4y+6x 3y 2—x 2y 2)十3x 2y)=3x 2+2xy — 3x
D 、(3x n+1 — 2x n ) 5x=15x n+2 — 10x n+1 9、下列各式中计算正确的是()
龙门三中2013-2014学年度八年级数学试卷(四) (第十四章:整式的乘除与因式分解)
、选一选,看完四个选项后再做决定呀!
(每小题3分,共30
分)
1、下列运算正确的是(

2 -2 A 、22 XZ 2
=0 2 B 、(— 2 X
3)2= — 36
C 、(23)4=212
D

(汽 2、下列式子可以用平方差公式计算的是

A 、(-x+1) (x — 1)
B 、(a — b)(— a+b)
C 、(— x — 1) (x+1)
D 、(— 2a — b)( — 2a+b) 3、在①34 34=316 ②(一3) 4 •( — 3) 3=— 37 ③一32 •( — 3) ④24+24=25四个式子中,计算正确的有()
4、若(x —3) (x+4) A 、p=1,q=— 12
5、下列计算正确的是 A 、x 2+x 3=2x 5
&一个多项式加上 2 2
A 、 x 3xy
2= — 81 B 、2个 =x 2
+px+q,那么p 、q 的值是(
) C 、3个 p=—
1,q=12 ) x 2 x 3=2x 6
3x 2
y 「3xy 3
得 x 3
「3x 2
B 、x 3
-3xy
2
C 、p=7,q=12 C 、( — x 3
) 2
= — x"
则这个多项式是(
C 、x 3
-6x 2
y 3xy 3
D 、
D 、p=7,q=—
12
D 、x 6 次3=x 3
2小
2

3
x -6x y -3xy
2
2
1 2 2 1 4 2 2 2 2
C 、(2p — 3q ) (— 2p — 3q )= — 4p +9q
D 、( — - a b — b )= —:ab — a b — b
10、如果x 2 8x k 可运用完全平方公式进行因式分解,则 k 的值是(

A 8
B 、16
C 、32 D
、64
二、填一填,要相信自己的能力!(每小题3分,共18分)
1、 多项式x 2y —x 3y 2— 1+y 4是 ___ 次 ____ 项式,其中常数项是 ______ .
2、 若代数式2a 2+3a+1的值是6,则代数式6a 2+9a+5的值为 ________ .
3、 若 a 2+b 2=5,ab=2则(a+b )2= .
4. 已知-x 3m_l
y 3
与--x 5
y 2n+l
是同类项,贝U 5m+3n 的值是
3 4
5、 月球距离地球约为3.84 X 05千米,一架飞机速度约为8X102千米/时,若坐飞机飞行这
么远的距离需 _________ 天.
6. ___________________________________ 若 3x =|,3y =25,则 3y-x = . 三、做一做,要注意认真审题呀! 1、计算下列各题(16分): (1) (-4x_3y 2
)3y 2
-4x ;
'
2
1 (2) 3a 2+—b|
I 2 A
3a
--b 9a 2 A
8、 A 、p=0,q=0 B 、p=3,q=1 C 、p= - 3, - 9
D 、p=- 3,q=1
下列各式计算结果错误的是(
n+2, 3 n — 1 2n+1
A 、4x (— x )=— 3x
4 n
、2 …2、3
2n+6
B 、(—2a ) (3a ) =108a (3) a(a_b 『 一2ba_b]a + b );
(4) (a 2
「ab b 2
) a 2
ab b 2
x 2项和x 3项,则p,q 的值(
2 2
A 、(2p+3q ) (— 2p+3q)=4p —
1
2
2
〔42
1
2 2 2
B
、(2
ab —b)
=1ab —
2ab+b
4、(10分)龙门镇第三初级中学为了改善校园建设, 计划在长方形的校园中间修一个正 方形的花
坛,预计正方形花坛的边长比场地的长少 8米,比它的宽少6米,并且场地的 总面积比花坛的面积大104平方米,求长方形的长和宽.
3、(8分)研究卜列算式:
5、(10分)如果代数式8ma b 与「8na b 是关于a 、b 的单项式,且匕们是同类项. 2
1X 3+1=2
(1)求(5t -26严9
的值;
2X 4+1=32 3X 5+1=42
(2)若 8ma t
b -8 na 2t
'b 0,且 ab=0,求(8m - 8 n )2009
的值.
2
4>6+1=52
第九项的算式是 ____________________________________ ,
上述是否有规律,如有,用含n (n 为正整数)的代数式表示出来;如没有,说明理 由.
2、(8分)先化简,再求值:[(xy+2) (xy — 2) 2 2 1
—2x y +4] -xy (其中 x=10,y=—。

相关文档
最新文档