数学专题无理数及二次根式

合集下载

二次根式知识点总结

二次根式知识点总结

二次根式知识点总结1. 二次根式的定义和性质二次根式是指具有形式√a的数,其中a是非负实数。

以下是二次根式的一些重要性质:•非负性:对于任何非负实数a,√a也是一个非负实数。

•平方性:对于任何非负实数a,(√a)2=a。

•唯一性:每个非负实数都有唯一的平方根。

2. 化简和计算二次根式化简和计算二次根式是处理二次根式的基本操作。

下面是一些常见的规则和方法:•合并同类项:如果两个或多个二次根式具有相同的根指数并且根下的值相同,则可以合并它们。

•分解因子:对于某些特定的二次根式,可以将其分解为更简单的形式,例如√ab=√a⋅√b。

•有理化分母:当一个二次根式出现在分母中时,可以通过乘以适当的形式来有理化分母,例如√2=√22。

•乘法和除法规则:二次根式可以与其他数进行乘法和除法运算,例如√a⋅√b=√ab和√a√b =√a√b⋅√b√b=√abb。

3. 二次根式的性质和定理二次根式具有许多重要的性质和定理,这些性质和定理可以帮助我们解决各种问题。

以下是一些常见的性质和定理:•无理数性质:对于大多数非完全平方数a,√a是一个无理数。

•比较大小:对于两个非负实数a和b,如果a<b,那么√a<√b。

•平方根的加法公式:√a+√b不能化简为一个更简单的形式,除非a和b 存在某种特殊关系(例如互为有理数倍)。

•平方根的乘法公式:√a⋅√b=√ab,其中a和b可以是任意非负实数。

4. 解二次根式的方程和不等式解二次根式的方程和不等式是应用二次根式知识的重要方面。

以下是一些解决这类问题的方法:•方程:将方程两边进行平方操作,然后化简为二次根式形式,最后解得方程的解。

•不等式:根据二次根式的性质,可以比较大小或使用其他方法来解决不等式。

5. 与其他数学概念的关系二次根式与其他数学概念之间存在着密切的关系。

以下是一些与二次根式相关的重要概念:•平方数:对于某个非负实数a,如果存在另一个非负实数b,使得b2=a,那么a就是一个平方数。

专题四 无理数及二次根式

专题四 无理数及二次根式

答案:±2,2 7.算术平方根等于它本身的数有________,立方根等于本身的数有________。 答案:0 和 1,0 和±1 8.若 x
2
256 ,则 x ________,若 x 3 216,则 x ________。
答案:±16,-4
练习
1.下面说法中,正确的是( ) B. 带根号的数都是无理数 D. 无限小数都是无理数 ) A. 无限不循环小数都是无理数 C. 无理数都是带根号的数 2. ( 6) 的平方根是(
{★二次根式的乘法运算法则,用语言叙述为:两个因式的算术平方根的积,等于这两个因式积的算术平方根;二次根式的除法 运算法则,用语言叙述为:两个数的算术平方根的商,等于这两个数商的算术平方根。} (3)有理化根式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做有理化根式,也称有理化因式。 (4)最简二次根式:满足下列两个条件的二次根式叫做最简二次根式①被开方数每一个因式都小于 2;②被开方数不含分母。 (5)同类二次根式:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,
a2
-
b2
+
( a b) 2

5 a 是一个数 m 的平方根,则 a ____, m ______ .
18.如果 2a 1 和
19.求下列各式中 x 的值:
(1)16x 2 49 0
(2)(x 1) 2 25
(3)(2 x) 3 8
(4) ( x 3) 3 27
20、计算: (1 )
3 3 2 2
{★由立方根的定义可以得出,每一个数都有立方根,且只有一个。正数的立方根是正数;0 的立方根是 0;负 3 3 3 3 3 3 数的立方根是负数。 √-a=- √a, 利用这个性质可把负数立方根转化为正数立方根来处理; √a =a, ( √a) =a, 3 3 3 3 从而有 √a =( √a) }

二次根式知识点总结

二次根式知识点总结

二次根式知识点总结二次根式是高中数学中重要的知识点之一,它在解决一元二次方程、求解勾股定理以及图形的面积计算等问题中起到了重要的作用。

本文将对二次根式的定义、性质以及相关的数学运算进行总结,并探讨其在实际问题中的应用。

一、二次根式的定义二次根式是指形如√a的代数式,其中a为非负实数。

它可以表示为一个单独的根号表达式,也可以是两个或多个二次根式之间的运算。

二、二次根式的性质1. 二次根式与有理数的关系:二次根式可以是有理数或无理数。

当根号内的数可以化简为有理数时,二次根式即为有理数;否则,二次根式为无理数。

2. 二次根式的相等性:两个二次根式相等的条件是它们的被开方数相等。

3. 二次根式的大小比较:对于非负实数a和b,若a > b,则有√a >√b。

4. 二次根式的运算性质:对于非负实数a和b,有以下运算性质:- 加法:√a + √b = √(a + b)- 减法:√a - √b = √(a - b),其中a ≥ b- 乘法:√a * √b = √(a * b)- 除法:√a / √b = √(a / b),其中b ≠ 0三、二次根式的化简当二次根式存在可以化简的情况时,可以通过以下方法进行化简:1. 提取因子法:将根号内的数分解为两个数的乘积,其中一个数是完全平方数,并提取出完全平方数的根号作为整体。

2. 有理化分母法:对于含有二次根式的分数,可以通过有理化分母的方法化简,即将分母有理化为一个有理数或二次根式。

四、二次根式的应用1. 解一元二次方程:一元二次方程的形如ax^2 + bx + c = 0,其中a ≠ 0。

通过二次根式的求解方法,可以求得方程的解,并通过图像分析得到方程的根的性质。

2. 求解勾股定理:在平面几何中,勾股定理是指在直角三角形中,直角边的平方等于两个其他边的平方之和。

通过二次根式的运算,可以准确计算出直角三角形的边长。

3. 计算图形的面积:在几何问题中,经常需要计算图形的面积,而某些图形的面积计算涉及到二次根式。

二次根式的概念及性质

二次根式的概念及性质

二次根式的概念及性质对于大多数人来说,学习数学常常会遇到许多难题,其中包括二次根式。

在本文中,我们将会详细探讨二次根式的概念及性质,以便更深刻地理解这一数学概念。

一. 二次根式概念二次根式,也就是平方根式,是指表达式中含有平方根的式子。

例如,我们可以将$\sqrt{2}$看做二次根式。

二次根式是一种特殊的无理数,也就是说它不能写成分数形式。

二次根式具有以下一些重要特征:1. 二次根式中的数值通常是无理数,因此不能表示为分数形式。

对于非完全平方数,无法化约,只能用$\sqrt{a}$表示。

2. 满足乘方的指数法则:$\sqrt{i} \times \sqrt{j} = \sqrt{ij}$。

3. 满足加减的公式:$\sqrt{i} \pm \sqrt{j}$是不能合并的。

二. 二次根式性质在接下来的内容中,将讨论二次根式的乘法、开方以及化简。

乘法我们来看一下下面这个式子:$(a+b\sqrt{2})(c+d\sqrt{2})$。

这是二次根式的乘法公式,可以化简为$ac+2bd+(ad+bc)\sqrt{2}$。

简易的乘法公式可概述为:$$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$$同理,$$(a-b)\times \sqrt{c} = a\sqrt{c}-b\sqrt{c}$$开方当对一个平方根求值时,我们要找到它的平方是多少。

找到它的平方根就是简单的数学操作。

举个例子,如果是$\sqrt{9}$,平方是9,所以它的平方根就是3.而如果是$\sqrt{a^2 + b^2}$,则无法化简。

直接求这个平方根是十分困难的,所以我们往往采取近似求解或其他算法将其化简为另一个更容易求解的式子,在此不做详细讲解。

化简化简二次根式是化简至最简二次根式的过程。

例如,$\sqrt{8}$可以被化简为$2\sqrt{2}$。

我们可以通过合理运用乘法公式,将含有多个平方根的式子简化为最简的形式。

二次根式的运算知识点总结

二次根式的运算知识点总结

二次根式的运算知识点总结二次根式是指具有形如√a的表达式,其中a是非负实数。

在数学中,二次根式的运算是一个重要的知识点,掌握了这个知识点,我们可以更好地理解和利用二次根式。

下面将总结二次根式运算的基本规则和常见的运算方法。

一、二次根式的基本规则1. 二次根式的化简:当被开方数存在平方因子时,可以进行化简。

例如√4×3 = √(4×3) = 2√3。

2. 二次根式的乘法运算:对于两个二次根式的乘法运算,可以将两个二次根式的根号内的数相乘,根号外的数相乘,并进行化简。

例如:√2 × √3 = √(2 × 3) = √6。

3. 二次根式的除法运算:对于两个二次根式的除法运算,可以将两个二次根式的根号内的数相除,根号外的数相除,并进行化简。

例如:√6 ÷ √2 = √(6 ÷ 2) = √3。

4. 二次根式的加减运算:对于两个二次根式的加减运算,只能进行同类项相加减,并进行化简。

例如:√2 + √3 无法进行化简,可以写成2√2 + 3√5。

二、二次根式的运算方法1. 二次根式与整数的运算:当二次根式与整数进行运算时,可以将整数视为二次根式的特殊形式。

例如:√2 + 4 = √2 + √(4×4) = √2 + 2√2 = 3√2。

2. 二次根式的有理化:有时候需要将二次根式的分母变为有理数,这个过程称为有理化。

有理化的方法有两种:(1) 乘以共轭根式:对于分母中含有二次根式的情况,可以通过乘以分母的共轭根式来进行有理化。

例如:(3 + √2)/(1 + √2) = [(3 + √2)/(1 + √2)] * [(1 - √2)/(1 - √2)] = (3 - 3√2 + √2 - 2)/(1 - 2)= (1 - 2√2)/(-1)= 2√2 - 1(2) 分离根号:对于分母中含有二次根式的情况,可以通过将二次根式的根号部分与非根号部分分离,并进行化简,从而实现有理化。

2009年全国各地数学中考模拟试题分类汇编—无理数及二次根式

2009年全国各地数学中考模拟试题分类汇编—无理数及二次根式

中考模拟分类汇编无理数及二次根式一、选择题:1(安徽桐城白马中学模拟一).一个正方体的水晶砖,体积为100cm 3,它的棱长大约在 A. 4cm~5cm 之间 B. 5cm~6cm 之间 C. 6cm~7cm 之间 D. 7cm~8cm 之间答案: A. 4cm~5cm 之间2(2009年浙江省嘉兴市评估4). 下列说法中正确的是( )A B .函数y =x 的取值范围是1x > C .8的立方根是2±D .若点(2)P a ,和点(3)Q b -,关于x 轴对称,则a b +的值为5 答案:D3(09黄陂一中分配生素质测试)==3xy ( )A 、B 、-C 、D 、-答案:B4(09黄陂一中分配生素质测试) )A 、aB 、a ±C 、D 、答案:D5(09枝江英杰学校模拟)下列根式化简后被开方数是3的是A B C D 答案:C6(09武冈市福田中学一模) ) A. 2.5B. 2.6C. 2.7D. 2.8答案:B7. (2009年通州杨港模拟试卷)4-的算术平方根是 ( )A. 4B. -4C. 2D. ±2答:8、(2009年山东三维斋一模试题)()A.点P B.点Q C.点M D.点N答:C9、(2009江苏通州通西一模试卷))A.6到7之间B.7到8之间C.8到9之间D.9到10之间答:C10、(2009²浙江温州²模拟1)函数y=1-x中自变量x的取值范围是A.x>1B. x≥1C. x<1D. x≤1答案:B二、填空题:1、(2009.解:314π-.2、(2009年山东三维斋一模试题)计算:2sin30°-(0解:13、(2009²浙江温州²模拟2)x的取值范围是.答案:32x≤4、(2009²浙江温州²模拟3)若1+xx有意义则的取值范围为。

答案:x ≤21且 x ≠-15、(2009年浙江省嘉兴市评估4)=_________。

全国中考试卷精品分类 无理数及二次根式

全国中考试卷精品分类 无理数及二次根式

2.无理数及二次根式一、选择题1.(2009年绵阳市)已知n -12是正整数,则实数n 的最大值为( )A .12B .11C .8D .3 【关键词】二次根式 【答案】B 1.(2009年黄石市)下列根式中,不是..最简二次根式的是( )ABC D【关键词】最简二次根式 【答案】C2.(2009年邵阳市)3最接近的整数是( )A .0B .2C .4D .5 【关键词】无理数 【答案】B 3.(2009年广东省)4的算术平方根是( )A .2±B .2C .D【关键词】平方根 【答案】B 4.(2009年贺州)下列根式中不是最简二次根式的是( ). A .2 B .6 C .8 D . 10【关键词】最简二次根式 【答案】C5.(2009年贵州黔东南州)方程0|84|=--+-m y x x ,当0>y 时,m 的取值范围是( ) A 、10<<m B 、2≥m C 、2<m D 、2≤m 【关键词】非负数的性质 【答案】C 6.(2009年贵州黔东南州)下列运算正确的是( C ) A 、39±= B 、33-=- C 、39-=- D 、932=-【关键词】有理数运算以及平方根 【答案】B7.(2009D ) A. BCD.8.(20092()x y =+,则x -y 的值为( )A .-1B .1C .2D .3解析:本题考查二次根式的意义,由题意可知1x =,1y =-,∴x -y =2,故选C . 【关键词】二次根式的意义 【答案】C 9.(2009年湖北省荆门市)|-9|的平方根是( ) A .81 B .±3 C .3 D .-3解析:本题考查绝对值与平方根的运算,|-9|=9,9的平方根是±3,故选B . 【关键词】绝对值、平方根 【答案】B10.(2009年内蒙古包头)函数y =中,自变量x 的取值范围是( )A .2x >-B .2x -≥C .2x ≠-D .2x -≤【答案】Ba 的范围是0a ≥;∴y =中x 的范围由20x +≥得2x ≥-。

二次根式-中考数学一轮复习考点专题复习大全(全国通用)

二次根式-中考数学一轮复习考点专题复习大全(全国通用)

考向08 二次根式【考点梳理】1、二次根式:一般地,形如a (a ≥0)的代数式叫做二次根式。

当a >0时,a 表示a 的算术平方根,其中0=02、 理解并掌握下列结论:(1))0(≥a a 是非负数(双重非负性); (2))0()2≥=a a a (; (3)⎩⎨⎧≤->=⎩⎨⎧<-≥=⎪⎩⎪⎨⎧<-=>==)0()0()0()0()0()0(0)0(2a a a a a a a a a a a a a a a ;口诀:平方再开方,出来带“框框” 3、二次根式的乘法:)0,0(≥≥=•b a ab b a ,反之亦成立4、二次根式的除法:)0,0(>≥=b a b a ba ,反之亦成立5、满足下列两个条件的二次根式叫做最简二次根式:(1)被开方数不含分母,(2)被开方数不含开得尽方的因数或因式。

6、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式是同类二次根式。

【题型探究】题型一:二次根式的概念和性质1.(2022·湖北黄石·统考中考真题)函数11y x =+-的自变量x 的取值范围是( ) A .3x ≠-且1x ≠B .3x >-且1x ≠C .3x >-D .3x ≥-且1x ≠2.(2022·广东广州·广东番禺中学校考三模)若3y =,则2022()x y +等于( ) A .1B .5C .5-D .1-3.(2022·湖北黄石·校联考模拟预测)函数y 中,自变量x 的取值范围是( ) A .5x >B .35x ≤<C .5x <D .35x ≤≤题型二:二次函数的化简4.(2022·河北·统考中考真题)下列正确的是( )A 23+B 23=⨯C D 0.75.(2023·河北·b a 的值是( ) A .6B .9C .12D .276.(2022·四川绵阳·统考三模)已知y =,则xy =( )A .3B .-6C .±6D .±3题型三:二次根式的乘除7.(2022·广东广州· )A B C D .8.(2022·天津南开·二模)计算3)的结果等于______.9.(2022·河北唐山·=a =______;b =__.题型四:二次根式的加减10.(2022·黑龙江哈尔滨·=_____. 11.(2022·黑龙江绥化·统考中考真题)设1x 与2x 为一元二次方程213202x x ++=的两根,则()212x x -的值为________.12.(2022·黑龙江哈尔滨·______.题型五:分母的有理化13.(2022·河北保定·统考一模)已知x =2y = (1)22x y +=________; (2)2()x y xy --=________.14.(2022·广东中山·统考二模)小明喜欢构建几何图形,利用“数形结合”的思想解决代数问题.在计算tan 22.5︒时,如图,在Rt ACB 中,9045C ABC ∠=︒∠=︒,,延长CB 使BD AB =,连接AD ,得22.5D ∠=︒,所以tan 22.51AC CD ︒===,类比小明的方法,计算tan15︒的值为________.15.(2020·四川成都·四川省成都列五中学校考三模)3的整数部分是m ,小数部分是n ,则mn+3=_____.题型六:二次根式的比较大小16.(2021·四川成都·766517.(2020·陕西西安·西安市铁一中学校考二模)比较大小:1013-(填“>”、“=”、“<”)18.(2021·陕西宝鸡·17﹣5(填“>”或“<”)题型七:二次根式的化简求值问题19.(2023·江西·九年级专题练习)先化简,再求值:22169211x x x x x ⎛⎫-++-÷ ⎪+-⎝⎭,其中53x =. 20.(2022·四川广元·统考一模)先化简,再求值:222a ab b a b a b a b ab ⎛⎫---÷ ⎪--⎝⎭,其中32a =+32b = 21.(2022·辽宁抚顺·模拟预测)先化简,再求值:22124()(1)442x x x x x x x-+-÷--+-,其中x =2+tan30°.【必刷基础】一、单选题22.(2023·广西玉林·一模)下列运算正确的是( ) A 257B .22525=+C 532=D .233323.(2022·福建泉州·校考三模)在函数32y x =+中,自变量x 的取值范围是( ) A .23x ≠-B .23x >-C .23x -D .23x -24.(2022·上海松江·校考三模)下列式子属于同类二次根式的是( ) A .2与22B .3与24C .5与25D .6与1225.(2022春·河北保定·九年级保定市第十七中学校考期中)如图,把一张矩形纸片ABCD 按如图所示方法进行两次折叠后,BEF △恰好是等腰直角三角形,若2BE =,则CD 的长度为( )A .22B .22+C .222+D .224+26.(2021·广西百色·统考二模)将一组数2,2,6,22,10,…,210,按下列方式进行排列: 2,2,6,22,10; 23,14,4,32,25;…若2的位置记为()1,2,23的位置记为()2,1,则36这个数的位置记为( )A .()54,B .()44,C .()43,D .()35,27.(2022·山东青岛·统考中考真题)计算1(2712)3-⨯的结果是( ) A .33B .1C .5D .328.(2022·河北廊坊·统考二模)一次函数()32y k x k =++-的图象如图所示,则使式子()011k k ++-有意义的k 的值可能为( )A .-3B .-1C .-2D .229.(2021·北京·统考中考真题)若7x -在实数范围内有意义,则实数x 的取值范围是_______________. 30.(2018·江苏苏州·校联考中考模拟)若x 满足|2017-x|+-2018x =x , 则x-20172=________31.(2021·辽宁鞍山·统考中考真题)先化简,再求值:22131242a a a a a-⎛⎫-÷ ⎪--+⎝⎭,其中62a =+. 32.(2022春·福建泉州·九年级福建省安溪第一中学校考阶段练习)已知实数a ,b ,c 在数轴上的位置如图所示,化简:222||()()a a c c a b -++--.【必刷培优】一、单选题33.(2021·广东·统考中考真题)设610-的整数部分为a ,小数部分为b ,则()210a b +的值是( ) A .6B .210C .12D .91034.(2021·湖南娄底·统考中考真题)2,5,m 是某三角形三边的长,则22(3)(7)m m -+-等于( ) A .210m -B .102m -C .10D .435.(2021·内蒙古·统考中考真题)若21x =+,则代数式222x x -+的值为( ) A .7 B .4C .3D .322-36.(2020·河北·统考中考真题)如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大..的直角三角形,则选取的三块纸片的面积分别是( )A .1,4,5B .2,3,5C .3,4,5D .2,2,4二、填空题37.(2019·广西柳州·中考模拟)如图,数轴上点A 表示的数为a ,化简:a 244a a +-+=_____.38.(2021·四川眉山·统考中考真题)观察下列等式:12211311112212x =++==+⨯; 22211711123623x =++==+⨯; 3221113111341234x =++==+⨯; ……根据以上规律,计算12320202021x x x x ++++-=______.39.(2022·湖北荆州·统考中考真题)若32-的整数部分为a ,小数部分为b ,则代数式()22a b +⋅的值是______. 40.(2021·河南信阳·河南省淮滨县第一中学校考三模)已知625x =-为一元二次方程20x ax b ++=的一个根,且a ,b 为有理数,则=a ______,b =______.41.(2019·江苏·校考中考模拟)若a ,b 都是实数,b =12a -+21a -﹣2,则a b 的值为_____. 42.(2022·四川遂宁·统考中考真题)实数a ,b 在数轴上的位置如图所示,化简()()2211a b a b +--+-=______.三、解答题43.(2021·四川成都·统考中考真题)先化简,再求值:2269111a a a a ++⎛⎫+÷⎪++⎝⎭,其中33=a .44.(2022·安徽·统考二模)阅读下列解题过程: 21+21(21)(21)-+-2-1; 32+32(32)(32)-+-32; 43+434343-+-()()433 …解答下列各题: (1109+= ;(2= .(3)利用这一规律计算:)×).45.(2019·福建泉州·统考中考模拟)先化简,再求值:2443(1)11m m m m m -+÷----,其中2m .46.(2013·贵州黔西·中考真题)阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:231+(,善于思考的小明进行了以下探索:设(2a m ++(其中a 、b 、m 、n 均为整数),则有2222a m n +++∴2222a m n b mn =+=,.这样小明就找到了一种把部分a + 请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若(2a m +=+,用含m 、n 的式子分别表示a 、b ,得a = ,b = ;(2)利用所探索的结论,找一组正整数a 、b 、m 、n ,填空: + =( +2;(3)若(2a m ++,且a 、b 、m 、n 均为正整数,求a 的值.参考答案:1.B【分析】直接利用二次根式有意义的条件、分式有意义的条件分析得出答案.【详解】解:依题意,3010 xx+>⎧⎨-≠⎩∴3x>-且1x≠故选B【点睛】此题主要考查了函数自变量的取值范围,正确掌握二次根式与分式有意义的条件是解题关键.2.A【分析】直接利用二次根式中被开方数是非负数,得出x的值,进而得出y的值,再利用有理数的乘方运算法则计算即可.【详解】解:由题意可得:20 420xx-≥⎧⎨-≥⎩,解得:x=2,故y=-3,∴20222022()(213)=x y+=-.故选:A.【点睛】此题主要考查了二次根式有意义的条件以及有理数的乘方运算,正确掌握被开方数为非负数是解题关键.3.C【分析】根据二次根式、立方根、分式的性质分析,即可得到答案.【详解】根据题意,得50x->∴5x<故选:C.【点睛】本题考查了二次根式、立方根、分式的知识;解题的关键是熟练掌握二次根式的性质,从而完成求解.4.B【分析】根据二次根式的性质判断即可.【详解】解:23+,故错误;23=⨯,故正确;=≠0.7,故错误;故选:B.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键.5.D【分析】由二次根式的性质、二次根式的减法运算法则进行计算,即可得到答案.∴3a =,3b =, ∴3327=, 故选:D【点睛】本题考查了二次根式的性质、二次根式的减法运算,解题的关键是掌握运算法则,正确的进行解题. 6.B【分析】利用二次根式的被开方数具有非负性求出x 的值后,再求出y 的值,即可求解. 【详解】解:∵229090x x -+≥-≥,, ∴29x =, 又∵30x +≠, ∴3x =, ∴0012233y --==-+,∴()326xy =⨯-=-, 故选:B .【点睛】本题考查了二次根式有意义的条件以及性质,解题关键是求出x 的值与y 的值. 7.A【分析】根据二次根式的乘除运算法则进行计算,最后根据二次根式的性质化简即可.=== 故选:A .【点睛】)0,0a b ≥≥)0,0a b ≥>,熟练掌握相关运算法则是解题的关键. 8.4【分析】根据平方差公式计算即可.【详解】解:3)=223-=13-9 =4,故答案为:4.【点睛】本题考查二次式的混合运算,熟练掌握平方差公式是解题的关键. 9. 2 6化为最简二次根式,再利用二次根式的乘法法则解题.=2,6a b ∴==故答案为:2,6.【点睛】本题考查利用二次根式的性质化简计算,涉及最简二次根式、二次根式的乘法等知识,是基础考点,掌握相关知识是解题关键.10.-【分析】先把各二次根式化为最简二次根式,然后合并即可.【详解】解:原式==-故答案为:-【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 11.20【分析】利用公式法求得一元二次方程的根,再代入求值即可; 【详解】解:∵213202x x ++=△=9-4=5>0,∴13x =-23x =-,∴()212x x -=((223320-==,故答案为:20;【点睛】本题考查了一元二次方程的解,掌握公式法解一元二次方程是解题关键. 12【分析】根据二次根式的性质和二次根式的减法法则,即可求解.3==【点睛】本题主要考查二次根式的化简,掌握二次根式的性质和运算法则,是解题的关键. 13. 14 11【分析】根据分母有理化得到2x =x 和y 分别代入(1)(2)中根据二次根式的混合运算法则计算求解.【详解】解:∵123x =+, ∴()()12323232323x ===+-+--, ∴(1)22x y +()()222323=-++ 44334433=-++++14=,故答案为:14;(2)()2x y xy -- ()()()223232323⎡⎤=--+--+⎣⎦()()22343=---121=-11=,故答案为:11.【点睛】本题主要考查了分母有理化、二次根式的混合运算法则,理解相关知识是解答关键.14.23-【分析】仿照题意构造含15度角的直角三角形进行求解即可.【详解】解:如图,在Rt ACB 中,9030C ABC ∠=︒∠=︒,,延长CB 使BD AB =,连接AD ,∴∠BAD =∠D ,2AB BD AC ==,∴cos =3BC AC ABC AC =⋅∠,∴()23CD BC BD AC =+=+,∵∠ABC =∠BAD +∠D ,∴=15D ︒∠,∴1tan =tan15===2323AC D CD ︒-+∠, 故答案为:23-.【点睛】本题主要考查了解直角三角形,三角形外角的性质,等腰三角形的性质,正确理解题意构造出含15度角的直角三角形是解题的关键.15.2m 的值,小数部分n m ,把m 、n 代入分式m n+3中,应用分母有理化的方法进行化简,即可得到答案.【详解】解:∵12,∴m =1,n 1, ∴=n+3m=2.故答案为:2.【点睛】本题主要考查二次根式的分母有理化,熟练掌握分母有理化的方法是解题的关键.16.<【分析】直接利用二次根式的性质分别变形,进而比较得出答案.==<故答案为:<.【点睛】此题主要考查了二次根式的分母有理化,正确化简二次根式是解题关键.17.> 【分析】先将这两个数分别平方,通过比较两个数的平方的大小即可得解.【详解】解:∵21(10=,211()39-=且11109<,1<,∴13>- 故答案为:>【点睛】此题主要考查了无理数的估算能力,两个二次根式比较大小可以通过平方的方法进行,两个式子平方的值大的,对应的正的式子的值就大,负的式子就小.18.>【分析】首先利用二次根式的性质可得【详解】解:∵∴>﹣故答案为:>.【点睛】本题主要考查了二次根式的大小比较,准确计算是解题的关键.19.13x x -+【分析】直接将括号里面通分运算,再利用分式的混合运算法则计算得出答案. 【详解】解:22169211x x x x x ⎛⎫-++-÷ ⎪+-⎝⎭ ()()()23221111x x x x x x ++-+=÷++- ()()()211313x x x x x +-+=⨯++13x x -=+.当3x =时,原式=. 【点睛】此题主要考查了分式的化简以及二次根式混合运算,正确化简分式是解题关键.20.ab ;7【分析】根据分式的混合运算法则化简,再代入3a =3b = 【详解】解:原式222a ab b a b a b ab-+-=÷- ()2a b ab ab a b a b-=⋅=--.当3a =3b =原式(33927==-=.【点睛】此题主要考查分式的化简求值,解题的关键是熟知分式、二次根式及乘法公式的运用.21.()212x -;3【分析】先根据异分母分式的加减化简括号内的,同时将除法转化为乘法,再根据分式的性质化简,最后根据特殊角的三角函数值求得x 的值,代入化简结果进行计算即可. 【详解】解:22124()(1)442x x x x x x x -+-÷--+- ()()()()()22122422x x x x x x x x x x ⎡⎤-+-=-⨯⎢⎥---⎢⎥⎣⎦()2224=42x x x x x x x --+⨯-- ()241=42x x x -⋅-- ()212x =-2tan 302x =+︒=∴原式21322==⎛⎫ ⎪⎝⎭【点睛】本题考查了分式的化简求值,特殊角的三角函数值,实数的混合运算,二次根式的混合运算,正确的计算是解题的关键.22.D【分析】利用二次根式的加减运算法则进行计算,然后作出判断.【详解】解:AB、= CD、=故选:D .【点睛】本题考查二次根式的加减运算,掌握运算法则是解题关键.23.C【分析】根据被开方数大于等于0,列式求解即可.【详解】解:根据题意得:320x +,解得23x -.【点睛】本题主要考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.24.A【分析】根据同类二次根式的概念判断即可.【详解】解:A 、2与22是同类二次根式,符合题意;B 、3与26不是同类二次根式,不符合题意;C 、5与5不是同类二次根式,不符合题意;D 、6与23不是同类二次根式,不符合题意;故选A .【点睛】本题考查了同类二次根式,掌握一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式是解题的关键.25.D【分析】根据翻折过程补全图形,然后根据矩形的性质和勾股定理即可解决问题.【详解】解:由折叠补全图形如图所示,四边形ABCD 是矩形,'90ADA B C A ∴∠=∠=∠=∠=︒,AD BC =,CD AB =,由第一次折叠得:'90DA E A ∠=∠=︒,1452ADE ADC ∠=∠=︒, 45AED ADE ∴∠=∠=︒,AE AD ∴=,在Rt ADE △中,根据勾股定理得,2DE AD =,由第二次折叠知,CD DE AB ==,222DE AE ∴=,2222()2(2)CD AB BE CD ∴=-=-,422CD ∴=+【点睛】本题考查了翻折变换,矩形的性质,等腰直角三角形,解决本题的关键是掌握翻折的性质.26.C∵36218÷=,18533÷=4行,第3个数字.故选:C .【点睛】此题考查的是数字的变化规律以及二次根式的化简,找出其中的规律是解题的关键.27.B再合并即可.【详解】解:94321 故选:B .【点睛】本题考查的是二次根式的乘法运算,掌握“二次根式的乘法运算法则”是解本题的关键.28.B【分析】通过一次函数图象可以得出:3020k k +>⎧⎨->⎩,解得:32k -<<.()01k -有意义的条件为:1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且0k ≠.将两个关于k 的解集综合,得到k 的范围是:12k -≤<且0k ≠.根据所求范围即可得出答案选B .【详解】解:由图象得:3020k k +>⎧⎨->⎩,解得:32k -<<()01k -有意义,则1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且1k ≠ ∴综上所述,k 的取值范围是:12k -≤<且0k ≠.A 、-3不在k 的取值范围内,不符合题意;B 、-1在k 的取值范围内,符合题意;C 、-2不在k 的取值范围内,不符合题意;D 、2不在k 的取值范围内,不符合题意.故选B .【点睛】本题主要考查知识点为,一次函数图象与一次函数系数的关系、使二次根式有意义的条件,零指数幂中底29.7x ≥【分析】根据二次根式有意义的条件可直接进行求解.【详解】解:由题意得:70x -≥,解得:7x ≥;故答案:为7x ≥.【点睛】本题主要考查二次根式有意义的条件,解题的关键是熟练掌握二次根式有意义的条件.30.2018【分析】根据二次根式有意义的条件列出不等式,求解得出x 的取值范围,再根据绝对值的意义化简即可得出方程=2017,将方程的两边同时平方即可解决问题.【详解】解:由条件知,x-2018≥0, 所以x≥2018,|2017-x|=x-2017.所以x-2017+ =x ,即 =2017,所以x-2018=20172 ,所以x-20172=2018,故答案为:2018.【点睛】本题主要考查了二次根式的内容,根据二次根式有意义的条件找到x 的取值范围是解题的关键.31.2a a -,1+【分析】根据分式的混合运算的运算法则把原式化简为2a a -,再代入求值. 【详解】解:22131242a a a a a-⎛⎫-÷ ⎪--+⎝⎭ ()()()2132221a a a a a a ⎡⎤+=-⨯⎢⎥-+--⎣⎦()()()21221a a a a a a +-=⨯+-- 2a a =-.当2a 时,原式1==== 【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值. 32.a b -【分析】直接利用数轴判断得出:a<0,a+c<0,c-a<0,b>0,进而化简即可.【详解】由数轴,得a<0,0a c +<,0c a -<,0b >.【点睛】此题考查二次根式的性质与化简,数轴,解题关键在于利用数轴进行解答.33.Aa 的值,进而确定b 的值,然后将a 与b 的值代入计算即可得到所求代数式的值.【详解】∵34,∴263<<,∴62a =,∴小数部分624b ==∴(((22244416106a b =⨯==-=.故选:A .【点睛】本题考查了二次根式的运算,正确确定6a 与小数部分b 的值是解题关键.34.D【分析】先根据三角形三边的关系求出m 的取值范围,再把二次根式进行化解,得出结论.【详解】解:2,3,m 是三角形的三边,5252m ∴-<<+, 解得:37x ,374m m -+-=,故选:D .【点睛】本题考查了二次根式的性质及化简,解题的关键是:先根据题意求出m 的范围,再对二次根式化简.35.C【分析】先将代数式222x x -+变形为()211x -+,再代入即可求解.【详解】解:())22222=111113x x x -+-+=-+=. 故选:C【点睛】本题考查了求代数式的值,熟练掌握完全平方公式是解题关键,也可将x 的值直接代入计算.36.B【分析】根据勾股定理,222+=a b c ,则小的两个正方形的面积等于大正方形的面积,再分别进行判断,即可得到面积最大的三角形.【详解】解:根据题意,设三个正方形的边长分别为a 、b 、c ,222A 、∵1+4=5,则两直角边分别为:1和2,则面积为:112=12⨯⨯;B 、∵2+3=512 C 、∵3+4≠5,则不符合题意;D 、∵2+2=4112=;1>, 故选:B .【点睛】本题考查了正方形的性质,勾股定理的应用,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,以及正方形的性质进行解题.37.2【分析】直接利用二次根式的性质以及结合数轴得出a 的取值范围进而化简即可.【详解】解:由数轴可得:0<a <2,则a=a =a +(2﹣a )=2.故答案为:2.【点睛】本题主要考查了二次根式的性质与化简,解题的关键是正确得出a 的取值范围.38.12021-【分析】根据题意,找到第n 1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120202021⨯化为12015﹣12016,再进行分数的加减运算即可.11(1)n n =++,20201120202021x =+⨯ 12320202021x x x x ++++-=112+116+1112+…+1120202021⨯﹣2021 =2020+1﹣12+12﹣13+…+12020﹣12021﹣2021 =2020+1﹣12021﹣2021=12021-. 故答案为:12021-. 【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算. 39.2【分析】先由12<得到132<<,进而得出a 和b ,代入()2b ⋅求解即可.【详解】解:∵ 12<,∴132<<,∵ 3的整数部分为a ,小数部分为b ,∴1a =,312b ==∴()((222242b ⋅=⨯=-=,故答案为:2.【点睛】本题主要考查无理数及代数式化简求值,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法.40. 2; 4-;【分析】将x =1x =,则20x ax b ++=)()260a b a -+-+=,根据a ,b 为有理数,可得2a -,6b a -+)()260a b a -+-+=时候,只有20a -=,60b a -+=,据此求解即可.【详解】解:∵x ====1∴20x ax b ++=∴))2110a b ++= ∴60a b --+=60a b -++=)()260a b a -+-+=∵a ,b 为有理数,∴2a -,6b a -+也为有理数,∴2a =,4b =-,故答案是:2,4-;【点睛】本题考查了二次根式的化简,利用完全平方公式因式分解,一元二次方程的解,有理数,无理数的概念的理解,熟悉相关性质是解题的关键.41.4【分析】直接利用二次根式有意义的条件得出a 的值,进而利用负指数幂的性质得出答案.【详解】解:∵b 2,∴120210a a -≥⎧⎨-≥⎩∴1-2a=0,解得:a=12,则b=-2, 故ab=(12)-2=4. 故答案为4.【点睛】此题主要考查了二次根式有意义的条件,以及负指数幂的性质,正确得出a 的值是解题关键. 42.2【分析】利用数轴可得出102a b -<<<<,1,进而化简求出答案.【详解】解:由数轴可得:102a b -<<<<,1,则10,10,0a b a b +>->-<∴1a +=|1||1|||a b a b +--+-=1(1)()a b a b +----=11a b a b +-+-+=2.故答案为:2.【点睛】此题主要考查了二次根式的性质与化简,正确得出a ,b 的取值范围是解题关键.43.13a +【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:2269111a a a a ++⎛⎫+÷ ⎪++⎝⎭212(3)111a a a a a ++⎛⎫=+÷ ⎪+++⎝⎭2311(3)a a a a ++=⋅++ 13a =+,当3=a 时,原式= 【点睛】本题主要考查了分式的化简求值,二次根式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.44.(13;(2(3)2020【分析】(1,然后利用平方差公式和二次根式的性质计算,即可得到答案;(2(3)根据(1)和(2)的结论,先分母有理化,经加减运算后,再利用平方差公式计算,即可得到答案.【详解】(133;(2==(3)×)1+)×)1)×) =20211-=2020.【点睛】本题考查了二次根式和数字规律的知识:解题的关键是熟练掌握二次根式混合运算、数字规律、平方差公式的性质,从而完成求解.45.22m m-+ 1. 【详解】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.详解:原式=221m m --()÷(31m -﹣211m m --) =221m m --()÷241m m -- =221m m --()•122m m m --+-()() =﹣22m m -+ =22m m-+当m 2时,原式===﹣=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 46.(1)223m n +,2mn ;(2)13,4,2,1(答案不唯一);(3)7或13.【分析】根据题意进行探索即可.【详解】(1)∵2(a m +=+,∴2232a m n +=++∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13.【点睛】本题考查二次根式的运算.根据题意找出规律是解决本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

__________ .
答案:
7.(2010年甘肃天水模拟)函数y=
的自变量x的取值范围是
.
答案:x≥-1且x≠1
8.(2010年福建模拟)
=

答案:3.
9.(2010年广州中考数学模拟试题一) 函数函数
中自变量
x的取值范围 是_______. 答:x≥-2且x≠1 10.(2010年河南省南阳市中考模拟数学试题)函数y=
中,自变量x的取值范围是( ) A.x>-2且x≠1 B.x≥2且x≠1 C.x≥-2且x≠1 D.x≠1 答案:A 5.(2010年武汉市中考拟)25的算术平方根是( ) A.5 B. C.–5 D.±5 答案:A 6.(2010年济宁师专附中一模)下列函数中,自变量x的取值范围是
的函数是( ) A.
无理数及二次根式
一、选择题 1.(2010年杭州月考)在实数中
,无理数的个数为( )
A. 3 个
B.4个
C.5个 D. 6个
答案:B
2.(2010年河南模拟)下列等式一定成立的是( )
A.
B.
C.
D.
答案:C 3.(2010年河南模拟)若式子
有意义,则x的取值范围是 A.
()
B.
>3
C.

D.
答案:C 4.(2010年武汉市中考拟)函数y=
(
)
A.2与3之
间 B.3与4之间 C.4与5之间 D.5与6之间 答案:C 10.(2010年浙江永嘉)下列四个数中,比0小的数 是………………………………( ) A.
B.
C.
D.
答案:D 11.(2010年黑龙江一模)在实数
,0,


中,无理数有( )
A.1个
B.2个
C.3个
D.4个
答案:B
12.(2010年辽宁铁岭加速度辅导学校)下列函数中,自变量
3 3.(2010年广东省中考拟)函数
的自变量
的取值范围是__.; 答案.
; 4.(2010年济宁师专附中一模)函数y=
的自变量
的取值为

答案:
5.(2010年湖里区 二次适应性考试)函数
中自变量x的取值范围是

答案:x≥3
6.(2010年中考模拟2)在实数范围内因式分解
= ___________
B.
C.
D.
答案:B 7.(2010年济宁师专附中一模)如图,数轴上
两点表示的数分别为

, C A
O B (第7题图)
点B关于点A的对称点为C,则点C所表示的数为( )
A.
B.
C.
D.
答案:A 8.(2010年江西南昌一模)化简
得( ).
A.-2
B.
C.2
D.
答案:A
9.(2010年江西南昌一模)估计68的立方根的大小在
的取值范围是
的函数是( ) A.
B.
C.
D.
答案:B 13.(2010年江西省统一考试样卷)在数轴上,与-
最接近的整数是(

A.-3
B.-2
C.-1
答案:B
14.( 2010年山东菏泽全真模拟1)关于Biblioteka D.0的一元二次方程
的解为( ) A.

B.
C.
D.无解 答案:C 15.(2010年河南中考模拟题1)
C 、 D、
A、1 B、
答案:B
18.(2010年江苏省泰州市济川实验初中中考模拟题) 在下列二次根式 中,与
是同类二次根式的是 ( ) A.
B.
C.
D.
答案:C 二、填空题 1. (2010年杭州月考)化简

的平方根为

答案:4, 2
2.(2010年湖南模拟)函数y=
中,自变量x的取值范围是_________. 答案:x≥
的值为( ) A.3 B.-3
C.±3 答案:B
D.-9
16.(2010年河南中考模拟题2)如图,数轴上表示1、
两数的对应点分别为A、B,点B关于点A的对称点为C,则点C所表示的 数是( ) A.
-1
B.1-
C.2-
D.
-2 答案:C 17.(2010年河南中考模拟题6)若
,则x的平方根为 ( )
. 答案:解:原式
. 2.(2010年厦门湖里模拟)(1)计算:2sin60°-
+( )-1+(-1)2010 答案:(1)解:原式=
=
+4 … 3.(2010年福建模拟)(1)计算: 答案:(1)解:原式
=-2 4.(2010年杭州月考
) 计算:
答案:-2 5.(2010年山东新泰)计算题: .(至少要有两步运算过程) 答案:原式= ……4分 = …… 5分(结果为近似值亦可) 6.(2010年浙江杭州)计算:

, .
答案:如图所示:
· · ·
11.(2010年河南中考模拟题3)计算:( )-2-( )0+2sin30°+ 答案:原式=4-1+1+3=7 12.(2010年河南中考模拟题4)计算: 答案:解:原式=3
+2×
+1- =4 + 13.(2010年河南中考模拟题5)计算: 答案:原式=-1+1-3 =-3 14.(2010年江苏省泰州市济川实验初中中考模拟题)计算: 答案:解:原式=9+1-2 =9+1-3=
中自变量x的取值范围是__________. 答:x≤
且x≠0 11.( 201
0年山东菏泽全真模拟1)函数
的自变量
的取值范围是

答案:
12.( 2010年山东菏泽全真模拟1).计算:
=
.
答案:
13.(2010年河南中考模拟题6)若x、y为实数,且
,则
的值为

答案:1
三、解答题 1. (黑龙江一模)计算:
7 15.(2010年河南中考模拟题1)计算: .(6分) 答案:解:
答案:解:原式=-1+1-3 7.(2010年广西桂林适应训练)计算: 答案:解:原式=
=
8.(2010年江西省统一考试样卷)化简求值: ,其中x=sin45°,y=tan60 解:原式=
=-y2.
当x=sin45°= ,y=tan60°= 时,
原式=-( )2=-3. 9.(2010年山东宁阳一模)计算: 答案:解:原式= 10.(2010年吉林中考模拟题)在数轴上画出表示下列各数的点:
相关文档
最新文档