2.4 绝对值

合集下载

§2.4(1) 绝对值

§2.4(1) 绝对值

对照数轴进行讲解。
在自己的本子上练习几遍。 如数 a 的绝对值可记作“ a ”

练习 A: 你能说出数轴上点 A、B、C、D、E 所表示
A B 的数的绝对值吗? C -2 -1 0 1 2 D 3 4 E 5 掌握其方法。
-5 -4 -3
例 1、求 4、-3.5、0 的绝对值。 练习 B:

1、 《课本》 P24 练一练 1 2、 先求出下列各式的值, 再说出它们所表示的意义。
教后感
第 3 页 共 3 页
生做,师作适当的点拨、强 调、讲解。
-1.5,
6、计算:
-3.5,
2,
1.5,
-2.75
1 3.2 2.3
3 49 -2
1 7
2 2 5 7
4 -25 +4 -10
课后作业: 《同步练习》 P 11~12
课堂作业: ①《课本》 P28 习题 1 作 业 布 置 ②《补充习题》 P 9 第 2.4(1)第 2 题 下节课预习内容:2.4 相反数( P25~26 )

第 2 页 共 3 页
lj 淮安市吴集镇初级中学 七年级数学 教案
教 学 环 节
学生自学共研的内容方法
(按环节设计自学、讨论、训练、探索、创新等内容)
教师施教提要 (启发、精讲、活动等)
值是 4.6 ,求这个数。 2、 你能写出绝对值介于 2.1 和 4.6 的之间的所有整数 吗?如能,请将它们按照从小到大的顺序排列。 3、判断题 (1)任何一个有理数的绝对值都是正数。 (2)如果一个数的绝对值是 5,则这个数是 5。 (3)绝对值小于 3 的整数有 2,1,0。 4、填空: (1)-3 的符号是______, 绝对值是____; (2)符号是“+”号,绝对值是 7 的数是_____; (3)10.5 的符号是_____, 绝对值是______; (4)绝对值是 5.1,符号是“-”号的数是_____. (5)数轴上与表示 1 的点的距离是 2 的点所表示的 数有___。 5、求下列数的绝对值,并用“<”号把这些绝对值连 接起来.

2.4绝对值教学流程

2.4绝对值教学流程

学习课题:2.4绝对值
一、自我回顾:2分钟个人回顾,主动与全班交流。

二、学前准备:1分钟请同学交流
三、教学过程
1、自主学习时间:8分钟
要求:(1)学生静下心来、动起脑来、认真预习、自主分析、解决问题
(2)综合思考性题目或答案不确定的题目需讨论解决,要求学生用红色笔标注出。

2、合作探究时间:7分钟
合作探究内容:自主学习过程中记录的问题和学案上老师设计的重点问题。

合作探究规则:先在小组内分层一对一讨论,共同研究解决问题,其中A层重点帮助解决B层问题,C层旁听学习或先整理C层讨论的成果;然后B层帮助C层解决,A层进行自主拓展;注意讨论时要控制好时间,进行有效讨论,要做好勾画记录。

同时注意总结本组好的解题方法和规律,以便展示分享。

经小组讨论未能解决的问题要以书面的形式反馈至老师手中。

老师在巡视过程中参与讨论、收集问题
3、展示分享时间:7分钟
总体原则是B层展示,A层点拨,C层提升
在展示的过程中,其他小组成员负责质疑、提问和补充,可以用其它颜色的笔对展示内容进行补充或修改。

4、精讲点拨时间:5分钟
一是针对学生的展示点评,肯定好的,指出出现的问题,
二是对学生模糊不清的疑难,做出准确的答复,
三是对重难点问题进行点拨讲解,归纳方法、规律,老师的讲要语言精练,直奔问题,点深点透,
四是针对展示分享情况科学评价各小组,激励到位。

5、课堂评价时间:3分钟
学生自评他人评价教师评价6、自我测试题7分钟。

初中-数学-苏科版-七年级上册-2.4绝对值与相反数(1)

初中-数学-苏科版-七年级上册-2.4绝对值与相反数(1)

总课题第2章有理数总课时数本课课题 2.4绝对值与相反数课型新授第 1 课时备课时间教学目标(一)知识与技能(1)初步理解绝对值的概念,理解绝对值的几何意义。

(2)通过画数轴的方法求一个数的绝对值。

(二)过程与方法(1)经历将实际问题数学化的过程,感受数学与生活的关系。

(三)情感态度价值观(1)经历将实际问题数学化的过程,感受数学与生活的联系。

(2)进一步渗透数形结合的思想,感知数学知识具有普遍的联系性。

教学重点、难点(一)教学重点:(1)一个数的绝对值的意义;(2)求已知数的绝对值;(3)用绝对值比较大小.(二)教学难点:理解绝对值的几何意义。

教学环节教师活动教学内容学生活动(一)创设情境引入新课提问板书课题绝对值与相反数(1)小明家在学校正西方3 km处,小丽家在学校正东方2 km处,他们上学所花的时间与各家到学校的距离有关.你会用数轴上的点表示学校、小明家、小丽家的位置吗?做一做:用数轴上的点表示学校、小明家、小丽家的位置.1.画数轴,用数轴的原点O表示学校的位置,规定向东为正,数轴上的1个单位长度表示1km;2.设点A、点B分别表示小明家、小丽家,则点A在原点O左侧且到原点O的距离为3个单位长度,点B在原点O右侧且到原点O的距离为2个单位长度.本节课我们就一起来学习绝对值。

尝试通过数轴表示问题。

交流分享(二)层层递进探索新知提问板书绝对值概念。

教师板书第一组:5-=_5_巡视,学生交流有错(1)观察图1,点A、B、C、D到原点的单位长度分别为______、______、______、_____,即它们到原点的距离为_____、______、______、_____.(2)点A、B、C、D所表示的数的绝对值为____、_____、_____、_____.归纳:数轴上表示一个数的点到_原点的距离_,叫做这个数的绝对值.3和-3所对应的点到原点的距离相同。

绝对值的表示与比较:-5的绝对值为___,记为:5-=____;-212的绝对值为____,记为:____;3.2的绝对值为___,记为:___.我们容易看出:_____<_____<_____.例l 求下列各数的绝对值:-112,5,0,-1,4.5.(1)5,1.5,2.5,65,1.5,2.5,6(2)5,1.5,2.5,6齐声朗读学生思考,交流。

七年级上册教案:2_4绝对值与相反数(学生版)

七年级上册教案:2_4绝对值与相反数(学生版)

初一数学助学案(学生版)课题:§2.4 绝对值与相反数一、学习目标1.借助数轴,初步理解绝对值的概念, 能求一个有理数的绝对值;3.会比较两个有理数的绝对值的大小;二、学习重点与难点1.重点:了解绝对值的含义;2.难点:会比较两个有理数的绝对值的大小;三、 学习过程复习回顾1.有理数的分类:2.数轴的三要素 。

3.分别指出数轴上点A 、B 、C 、D 所表示的数:4.在数轴上画出表示下列各数的点:-3.5,3,-0.8,2.5,0.5.在数轴上位于-3.2与1之间的点表示的整数有:___________.6. 比较下列各数的大小:-2, 2.3, 0, 121。

(用“<”连接)(一)创设情境小明的家在学校西边3km 处,小丽的家在学校东边2km 处,小芳的家在学校东边3km 处,我们能够用数轴来表示小明、小丽和小芳的家和学校的位置,以学校为原点,向东为正,小明、小丽和小芳的家分别在A 、B 、C 处。

请画出数轴思考:(1)点A 、B 、C 离原点的距离各是多少?(2)点A 、B 、C 离原点的距离与它们表示的数是正数还是负数有没相关系?(3)在数轴上分别描出下列数所对应的点,并说出它们到原点的距离:0, -2, 5,21, -3.3二、探究新知小结: 叫做这个数的绝对值。

例如:3的绝对值记为 ,读作 。

3 表示的几何意义是_______________________________练习:在数轴上写出A ,B ,C ,D ,E 各点所表示的数的绝对值。

例1. 求4、-3.5的绝对值 例2.比较-3与-6的绝对值的大小-3-2-143210F E D C B A例3.在数轴上画出表示下列各数的点,并分别求出它们的绝对值:-2, +3.5, 0, -1, 12, -0.6 例4.出租车司机小李某天下午某一时段营运,全是在东西走向的人民大道实行。

如果规定向东为正,向西为负,他在这个时段行车里程(单位:千米)如下:-2, +5, -1,+10,-3,若车耗油量为0.8升/千米,你能协助小李算出在这个时段共耗油多少升吗?四、当堂反馈1.比较|-3|, | -0.4| , |-2 |的大小,并用“<”号把他们连接起来.2.填空题: (1)|+3|= , |0|= ; |-8.3| = , |-100| = .(2)若||4x =,则____x =; 若|a |=0, 则a = ____ (3)1||2-的倒数是____.3.选择题:(1)任何一个有理数的绝对值一定( )A 、大于0B 、小于0C 、小于或等于0D 、大于或等于0(2)下列说法:①7的绝对值是7 ②-7的绝对值是7 ③绝对值等于7的数是7或-7 ④绝对值最小的有理数是0.其中准确说法有( )A 、1个B 、2个C 、3个D 、4个五 学习反思初一数学助学案(学生版)课型:新授 执笔:杨存明 审核:初一备课组 姓名 课题:§2.3 绝对值与相反数(2)学习目标:有理数的相反数概念及表示方法,有理数相反数的求法、多重符号的化简和简单计算,在相反数概念学习过程中,理解数形结合等思想方法,培养概括水平.学习重点、难点:重点:互为相反数的数在数轴上的特征难点:根据相反数的意义实行多重符号的化简学习过程:复习回顾1. 叫做这个数的绝对值。

七年级数学2.4绝对值与相反数典例解析相反数与绝对值

七年级数学2.4绝对值与相反数典例解析相反数与绝对值

典例解析:相反数与绝对值例1 求下列各数的绝对值,并把它们用“>”连起来.87-,91+,0,-1.2 分析 首先可根据绝对值的意义,即正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0来求出各数的绝对值.在比较大小时可以根据“两个负数比较大小,绝对值大的反而小”比较出2.187->-,其他数的比较就容易了. 解 .2.12.1,00,9191,8787=-==+=-.2.187091->->>+说明: 利用绝对值只是比较两个负数. 例2 求下列各数的绝对值:(1)-38;(2)0.15;(3))0(<a a ;(4))0(3>b b ; (5))2(2<-a a ;(6)b a -.分析:欲求一个数的绝对值,关键是确定绝对值符号内的这个数是正数还是负数,然后根据绝对值的代数定义去掉绝对值符号,(6)题没有给出a 与b 的大小关系,所以要进行分类讨论. 解:(1)|-38|=38;(2)|+0.15|=0.15; (3)∵a <0,∴|a |=-a ; (4)∵b>0,∴3b>0,|3b|=3b ;(5)∵a <2,∴a -2<0,|a -2|=-(a -2)=2-a ;(6)⎪⎩⎪⎨⎧<-=>-=-).();(0);(b a a b b a b a b a b a说明:分类讨论是数学中的重要思想方法之一,当绝对值符号内的数(用含字母的式子表示时)无法判断其正、负时,要化去绝对值符号,一般都要进行分类讨论. 例3 一个数的绝对值是6,求这个数.分析 根据绝对值的意义我们可以知道,绝对值是6的数应该是6±. 说明:互为相反数的两个数的绝对值相等.例4 计算下列各式的值(1)272135-+++-;(2)21354543-+--; (3)71249-⨯-;(4).21175.0-÷- 分析 这些题中都带有绝对值符号,我们应先计算绝对值再进行其他计算. 解 (1)83272135272135=++=-+++-;(2)2162135454321354543=+-=-+--; (3)1057124971249=⨯=-⨯-; (4).5.021175.021175.0=÷=-÷- 说明:在去掉绝对值之后,要注意能简算的要简算,如(2)题. 例5 已知数a 的绝对值大于a ,则在数轴上表示数a 的点应在原点的哪侧?分析 确定表示a 的点在原点的哪侧,其关键是确定a 是正数还是负数.由于负数的绝对值是它的相反数正数,所以可确定a 是负数.解 由于负数的绝对值是它的相反数,所以负数的绝对值大于这个负数;又因为0和正数的绝对值都是它本身,所以a 是负数,故表示数a 的点应在原点的左侧.说明:只有负数小于其本身的绝对值,而0和正数都等于自己的绝对值. 例6 判断下列各式是否正确(正确入“T”,错误入“F”): (1)a a =-;( ) (2)a a -=-;( )(3))0(≠=a aaaa ;( ) (4)若|a |=|b|,则a =b ;( ) (5)若a =b ,则|a |=|b|;( )分析:判断上述各小题正确与否的依据是绝对值的定义,所以思维应集中到用绝对值的定义来判断每一个结论的正确性.判数(或证明)一个结论是错误的,只要能举出反例即可.如第(2)小题中取a =1,则-|a |=-|1|=-1,而|-a |=|-1|=1,所以-|a |≠|-a |.在第(4)小题中取a =5,b =-5等,都可以充分说明结论是错误的.要证明一个结论正确,须写出证明过程.如第(3)小题是正确的.证明步骤如下:当0>a 时,1==a a a a ,而1==aaa a ,a aaa =∴成立; 当0<a 时,1-=-=a a aa ,而1-=-=aaa a ,aaa a =∴也成立. 这说明0≠a 时,总有成立.此题证明的依据是利用的定义,化去绝对值符号即可. 解:其中第(2)、(4)、小题不正确,(1)、(3)、(5)小题是正确的.说明:判断一个结论是正确的与证明它是正确的是相同的思维过程,只是在证明时需要写明道理和依据,步骤都要较为严格、规范.而判断一个结论是错误的,可依据概念、性质等知识,用推理的方法来否定这个结论,也可以用举反例的方法,后者有时更为简便. 例7 若0512=-++y x ,则y x +2等于( ).分析与解:“任意有理数的绝对值一定为非负数.”利用这一特点可得012≥+x ;05≥-y .而两个非负数之和为0,只有一种可能:两非负数均为0.则012=+x ,21-=x ;05=-y ,5=y .故452122=+⎪⎭⎫⎝⎛-⨯=+y x .说明:任意有理数的绝对值一定为非负数,因为它表示的是一个数在数轴上的对应点到原点的距离.绝对值的这个特性今后会经常用到.几个非负数的和为0,则每一个非负数都是0. 例8 计算)5(13>-+-x x x .分析:要计算上式的结果,关键要弄清x -3和1-x 的符号,再根据正数的绝对值等于本身,负数的绝对值等于它的相反数,0的绝对值是0.可求上式的结果,又∵5>x ,故03<-x ,而01>-x .解:又∵5>x ,∴03<-x ,01>-x ,∴421313-=-+-=-+-x x x x x .说明:利用绝对值的代数定义灵活化简含绝对值的式子同,首先应确定代数式的符号.另外,要求出负数的相反数.例9 指出下面各数的相反数:-5,3,211,-7.5,0 分析:如果两个数只有符号不同则这两个数互为相反数. 解:-5的相反数是+5,3的相反数是-3;211的相反数是-211;-7.5的相反数是7.5;0的相反数是0.注意:(1)要注意相反数和倒数之间的区别.(2)只有0的相反数是它本身.例10 指出下面数轴上各点表示的相反数.分析:首先弄清A、B、C、D各点表示的数,然后根据相反数的意义就可以写出其相反数.解:A点表示的数的相反数是1;B点表示的数的相反数是-2;C点表示的数的相反数是0;D点表示的数的相反数是3.说明:不要把“表示的数”和“表示的数的相反数”混淆.例11 在下面的等式的□中,填上连续的五个整数,使这个等式成立.0-□-□-□-□-□=0分析:上面的式子的左边可以看成是和的省略“+”号形式,所以上式可以写成0+(-□)+(-□)+(-□)+(-□)-□=0所以可以变为0+(-□)+(-□)+(-□)+(-□)-□=0由此可知:0+(-□)+(-□)+(-□)-□=□依次这样做下去可把原式变为□+□+□+□+□=0由此可知要使五个连续的整数的和是0,其中必有两对数互为相反数,另一个是0,所以这五个数是-2,-1,0,1,2.解:原式可变形为:□+□+□+□+□=0故五个数应该是-2-1,0,1,2.注意:(1)要注意题中给出的条件是“连续整数”,如果去掉“连续”该题的解就将很多了.(2)事实上这个题我们还可以采取下面的方法进行分析.我们可把-□用□去替换就可以直接得到□+□+□+□+□=0,但这种想法比较抽象,不易理解.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.甲、乙两人做同样的零件,如果甲先做1天,乙再开始做,5天后两人做的一样多;如果甲先做30个,乙再开始做,4天后乙反而比甲多做10个,设甲每天做x个,乙每天做y个,则可列出的方程组是( )A.156304410x yx y+=⎧⎨+=-⎩B.65304410x yx y=⎧⎨+=-⎩C.65304410x yx y=⎧⎨+=+⎩D.156304410x yx y+=⎧⎨+=+⎩【答案】B【解析】设甲每天做x个,乙每天做y个,根据题意即可列出方程组.【详解】设甲每天做x个,乙每天做y个,根据如果甲先做1天,乙再开始做,5天后两人做的一样多;如果甲先做30个,乙再开始做,4天后乙反而比甲多做10个,可得方程组65304410 x yx y=⎧⎨+=-⎩故选B.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据题意找到等量关系进行列出方程. 2.奥运会的年份与届数如下表,表中n的值为()A.28 B.29 C.30 D.31【答案】D【解析】第1届相应的举办年份=1896+4×(1-1)=1892+4×1=1896年;第2届相应的举办年份=1896+4×(2-1)=1892+4×2=1900年;第3届相应的举办年份=1896+4×(3-1)=1892+4×3=1904年;…第n届相应的举办年份=1896+4×(n-1)=1892+4n年,根据规律代入相应的年数即可算出届数.【详解】观察表格可知每届举办年份比上一届举办年份多4,则第n届相应的举办年份=1896+4×(n−1)=1892+4n年,1892+4n=2016, 解得:n=31, 故选D. 【点睛】本题考查数字变化的规律,解题的关键是由题意得出第n 届相应的举办年份=1896+4×(n−1)=1892+4n 年. 3.在平面直角坐标系中,将点(-2,3)向上平移1个单位长度,所得到的点的坐标是( ) A .(-1,3) B .(-2,2) C .(-2,4) D .(-3,3)【答案】C【解析】试题分析:点(-2,3) 向上平移1个单位长度,所以横坐标不变,纵坐标加1,因此所得点的坐标是(-2,4). 故选C .点睛:本题考查了点的平移的坐标特征,需熟记沿横轴平移,横坐标变化,沿纵轴平移纵坐标变化,沿正方向平移加,沿负方向平移减.4.晓东根据某市公交车阶梯票价,得出乘坐路程m (单位:公里)和票价n (单位:元)之间的关系如下表:我们定义公交车的平均单价为w m=,当7,10,13m =时,平均单价依次为1w ,2w ,3w ,则1w ,2w ,3w 的大小关系是( )A .123w w w >>B .312w w w >>C .231w w w >>D .132w w w >>【答案】D【解析】根据题意,按计费规则计算即可. 【详解】解:由题意1232237100.28570.20.208133w w w =≈===≈,,, 所以132w w w >>, 故选D . 【点睛】本题为实际应用问题,考查了函数图象的意义以阅读图表能力,解答关键需要理解计费规则.5.一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为( )A .x 2{x 1>≤-B .x 2{x 1<>-C .x 2{x 1<≥-D .x 2{x 1<≤-【答案】C【解析】不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个。

初二七年级数学上册2.4 绝对值ppt课件

初二七年级数学上册2.4 绝对值ppt课件
(2)已知|a|=2,|b|=3,|c|=4,且有理数a,b,c在数轴上对应点的位置 如图所示,求a,b,c的值.
解:由|a|=2,得a=±2,又因为a>0,所以a=2;由|b|=3,得b=±3, 又因为b>0,所以b=3;由|c|=4,得c=±4,又因为c<0,所以c=-4
18.(阿凡题 1071707)某汽车配件厂生产一批圆形零件,从中抽取5个 进行检验,比标准直径长的毫米数记作正数,比标准直径短的毫米数记作 负数,检查记录如下:
(2)|-3|+|4|; 解:原式=7
(3)|-4|÷2; 解:原式=2
(4)|-2.5|+|-(+7.5)|. 解:原式=10
10.若|a|=-a,则a是( D) A.正数 B.负数 C.非负数 D.非正数
11.在-(-8),-|-1|,-|5-5|,|-2|这四个数中负数有( D) A.4个 B.3个 C.2个 D.1个
12.如图,数轴上的A,B,C三点所表示的数分别是a,b,c,其中点A 到点B的距离等于点B到点C的距离.如果|a|>|b|>|c|,那么该数轴的原点的 位置应该在( D )
A.点A的左边 B.点A与点B之间 C.点B与点C之间 D.点B与点C之间(靠近点C)或点C的右边
ห้องสมุดไป่ตู้
13.(1)若|-x|=|3|,则 x=_±__3_; (2)若|-x|=|-2|,则 x=_±__2_.
7.如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那 么点A表示的数是(B )
A.-4 B.-2 C.0 D.4
8.化简:|-4.3|=_4_._3_; -+23=-__23__;
--453= -435
; -|0|=__0__.

华东师大版数学七年级上册说课稿:2.4绝对值

这些媒体资源在教学中的作用是:形象生动地展示知识点,降低学习难度;提供丰富的学习资源,拓展学生的学习视野;提高学生的学习兴趣,激发学生的学习动机。
(三)互动方式
我将设计以下师生互动和生生互动环节,以促进学生的参与和合作:
1.师生互动:通过提问、解答学生疑问,引导学生思考,给予学生及时反馈,激发学生的学习兴趣。
2.互评:组织学生进行小组内互评,互相交流学习心得,发现彼此的优点和不足,相互促进。
3.教师评价:针对学生的自评和互评,给予针对性的反馈和建议,强调重点知识点,纠正错误观念,指导学习方法。
(五)作业布置
课后作业布置如下:
1.基础作业:布置一些绝对值的基本运算题,巩固学生的运算能力。
2.提高作业:设置一些综合性的题目,如绝对值方程、不等式的求解,提高学生的应用能力。
-左侧:绝对值的定义、性质、运算规则。
-中间:包含典型例题的解题过程和关键步骤。
-右侧:学习要点、注意事项和拓展提示。
2.风格:板书将以简洁、直观为主,使用不同颜色的粉笔突出重点,使用箭头和框线表示逻辑关系。
板书在教学过程中的作用是帮助学生构建知识框架,强化记忆,同时作为教学过程的视觉辅助工具。为确保板书清晰、简洁且有助于学生把握知识结构,我将:
2.在解决实际问题时,学生可能难以将绝对值知识与其他数学知识相结合。
为应对这些问题,我将:
-在课堂上通过问答、小组讨论等形式,及时了解学生的理解程度,并给予个别指导。
-设计更多综合性的练习题,帮助学生将绝对值知识应用于其他数学领域。
课后,我将通过以下方式评估教学效果:
1.收集学生的作业,分析错误类型和普遍问题。
2.生生互动:组织学生进行小组合作,共同探讨绝对值的性质、运算规律和应用。设置竞赛、讨论等环节,鼓励学生积极参与,提高学生的合作意识。

绝对值 教学设计

华师大版七年级上 2.4《绝对值》第一课时教学设计【课程标准分析】本节课要求学生借助数轴,初步理解绝对值的概念,能求一个数的绝对值,并能够利用绝对值的非负性进行相关计算。

通过应用绝对值养成解决实际问题的能力;通过渗透数形结合的思想方法,注意培养学生的概括能力。

最终帮助学生体会绝对值的意义和作用,感受数学在生活中的价值。

【教材分析】1.地位与作用:绝对值是有理数的重要概念之一,在学习绝对值之前,学生已经学习了负数、数轴和相反数,学生在小学学习了非负有理数,了解了非负有理数的概念、性质及运算,为学习绝对值奠定了基础。

绝对值与初等数学的许多知识和方法相联系,有着广泛和重要的应用:①有理数的大小比较,有了绝对值的概念后,有理数之间的大小比较就方便多了,特别是两个负数的比较,只比较绝对值即可,不必在数轴上表示负数后再比较。

②求数轴上的两点间的距离,数a 在数轴上表示的点到原点的距离为|a|,在数轴上表示a和b两点间的距离为|a-b|。

③有理数的运算,一个有理数实质包含两部分:一是符号,二是绝对值;有理数的运算在确定了结果的正负号后,剩下的问题就是绝对值的运算了。

④应用绝对值的非负性,一个有理数的绝对值是一个非负数,这一性质有着重要的作用。

如已知|a-3|+|b+2|=0,求a-b的值,就是这一性质的直接应用。

从前面四点的分析中,不难看出,绝对值在整个数与代数部分有着重要的地位,应用非常的广泛,是后继学习的重要基础,有着承上启下的作用。

2.重点与难点:本节的重点是让学生直观理解绝对值的含义;本节的难点是正确理解绝对值的代数意义及其应用。

通过生活引例,自然导出绝对值的几何定义,再通过尝试、归纳,进而得出常用的代数定义,要引导学生参与这一过程,并对|a|≥0这一性质有初步的直观认识。

教学中要让学生了解一个有理数应由符号和绝对值两部分组成,为有理数的运算作准备,结合绝对值的学习,可以引导学生重新认识相反数的意义:绝对值相等符号相反的两个数互为相反数;零的相反数是零。

2.4含绝对值的不等式

【课题】2.4含绝对值的不等式
【教学目标】
知识目标:
(1) 理解含绝对值不等式x a <或x a >的解法; (2) 了解ax b c +<或ax b c +>的解法. 能力目标:
(1)通过数形结合的研究问题,培养学生的观察能力.
(2)通过含绝对值的不等式的学习,学会运用变量替换的方法,从而提升计算技能。

情感目标:
经历合作学习的过程,树立团队合作意识。

【教学重点】
(1)不等式x a <或x a >的解法 .
(2)利用变量替换解不等式ax b c +<或ax b c +>.
【教学难点】
利用变量替换解不等式ax b c +<或ax b c +>. 【教学设计】
(1) 从数形结合的认识绝对值入手,有助于学生对知识的理解; (2) 观察图形得到不等式x a <或x a >的解集; (3) 运用变量替换,化繁为简,培养学生的思维能力;
(4) 加强解题实践,讨论、探究,培养学生分析与解决问题的能力,培养团队精神.
【教学备品】
教学课件.
【课时安排】
2课时.(90分钟)
【教学过程】。

华东师大版数学七年级上册导学案:2.4绝对值

自主预习
1、预习课本P22--24的内容
2、牢记绝对值的定义:在数轴上,一个数a的点与原点的距离叫做该数的
绝对值,记作| a |. 完成试一试
3.绝对值的性质:
正数绝对值是它本身
负数的绝对值是它的相反数
0的绝对值是0
4.认真分析例1,例2,会求一个数的绝对值,会化简
二、合作交流与探究
探究1::
一只大象、两只小狗从同一点O出发,在一条笔直的街上跑,请说出大象和两只小狗分别距离原点多远?
探究2
思考问题: 一个正数的绝对值是什么?一个负数的绝对值是什么?0的绝对值是什么?
试一试: 若字母a表示一个有理数,你知道a的绝对值等于什么吗?
(1)如果a>0,那么|a|=;
(2)如果a<0,那么|a|=;
(3)如果a=0,那么|a|=.
小试牛刀: 绝对值等于0的数是,
绝对值等于5.25的正数是,
绝对值等于5.25的负数是,
绝对值等于2的数是.
结论:互为相反数的两个数的绝对值
当堂达标
1.求下列各数的绝对值:-21,+,0,-7.8.
2.如果|a|=4,那么a等于.
3.任何一个有理数的绝对值一定()
A.大于0
B.小于0
C.小于或等于0
D.大于或等于0
4.化简
(1)-[-(-3)];(2)-{-[+(-3)]};
(3)-{+[-(+3)]};(4)-{-[-(-│-3│)}.
1 、作业等级甲乙丙丁
2、完成检测指标成绩( )
______月________日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

检测题
1. 计算
│3│=
│-5│=
│91│=
│0.5│=
│-2/3│=ຫໍສະໝຸດ │0│=2.回答下列问题
①一个数的绝对值是它本身,这个数是什么数?
②一个数的绝对值是它的相反数,这个数是什么数?
③一个数的绝对值一定是正数吗?
④一个数的绝对值不可能是负数,对吗?
课堂小结
1 .绝对值的概念. 2. 如何求一个数的绝对值. 3. 一个数的绝对值总是大于或等于0的.
当堂训练
1 、|2|=______,|-2|=______. 2、若|x|=4,则x=______. 3、若|a|=0,则a=______. 4、|- 0.5 |的倒数是______,|-6|的相反数是______. 5、+7.2的相反数的绝对值是______. 6、若|a|+|b-1|=0,则a=_____, b=_____.
2.4 绝对值
学习目标
• 1. 理解绝对值的几何意义及其性质. • 2.会求一个数的绝对值,会用绝对值非负性解决问题。
自学指导
认真看课本P22--24,要求: 1. 绝对值的定义,请举例说明; 2怎样求一个数的绝对值;你能得到什么规律? 3. 绝对值的非负性; 4. 注意云图中的问题。
如有疑问,可以小声问同学或举手问老师。 6分钟后比谁能熟练求出一个数的绝对值。
相关文档
最新文档