Matlab的应用-多项式函数及多项式拟合
如何在Matlab中进行多项式拟合

如何在Matlab中进行多项式拟合多项式拟合(polynomial fitting)是一种常用的数据分析方法,它可以通过拟合一个多项式函数来近似描述数据的趋势。
在Matlab中进行多项式拟合可以借助多项式拟合函数polyfit和polyval来实现。
一、多项式拟合的基本原理多项式拟合的基本原理是通过拟合一个多项式函数来逼近一组给定的数据点。
给定一个包含n个数据点的数据集{(x1, y1),(x2, y2),...,(xn, yn)},多项式拟合的目标是找到一个多项式函数y = a0 + a1*x + a2*x^2 + ... + am*x^m,使得该多项式函数与给定的数据点最为接近。
二、使用polyfit进行多项式拟合在Matlab中,可以使用polyfit函数进行多项式拟合。
polyfit函数的用法如下:p = polyfit(x, y, n)其中,x是包含n个数据点的x坐标的向量,y是包含n个数据点的y坐标的向量,n是拟合的多项式的阶数。
polyfit函数返回拟合得到的多项式系数p。
三、使用polyval进行多项式计算在得到拟合的多项式系数p之后,可以使用polyval函数进行多项式计算。
polyval函数的用法如下:y_fit = polyval(p, x)其中,p是拟合得到的多项式系数,x是待计算的x坐标。
polyval函数返回根据拟合的多项式计算得到的y_fit值。
四、示例为了更好地理解多项式拟合的过程,下面给出一个简单的例子。
假设有如下的一组数据点:x = [0, 1, 2, 3, 4, 5]y = [1, 4, 7, 14, 20, 30]我们需要利用多项式拟合来近似描述数据的趋势。
首先,使用polyfit函数进行多项式拟合:p = polyfit(x, y, 2)其中,我们选择2作为拟合的多项式的阶数。
然后,使用polyval函数进行多项式计算:y_fit = polyval(p, x)最后,我们可以将原始数据点和拟合得到的多项式结果绘制在图上,以便观察拟合效果:plot(x, y, 'o', x, y_fit, '-')通过绘制的图像可以观察到,拟合得到的多项式函数能够较好地近似原始数据点的趋势。
曲线拟合的matlab程序

曲线拟合的matlab程序
曲线拟合是一种通过拟合曲线来获取数据规律的方法。
在matlab中,我们可以通过一些函数来实现曲线拟合。
本文将介绍使用matlab进行曲线拟合的方法以及对应程序。
1. 多项式拟合
多项式拟合是一种简单的曲线拟合方法。
在matlab中,我们可以使用polyfit函数进行多项式拟合。
例如,我们要对以下数据进行二次拟合:
x=[-2,-1,0,1,2];
y=[4,1,0,1,4];
p=polyfit(x,y,2);
x_new=-2:0.1:2;
y_new=polyval(p,x_new);
其中,polyfit函数用于拟合多项式曲线,x为自变量,y为因变量,2为多项式的次数。
polyval函数用于计算拟合后的数据点,x_new为计算的自变量范围,0.1为自变量的步长。
2. 最小二乘法拟合
我们可以使用以下程序进行对数曲线拟合:
fun=@(c,x)log(c(1)*x);
c0=[1];
c=lsqcurvefit(fun,c0,x,y);
x_new=1:0.1:5;
y_new=c(1)*x_new;
其中,fun为回归函数,c为回归系数,c0为回归系数的初值,lsqcurvefit函数使用最小二乘法进行拟合。
x_new和y_new同上。
3. 样条拟合
其中,spline函数用于进行样条拟合,x_new为计算的自变量范围,0.1为自变量的步长。
在一些实际应用中,数据可能受到一些约束条件的限制,例如非负性、线性等限制。
在matlab中,我们可以使用lsqnonlin函数进行最小二乘法带约束的拟合。
MATLAB中简单的数据拟合方法与应用实例①

MATLAB中简单的数据拟合方法与应用实例仅供努力学习matlab的同学们参考参考,查阅了M多资料,总结了以下方法按步骤做能够基本学会matlab曲线拟合的1.1数据拟合方法1.1.1多项式拟合1.多项式拟合命令polyfit(X,Y,N):多项式拟合,返回降幂排列的多项式系数。
Polyval(P,xi):计算多项式的值。
其中,X,Y是数据点的值;N是拟合的最高次幂;P是返回的多项式系数;xi是要求的横坐标拟合命令如下:x=[1 2 3 4 5 6 7 8 9];y=[9 7 6 3 -1 2 5 7 20];P=polyfit(x,y,3);xi=0:.2:10;yi=polyval(P,xi);plot(xi,yi,x,y,'r*');拟合曲线与原始数据如图1-1图1-12图形窗口的多项式拟合1)先画出数据点如图1-2x=[1 2 3 4 5 6 7 8 9];y=[9 7 6 3 -1 2 5 7 20];plot(x,y,'r*');图1-22)在图形窗口单击Tools—Basic Fitting,如图1-3勾选.图1-3图1-3右方分别是线性、二阶、三阶对数据进行多项式拟合。
下面的柱状图显示残差,可以看出,三阶多项式的拟合效果是最好的。
1.1.2指定函数拟合已知M组数据点和对应的函数形式f t (t)=acos(kt)eXY编写M文件:syms tx=[0;0.4;1.2;2;2.8;3.6;4.4;5.2;6;7.2;8;9.2;10.4;11.6;12.4;13.6;14.4;15];y=[1;0.85;0.29;-0.27;-0.53;-0.4;-0.12;0.17;0.28;0.15;-0.03;-0.15;-0.071;0.059;0.08;0.032;-0.015;-0.02];f=fittype('a*cos(k*t)*exp(w*t)','independent','t','coefficients',{'a','k','w'});cfun=fit(x,y,f)xi=0:.1:20;yi=cfun(xi);plot(x,y,'r*',xi,yi,'b-');图1-4运行程序,在命令窗口可达到以下运行结果,图像如图1-4Warning: Start point not provided, choosing random start point.> In fit>handlewarn at 715In fit at 315In Untitled2 at 5cfun =General model:cfun(t) = a*cos(k*t)*exp(w*t)Coefficients (with 95% confidence bounds):a = 0.9987 ( 0.9835, 1.014)k = 1.001 (0.9958, 1.006)w = -0.2066 (-0.2131, -0.2002)从结果可以看出,拟合的曲线为:(0.2066) ()0.9987cos(1.001)*tf t t e-=。
matlab中拟合函数为

matlab中拟合函数为在MATLAB中,拟合函数可以使用 fit 函数或其他相关的拟合函数来实现。
以下是一些常用的拟合函数和示例代码:1. 多项式拟合:% 使用 polyfit 函数进行多项式拟合x = [1, 2, 3, 4, 5]; % 自变量数据y = [2, 4, 6, 8, 10]; % 因变量数据degree = 2; % 多项式的阶数coeffs = polyfit(x, y, degree); % 多项式拟合系数% 使用 polyval 函数计算拟合结果x_new = [1.5, 2.5, 3.5]; % 新的自变量数据y_fit = polyval(coeffs, x_new); % 计算拟合结果2. 曲线拟合:% 使用 fit 函数进行曲线拟合x = [1, 2, 3, 4, 5]; % 自变量数据y = [2, 4, 6, 8, 10]; % 因变量数据model = fit(x', y', 'poly2');% 拟合模型,这里使用二次多项式y_fit = model(x); % 计算拟合结果3. 指数拟合:% 使用 fittype 和 fit 函数进行指数拟合x = [1, 2, 3, 4, 5]; % 自变量数据y = [2, 4, 6, 8, 10]; % 因变量数据ft = fittype('a * exp(b * x)'); % 拟合类型,这里使用指数函数形式 model = fit(x', y', ft);% 拟合模型y_fit = model(x); % 计算拟合结果以上是一些常见的拟合函数和示例代码,你可以根据具体的拟合需求选择适合的拟合函数和拟合类型来实现拟合操作。
matlab拟合公式

matlab拟合公式
Matlab是一款强大的数学软件,可以用于拟合各种类型的数据。
在拟合过程中,我们可以选择不同的拟合公式来适应不同的数据类型。
本文将介绍一些常见的拟合公式及其用途。
1. 线性拟合公式
线性拟合公式是最常见的一种拟合公式,用于拟合形如y = ax + b的数据。
在Matlab中,可以使用polyfit函数对数据进行线性拟合,得到系数a和b。
2. 多项式拟合公式
多项式拟合公式用于拟合形如y = a0 + a1x + a2x^2 + … + anxn 的数据。
在Matlab中,可以使用polyfit函数进行多项式拟合,需
要指定拟合的阶数n。
3. 指数拟合公式
指数拟合公式用于拟合形如y = ab^x的数据。
在Matlab中,可以使用fit函数进行指数拟合,需要指定拟合的变量x和对应的因变量y。
4. 对数拟合公式
对数拟合公式用于拟合形如y = a + b ln(x)的数据。
在Matlab 中,可以使用fit函数进行对数拟合,需要指定拟合的变量x和对应的因变量y。
5. 幂函数拟合公式
幂函数拟合公式用于拟合形如y = ax^b的数据。
在Matlab中,
可以使用fit函数进行幂函数拟合,需要指定拟合的变量x和对应的因变量y。
6. 正态分布拟合公式
正态分布拟合公式用于拟合符合正态分布的数据。
在Matlab中,可以使用normfit函数进行正态分布拟合,得到均值和标准差。
总之,在Matlab中,拟合公式的选择需要根据不同的数据类型进行调整,以得到最准确的结果。
Matlab的应用-多项式函数及多项式拟合

Matlab的应用-多项式函数及多项式拟合本节将向大家简要介绍matlab 在多项式处理方面的应用。
多项式函数主要有:下面我们将介绍这些函数的用法:1,roots---求多项式的根格式:roots(c)说明:它表示计算一个多项式的根,此多项式系数是向量c的元素.如果c有n+1个元素,那么此多项式为:c(1)*x^n+c(2)*x^(n-1)+c(3)*x^(n-2)+--+c(n)*x+c(n+1)2,poly---特征多项式格式:poly(a)说明:(1)如果a是一个n阶矩阵,poly(a)是一个有n+1个元素的行向量,这n+1个元素是特征多项式的系数(降幂排列).(2)如果a是一个n维向量,则poly(a)是多项式(x-a(1))*(x-a(2))*..(x-a(n)),即该多项式以向量a的元素为根。
3,polyval—多项式计算格式:polyval(v,s)说明:如果v是一个向量,它的元素是一个多项式的系数,那麽polyval(v,s)是多项式在s 处的值.如果s是一个矩阵或是一个向量,则多项式在s中所有元素上求值例如:v=[1 2 3 4];vv=poly2str(v,’s’)(即v=s^3+2*s^2+3*s+4)s=2;x=polyval(v,s)x =26例如:v=[1 2 3 4];s=[2 4];polyval(v,s)ans=26 1124,conv-多项式乘法例:as=[1 2 3]as =1 2 3>> az=[2 4 2 1]az =2 4 2 1>> conv(as,az)ans =2 8 16 17 83 conv(az,as)ans =2 8 16 17 83 5,deconv-多项式除法例:deconv(az,as)%返回结果是商式的系数ans =2 0[awwq,qw]=deconv(az,as)%awwq是商式的系数,qw是余式的系数awwq =2 0qw =0 0 -4 16,polyder 微分多项式polyder(as)ans =2 27,polyfit--多项式曲线拟合格式::polyfit(x,y,n)说明:polyfit(x,y,n)是找n次多项式p(x)的系数,这些系数满足在最小二乘法意义下p(x(i)) ~= y(i).“人口问题”是我国最大社会问题之一,估计人口数量和发展趋势是我们制定一系列相关政策的基础。
MATLAB拟合函数使用说明

MATLAB拟合函数使用说明MATLAB是一种强大的数学计算和数据分析软件,其中的拟合函数可以用来对实验数据进行拟合以获得一个数学模型,进而预测和分析数据。
使用MATLAB进行数据拟合可以帮助我们理解数据的规律和趋势,进行预测和决策。
在MATLAB中,有多种不同的拟合函数可以使用,包括线性拟合、多项式拟合、非线性拟合等。
下面将对其中几种常用的拟合函数进行介绍,并说明如何使用这些函数进行数据拟合。
1. 线性拟合:使用polyfit函数可以进行线性拟合。
该函数的基本语法为:```p = polyfit(x, y, n)```其中x和y是待拟合的数据,n是拟合多项式的次数。
函数返回一个多项式系数向量p,可以用polyval函数将该多项式应用于其他数据进行预测。
2. 多项式拟合:在MATLAB中,可以使用polyfitn函数进行多项式拟合。
该函数的基本语法为:```p = polyfitn(x, y, n)```其中x和y是待拟合的数据,n是拟合多项式的次数。
函数返回一个多项式系数向量p,可以用polyvaln函数将该多项式应用于其他数据进行预测。
3. 非线性拟合:MATLAB提供了curve fitting toolbox工具箱,其中的cftool函数可以进行非线性拟合。
使用cftool函数可以通过交互界面进行拟合,也可以通过脚本进行自定义拟合。
该工具箱提供了多种非线性模型,如指数模型、对数模型、幂函数模型等。
在进行拟合之前,首先需要准备好待拟合的数据。
常见的方式是将数据存储在一个数组或矩阵中,然后将数组或矩阵传递给拟合函数进行处理。
拟合函数的参数列表中各个参数的选择对拟合结果有一定的影响,一般情况下需要根据具体问题选择合适的参数。
例如,在多项式拟合中,选择合适的拟合多项式的次数n可以避免过度拟合或欠拟合的问题。
进行数据拟合后,可以使用plot函数将原始数据和拟合结果进行可视化比较。
此外,还可以使用拟合结果进行预测,通过polyval或polyvaln函数将拟合多项式应用于其他数据,得到预测结果。
matlab拟合方法

matlab拟合方法Matlab拟合方法摘要:拟合是一种常见的数据分析方法,用于通过数学模型来描述和预测数据的趋势。
Matlab是一种功能强大的数学软件,提供了多种拟合方法来处理不同类型的数据。
本文将介绍几种常用的Matlab 拟合方法,并给出实际案例来说明其应用。
1. 多项式拟合多项式拟合是一种基于多项式函数的拟合方法,通过拟合数据点来获得一个多项式函数,从而近似描述数据的趋势。
Matlab中的polyfit函数可以实现多项式拟合,用户可以指定多项式的阶数,从而控制拟合的复杂程度。
通过最小二乘法,polyfit函数可以找到最佳拟合曲线。
2. 曲线拟合除了多项式拟合,Matlab还提供了其他的曲线拟合方法,包括指数、对数、幂函数等。
这些方法可以根据数据的特点选择适当的曲线形式来进行拟合。
例如,使用fittype函数可以指定拟合的曲线类型,然后使用fit函数进行拟合。
用户还可以根据拟合结果进行参数估计和预测。
3. 非线性拟合当数据无法用简单的线性模型拟合时,可以使用非线性拟合方法。
Matlab提供了lsqcurvefit函数来实现非线性拟合,用户需要提供一个自定义的非线性函数,并指定初始参数值。
lsqcurvefit函数会通过最小二乘法来求解最佳参数值,从而得到最佳拟合曲线。
4. 插值插值是一种通过已知数据点来估计未知点的方法。
Matlab中的interp1函数可以实现插值拟合,用户需要提供已知数据点的坐标和对应的函数值,然后可以使用interp1函数来估计未知点的函数值。
interp1函数支持不同的插值方法,包括线性插值、样条插值等。
5. 统计拟合除了数学模型拟合,Matlab还提供了统计拟合方法,用于分析数据的概率分布。
Matlab中的normfit函数可以根据数据点的均值和标准差来拟合正态分布曲线。
用户还可以使用histfit函数来绘制数据的直方图和拟合曲线,从而比较数据的分布和理论模型的拟合程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Matlab 的应用-多项式函数及多项式拟合
所谓曲线拟合是指给定平面上的n 个点(x i ,y i ),i=1,2,….,n,找出一条曲线
使之与这些点相当吻合,这个过程称之为曲线拟合。
最常见的曲线拟合是使用多项式来作拟合曲线。
曲线拟合最常用的方法是最小二乘法。
其原理是求f(x),使21])([i n
i i y x f -=∑=δ达到最小。
matlab 提供了基本的多项式曲线拟合函数命令
polyfit
格式::polyfit(x,y,n)
说明:polyfit(x,y,n)是找n 次多项式p(x)的系数,这些系数满足在最小二乘法意义下p(x(i)) ~= y(i).
可采用“最小二乘法”求出直线方程。
这就是曲线拟合的问题。
已知一组数据,用什么样的曲线拟合最好呢?可以根据散点图进行直观观察,在此基础上,选择几种曲线分别拟合,然后比较,观察那条曲线的最小二乘指标最小。
思考:如何利用matlab 的多项式拟合函数来作曲线拟合?
例1:在化学反应中,为研究某化合物的浓度随时间的变化规律。
测得一组
本题是一个可以用数据的曲线拟合来解决的问题。
下面是利用matlab 编的一段程序。
clear;
%录入数据
xy=[1 4
2 6.4
3 8.0
4 8.4
5 9.28
6 9.5
7 9.7
8 9.86
9 10
10 10.2
11 10.32
12 10.42
13 10.5
14 10.55
15 10.58
16 10.6];
x=xy(:,1);
y=xy(:,2);
plot(x,y,'r*');%画出散点图,观察曲线走势
hold on;t=0:.3:10;pxdxs=polyfit(x,y,2);
pxd=poly2sym(pxdxs)
pxdx=polyval(pxdxs,t);plot(t,pxdx,'-k')
例2“人口问题”是我国最大社会问题之一,估计人口数量和发展趋势是我们制定一系列相关政策的基础。
有人口统计年鉴,可查到我国从1949年至1994。