31 解三角形的要素 高中数学讲义微专题Word版

合集下载

2023届高三数学一轮复习专题 解三角形 讲义 (解析版)

2023届高三数学一轮复习专题  解三角形  讲义 (解析版)

单元(或主题)教学设计模板以下内容、形式均只供参考,参评者可自行设计。

教学过程既可以采用表格式描述,也可以采取叙事的方式。

如教学设计已经过实施,则应尽量采用写实的方式将教学过程的真实情景以及某些值得注意和思考的现象和事件描述清楚;如教学设计尚未经过实施,则应着重将教学中的关键环节以及教学过程中可能出现的问题及处理办法描述清楚。

表格中所列项目及格式仅供参考,应根据实际教学情况进行调整。

问题,体验数学在解决实际问题中的作用,提升学生数学抽象、数学建模、直观想象、数学运算的数学核心素养。

重点:掌握正弦定理、余弦定理及面积公式,并能正确应用定理解三角形难点:能应用正弦定理、余弦定理等知识和方法解决一些测量与几何计算有关的实际问题。

3.单元(或主题)整体教学思路(教学结构图)第一课时,正弦定理及可以解决的问题第二课时,余弦定理及可以解决的问题第三课时,三角形内角和定理、正弦定理、余弦定理的选择第1课时教学设计课题正弦定理课型新授课□章/单元复习课□专题复习课√习题/试卷讲评课□学科实践活动课□其他□1.教学内容分析本课时是解三角形复习课的起始课,由实际问题出发引起学生对定理及变形的回忆,提升学生数学建模、直观想象的核心素养;由几个典型的例题,归纳出正弦定理可以解决的类型,再由定理本身出发再次分析定理可以解决的类型,提升学生逻辑推理、数学运算的核心素养,提高学生对数学符号解读的能力。

再析定理,进而推出“三角形面积公式”,提升学生逻辑推理的核心素养。

3、你还有哪些收获?活动意图说明对于本节课的重点内容强化提问,既检测又强化重点。

“你还有哪些收获”,希望学生能够答出:三角形面积公式、SSA 的情况可能出现两解、取舍的方法、方程和数形结合的思想方法等。

环节六:课堂检测教的活动61、 在中,已知 45,30,10A C c cm ︒︒===,求a 边. 2、 在△ABC 中,π32,6,2===B b c ,求∠A 。

新人教A版高中数学全套讲义:解三角形

新人教A版高中数学全套讲义:解三角形

正弦定理和余弦定理1.1.1正弦定理[新知初探] 1.正弦定理在一个三角形中,各边和它所对角的正弦的比相等,即asin A=bsin B=csin C.[点睛]正弦定理的特点(1)适用范围:正弦定理对任意的三角形都成立.(2)结构形式:分子为三角形的边长,分母为相应边所对角的正弦的连等式.(3)刻画规律:正弦定理刻画了三角形中边与角的一种数量关系,可以实现三角形中边角关系的互化.2.解三角形一般地,把三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素,已知三角形的几个元素求其他元素的过程叫做解三角形.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)正弦定理适用于任意三角形()(2)在△ABC中,等式b sin A=a sin B总能成立()(3)在△ABC中,已知a,b,A,则此三角形有唯一解()解析:(1)正确.正弦定理适用于任意三角形.(2)正确.由正弦定理知asin A=bsin B,即b sin A=a sin B.(3)错误.在△ABC中,已知a,b,A,此三角形的解有可能是无解、一解、两解的情况,具体情况由a,b,A的值来定.答案:(1)√(2)√(3)×2.在△ABC 中,下列式子与sin Aa的值相等的是( ) A.bc B.sin B sin A C.sin C cD.c sin C解析:选C 由正弦定理得,a sin A =c sin C, 所以sin A a =sin C c .3.在△ABC 中,已知A =30°,B =60°,a =10,则b 等于( ) A .5 2 B .10 3 C.1033D .5 6 解析:选B 由正弦定理得,b =a sin Bsin A=10×3212=10 3.4.在△ABC 中,A =π6,b =2,以下错误的是( )A .若a =1,则c 有一解B .若a =3,则c 有两解C .若a =45,则c 无解D .若a =3,则c 有两解解析:选D a =2 sin π6=1时,c 有一解;当a <1时,c 无解;当1<a <2时,c 有两个解;a >2时,c 有一解.故选D.已知两角及一边解三角形[典例] 在△ABC 中,已知a =8,B =60°,C =75°,求A ,b ,c . [解] A =180°-(B +C )=180°-(60°+75°)=45°, 由正弦定理b sin B =a sin A ,得b =a sin B sin A =8×sin 60°sin 45°=46,由a sin A =c sin C ,得c =a sin C sin A =8×sin 75°sin 45°=8×2+6422=4(3+1).已知三角形任意两角和一边解三角形的基本思路(1)由三角形的内角和定理求出第三个角. (2)由正弦定理公式的变形,求另外的两条边.[注意] 若已知角不是特殊角时,往往先求出其正弦值(这时应注意角的拆并,即将非特殊角转化为特殊角的和或差,如75°=45°+30°),再根据上述思路求解.[活学活用]在△ABC 中,若A =60°,B =45°,BC =32,则AC =( ) A .43 B .2 3 C. 3D.32解析:选B 由正弦定理得,BC sin A =AC sin B ,即32sin 60°=AC sin 45°,所以AC =3232×22=23,故选B.已知两边及其中一边的对角解三角形[典例] 在△ABC 中,a =3,b =2,B =45°,求A ,C ,c . [解] 由正弦定理及已知条件,有3sin A =2sin 45°,得sin A =32.∵a >b ,∴A >B =45°.∴A =60°或120°. 当A =60°时,C =180°-45°-60°=75°,c =b sin Csin B =2sin 75°sin 45°=6+22; 当A =120°时,C =180°-45°-120°=15°,c =b sin Csin B =2sin 15°sin 45°=6-22. 综上可知:A =60°,C =75°,c =6+22或A =120°,C =15°,c =6-22.已知三角形两边和其中一边的对角解三角形的方法(1)首先由正弦定理求出另一边对角的正弦值.(2)如果已知的角为大边所对的角时,由三角形中大边对大角、大角对大边的法则能判断另一边所对的角为锐角,由正弦值可求锐角唯一.(3)如果已知的角为小边所对的角时,则不能判断另一边所对的角为锐角,这时由正弦值可求两个角,要分类讨论.[活学活用]在△ABC 中,c =6,C =60°,a =2,求A ,B ,b . 解:∵a sin A =c sin C ,∴sin A =a sin C c =22. ∴A =45°或A =135°. 又∵c >a ,∴C >A .∴A =45°. ∴B =75°,b =c sin Bsin C =6·sin 75°sin 60°=3+1.三角形形状的判断 [典例] 在△ABC 中,a cos ⎝⎛⎭⎫π2-A =b cos ⎝⎛⎭⎫π2-B ,判断△ABC 的形状. 解:[法一 化角为边] ∵a cos ⎝⎛⎭⎫π2-A =b cos ⎝⎛⎭⎫π2-B , ∴a sin A =b sin B .由正弦定理可得:a ·a 2R =b ·b2R ,∴a 2=b 2,∴a =b ,∴△ABC 为等腰三角形. [法二 化边为角]∵a cos ⎝⎛⎭⎫π2-A =b cos ⎝⎛⎭⎫π2-B , ∴a sin A =b sin B.由正弦定理可得:2R sin 2A =2R sin 2B ,即sin A =sin B , ∴A =B .(A +B =π不合题意舍去) 故△ABC 为等腰三角形.利用正弦定理判断三角形的形状的两条途径(1)化角为边......将题目中的所有条件,利用正弦定理化角为边,再根据多项式的有关知识(分解因式、配方等)得到边的关系,如a =b ,a 2+b 2=c 2等,进而确定三角形的形状.利用的公式为:sin A =a 2R ,sin B =b 2R ,sin C =c2R. (2)化边为角......将题目中所有的条件,利用正弦定理化边为角,再根据三角函数的有关知识得到三个内角的关系,进而确定三角形的形状.利用的公式为:a =2R sin A ,b =2R sin B ,c =2R sin C .[活学活用]在△ABC 中,已知a cos A =b cos B ,试判断△ABC 的形状. 解:由正弦定理,a sin A =b sin B =c sin C=2R ,所以a cos A =b cos B 可化为sin A cos A =sin B cos B ,sin 2A =sin 2B ,又△ABC 中,A ,B ,C ∈(0,π),所以2A =2B 或2A +2B =π,即A =B 或A +B =π2,所以△ABC 的形状为等腰或直角三角形.层级一 学业水平达标1.在△ABC 中,a =5,b =3,则sin A ∶sin B 的值是( ) A.53 B.35 C.37D.57解析:选A 根据正弦定理得sin A sin B =a b =53. 2.在△ABC 中,a =b sin A ,则△ABC 一定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形解析:选B 由题意有a sin A =b =b sin B,则sin B =1, 即角B 为直角,故△ABC 是直角三角形.3.在△ABC 中,若sin A a =cos Cc ,则C 的值为( ) A .30° B .45° C .60°D .90°解析:选B 由正弦定理得,sin A a =sin C c =cos Cc, 则cos C =sin C ,即C =45°,故选B.4.△ABC 中,A =π6,B =π4,b =2,则a 等于( )A .1B .2 C. 3D .2 3解析:选A 由正弦定理得asin π6=2sin π4, ∴a =1,故选A.5.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且a =3b sin A ,则sin B =( ) A. 3 B.33C.63D .-63解析:选B 由正弦定理得a =2R sin A ,b =2R sin B ,所以sin A =3sin B sin A ,故sin B =33. 6.下列条件判断三角形解的情况,正确的是______(填序号). ①a =8,b =16,A =30°,有两解; ②b =18,c =20,B =60°,有一解; ③a =15,b =2,A =90°,无解; ④a =40,b =30,A =120°,有一解.解析:①中a =b sin A ,有一解;②中c sin B <b <c ,有两解;③中A =90°且a >b ,有一解;④中a >b 且A =120°,有一解.综上,④正确.答案:④7.在△ABC 中,若(sin A +sin B )(sin A -sin B )=sin 2C ,则△ABC 的形状是________. 解析:由已知得sin 2A -sin 2B =sin 2C ,根据正弦定理知sin A =a 2R ,sin B =b2R ,sin C=c2R, 所以⎝⎛⎭⎫a 2R 2-⎝⎛⎭⎫b 2R 2=⎝⎛⎭⎫c 2R 2,即a 2-b 2=c 2,故b 2+c 2=a 2.所以△ABC 是直角三角形. 答案:直角三角形8.在锐角△ABC 中,BC =1,B =2A ,则ACcos A=________. 解析:由正弦定理及已知得1sin A =AC sin 2A ,∴AC cos A=2. 答案:29.已知一个三角形的两个内角分别是45°,60°,它们所夹边的长是1,求最小边长. 解:设△ABC 中,A =45°,B =60°, 则C =180°-(A +B )=75°. 因为C >B >A ,所以最小边为a . 又因为c =1,由正弦定理得, a =c sin A sin C =1×sin 45°sin 75°=3-1,所以最小边长为3-1.10.在△ABC 中,已知a =22,A =30°,B =45°,解三角形. 解:∵a sin A =b sin B =c sin C, ∴b =a sin B sin A =22sin 45°sin 30°=22×2212=4.∴C =180°-(A +B )=180°-(30°+45°)=105°, ∴c =a sin C sin A =22sin 105°sin 30°=22sin 75°12=42sin(30°+45°)=2+2 3.层级二 应试能力达标1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,如果c =3a ,B =30°,那么角C 等于( )A .120°B .105°C .90°D .75°解析:选A ∵c =3a ,∴sin C =3sin A =3sin(180°-30°-C )=3sin(30°+C )=3⎝⎛⎭⎫32sin C +12cos C ,即sin C =-3cos C ,∴tan C =- 3.又0°<C <180°,∴C =120°.故选A.2.已知a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,若△ABC 的周长为4(2+1),且sin B +sin C =2sin A ,则a =( )A. 2 B .2 C .4D .2 2解析:选C 根据正弦定理,sin B +sin C =2sin A 可化为b +c =2a , ∵△ABC 的周长为4(2+1),∴⎩⎨⎧a +b +c =4(2+1),b +c =2a ,解得a =4.故选C.3.在△ABC 中,A =60°,a =13,则a +b +c sin A +sin B +sin C 等于( )A.833B.2393C.2633D .2 3解析:选B 由a =2R sin A ,b =2R sin B ,c =2R sin C 得a +b +c sin A +sin B +sin C=2R =asin A =13sin 60°=2393. 4.在△ABC 中,若A <B <C ,且A +C =2B ,最大边为最小边的2倍,则三个角A ∶B ∶C =( )A .1∶2∶3B .2∶3∶4C .3∶4∶5D .4∶5∶6解析:选A 由A <B <C ,且A +C =2B ,A +B +C =π,可得B =π3,又最大边为最小边的2倍,所以c =2a ,所以sin C =2sin A ,即sin ⎝⎛⎭⎫2π3-A =2sin A ⇒tan A =33,又0<A <π,所以A =π6,从而C =π2,则三个角A ∶B ∶C =1∶2∶3,故选A.5.在△ABC 中,A =60°,B =45°,a +b =12,则a =________. 解析:因为a sin A =b sin B ,所以a sin 60°=b sin 45°,所以32b =22a ,① 又因为a +b =12,② 由①②可知a =12(3-6). 答案:12(3-6)6.在△ABC 中,若A =120°,AB =5,BC =7,则sin B =_______. 解析:由正弦定理,得AB sin C =BC sin A ,即sin C =AB ·sin ABC =5sin 120°7=5314. 可知C 为锐角,∴cos C =1-sin 2C =1114. ∴sin B =sin(180°-120°-C )=sin(60°-C ) =sin 60°·cos C -cos 60°·sin C =3314. 答案:33147.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且a sin A =c3cos C .(1)求角C 的大小;(2)如果CA ·CB =4,求△ABC 的面积. 解:(1)由⎩⎨⎧a sin A =c sin C,asin A =c3cos C,得sin C =3cos C ,故tan C =3,又C ∈(0,π),所以 C =π3.(2)由CA ·CB =|CA ||CB |cos C =12ba =4得ab =8, 所以S △ABC =12ab sin C =12×8×32=2 3.8.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b cos C +3b sin C -a -c =0.(1)求B ;(2)若b =3,求a +c 的取值范围.解:(1)由正弦定理知:sin B cos C +3sin B sin C -sin A -sin C =0, ∵sin A =sin (B +C )=sin B cos C +cos B sin C 代入上式得: 3sin B sin C -cos B sin C -sin C =0. ∵sin C >0,∴3sin B -cos B -1=0, 即sin ⎝⎛⎭⎫B -π6=12, ∵B ∈(0,π),∴B =π3.(2)由(1)得:2R =bsin B=2,a +c =2R (sin A +sin C ) =23sin ⎝⎛⎭⎫C +π6. ∵C ∈⎝⎛⎭⎫0,2π3,∴23sin ⎝⎛⎭⎫C +π6∈(3,23], ∴a +c 的取值范围为(3,23].1.1.2 余弦定理(1)余弦定理的内容是什么?预习课本P5~6,思考并完成以下问题[新知初探]余弦定理[点睛]余弦定理的特点(1)适用范围:余弦定理对任意的三角形都成立.(2)揭示的规律:余弦定理指的是三角形中三条边与其中一个角的余弦之间的关系,它含有四个不同的量,知道其中的三个量,就可求得第四个量.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)余弦定理揭示了任意三角形边角之间的关系,因此,它适应于任何三角形()(2)在△ABC中,若a2>b2+c2,则△ABC一定为钝角三角形()(3)在△ABC中,已知两边和其夹角时,△ABC不唯一()解析:(1)正确.余弦定理反映了任意三角形的边角关系,它适合于任何三角形.(2)正确.当a2>b2+c2时,cos A=b2+c2-a22bc<0.因为0<A<π,故A一定为钝角,△ABC为钝角三角形.(3)错误.当△ABC已知两边及其夹角时可利用余弦定理求得第三边长且唯一,因此△ABC唯一确定.答案:(1)√ (2)√ (3)×2.在△ABC 中,已知a =9,b =23,C =150°,则c 等于( ) A.39 B .8 3 C .10 2D .7 3解析:选D 由余弦定理得:c =92+(23)2-2×9×23×cos 150° =147 =7 3.3.在△ABC 中,已知a 2=b 2+c 2+bc ,则角A 等于( ) A .60° B .45° C .120°D .30° 解析:选C 由cos A =b 2+c 2-a 22bc =-12,∴A =120°.4.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24D.23解析:选B 由b 2=ac且c =2a 得cos B =a 2+c 2-b 22ac=a 2+4a 2-2a 22a ·2a =34.故选 B.已知两边与一角解三角形[典例] (1)在△ABC 中,已知b =60 cm ,c =60 3 cm ,A =π6,则a =________cm ;(2)在△ABC 中,若AB =5,AC =5,且cos C =910,则BC =________. [解析](1)由余弦定理得: a =602+(603)2-2×60×603×cos π6=4×602-3×602=60(cm).(2)由余弦定理得:(5)2=52+BC 2-2×5×BC ×910,所以BC 2-9BC +20=0,解得BC =4或BC =5.[答案] (1)60 (2)4或5已知三角形的两边及一角解三角形的方法先利用余弦定理求出第三边,其余角的求解有两种思路:一是利用余弦定理的推论求出其余角;二是利用正弦定理(已知两边和一边的对角)求解.若用正弦定理求解,需对角的取值进行取舍,而用余弦定理就不存在这些问题(在(0,π)上,余弦值所对角的值是唯一的),故用余弦定理求解较好.[活学活用]在△ABC 中,a =23,c =6+2,B =45°,解这个三角形. 解:根据余弦定理得,b 2=a 2+c 2-2ac cos B =(23)2+(6+2)2-2×23×(6+2)×cos 45°=8, ∴b =2 2.又∵cos A =b 2+c 2-a 22bc =8+(6+2)2-(23)22×22×(6+2)=12,∴A =60°,C =180°-(A +B )=75°.已知三角形的三边解三角形[典例] 在△ABC 中,已知a =23,b =6,c =3+3,解此三角形. [解] 法一:由余弦定理的推论得cos A =b 2+c 2-a 22bc =(6)2+(3+3)2-(23)22×6×(3+3)=22,∴A =45°.同理可求B =30°,故C =180°-A -B =180°-45°-30°=105°. 法二:由余弦定理的推论得cos A =b 2+c 2-a 22bc =(6)2+(3+3)2-(23)22×6×(3+3)=22,∴A =45°.由正弦定理a sin A =b sin B 知23sin 45°=6sin B ,得sin B =6·sin 45°23=12. 由a >b 知A >B ,∴B =30°.故C =180°-A -B =180°-45°-30°=105°.(1)已知三边求角的基本思路是:利用余弦定理的推论求出相应角的余弦值,值为正,角为锐角;值为负,角为钝角,其思路清晰,结果唯一.(2)若已知三角形的三边的关系或比例关系,常根据边的关系直接代入化简或利用比例性质,转化为已知三边求解.[活学活用]已知a ,b ,c 是△ABC 三边之长,若满足等式(a +b -c )·(a +b +c )=ab ,则C 的大小为( )A .60°B .90°C .120°D .150°解析:选C ∵(a +b -c )(a +b +c )=ab , ∴c 2=a 2+b 2+ab ,由余弦定理可得,cos C =a 2+b 2-c 22ab=a 2+b 2-(a 2+b 2+ab )2ab =-ab 2ab =-12,∵0°<C <180°,∴C =120°,故选C.利用余弦定理判断三角形形状 [典例] 在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,试判断△ABC 的形状. 解:[法一 化角为边] 将已知等式变形为b 2(1-cos 2C )+c 2(1-cos 2B )=2bc cos B cos C . 由余弦定理并整理,得 b 2+c 2-b 2⎝⎛⎭⎫a 2+b 2-c 22ab 2-c 2⎝⎛⎭⎫a 2+c 2-b 22ac 2 =2bc ×a 2+c 2-b 22ac ×a 2+b 2-c 22ab ,∴b 2+c 2=[(a 2+b 2-c 2)+(a 2+c 2-b 2)]24a 2=4a 44a2=a 2. ∴A =90°.∴△ABC 是直角三角形. [法二 化边为角]由正弦定理,已知条件可化为sin 2C sin 2B +sin 2C sin 2B =2sin B sin C cos B cos C .又sin B sin C ≠0,∴sin B sin C =cos B cos C ,即cos(B +C )=0. 又∵0°<B +C <180°,∴B +C =90°,∴A =90°. ∴△ABC 是直角三角形.利用余弦定理判断三角形形状的两种途径(1)化边的关系:将条件中的角的关系,利用余弦定理化为边的关系,再变形条件判断. (2)化角的关系:将条件转化为角与角之间关系,通过三角变换得出关系进行判断. [活学活用]在△ABC 中,a cos A +b cos B =c cos C ,试判断△ABC 的形状.解:由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ca ,cos C =a 2+b 2-c 22ab ,代入已知条件得a ·b 2+c 2-a 22bc +b ·c 2+a 2-b 22ca +c ·c 2-a 2-b 22ab=0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0, 展开整理得(a 2-b 2)2=c 4.∴a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2. 根据勾股定理知△ABC 是直角三角形.正、余弦定理的综合应用题点一:利用正、余弦定理解三角形1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a sin A +c sin C -2a sin C =b sinB.(1)求角B 的大小;(2)若A =75°,b =2,求a ,c . 解:(1)由正弦定理得a 2+c 2-2ac =b 2. 由余弦定理得b 2=a 2+c 2-2ac cos B. 故cos B =22,因此B =45°. (2)sin A =sin (30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64. 故由正弦定理得a =b ·sin Asin B=1+ 3.由已知得,C =180°-45°-75°=60°, c =b ·sin Csin B =2×sin 60°sin 45°= 6.题点二:利用正、余弦定理证明三角形中的恒等式 2.在△ABC 中,求证a 2sin 2B +b 2sin 2A =2ab sin C . 证明:法一:(化为角的关系式)a 2sin 2B +b 2sin 2A =(2R ·sin A )2·2sin B ·cos B +(2R ·sin B )2·2sin A ·cos A =8R 2sin A ·sin B (sin A ·cos B +cos A sin B )=8R 2sin A sin B sin C =2·2R sin A ·2R sin B ·sin C =2ab sin C .∴原式得证.法二:(化为边的关系式)左边=a 2·2sin B cos B +b 2·2sin A cos A =a 2·2b 2R ·a 2+c 2-b 22ac +b 2·2a 2R ·b 2+c 2-a 22bc =ab 2Rc(a 2+c 2-b 2+b 2+c 2-a 2)=ab 2Rc ·2c 2=2ab ·c2R=2ab sin C =右边, ∴原式得证.题点三:正、余弦定理与三角函数、平面向量的交汇应用3.已知△ABC 的周长为4(2+1),角A ,B ,C 所对的边分别为a ,b ,c ,且有sin B +sin C =2sin A .(1)求边长a 的值;(2)若△ABC 的面积为S =3sin A ,求AB ·AC 的值. 解:(1)由正弦定理,得b +c =2a .① 又a +b +c =4(2+1),② 联立①②,解得a =4. (2)∵S △ABC =3sin A , ∴12bc sin A =3sin A ,即bc =6. 又∵b +c =2a =42, ∴由余弦定理得cos A =b 2+c 2-a 22bc =(b +c )2-2bc -a 22bc =13.∴AB ·AC =bc cos A =2.正、余弦定理是解决三角形问题的两个重要工具,这类题目往往结合基本的三角恒等变换,同时注意三角形中的一些重要性质,如内角和为180°、大边对大角等.层级一 学业水平达标1.在△ABC 中,已知(a +b +c )(b +c -a )=3bc ,则角A 等于( ) A .30° B .60° C .120°D .150°解析:选B ∵(b +c )2-a 2=b 2+c 2+2bc -a 2=3bc , ∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12,∴A =60°.2.在△ABC 中,若a =8,b =7,cos C =1314,则最大角的余弦值是( ) A .-15 B .-16 C .-17 D .-18解析:选C 由余弦定理,得c 2=a 2+b 2-2ab cos C =82+72-2×8×7×1314=9,所以c =3,故a 最大, 所以最大角的余弦值为cos A =b 2+c 2-a 22bc =72+32-822×7×3=-17.3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若c 2-a 2-b 22ab >0,则△ABC ( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .是锐角或直角三角形 解析:选C 由c 2-a 2-b 22ab>0得-cos C >0,所以cos C <0,从而C 为钝角,因此△ABC 一定是钝角三角形.4.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( )A.43 B .8-4 3 C .1D.23解析:选A 由(a +b )2-c 2=4,得a 2+b 2-c 2+2ab =4,由余弦定理得a 2+b 2-c 2=2ab cos C =2ab cos 60°=ab ,则ab +2ab =4,∴ab =43.5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为( )A.π6B.π3或2π3C.π3D.π6或5π6解析:选B 因为(a 2+c 2-b 2)tan B =3ac , 所以2ac cos B tan B =3ac ,即sin B =32, 所以B =π3或B =2π3,故选 B.6.已知a ,b ,c 为△ABC 的三边,B =120°,则a 2+c 2+ac -b 2=________. 解析:∵b 2=a 2+c 2-2ac cos B =a 2+c 2-2ac cos 120° =a 2+c 2+ac , ∴a 2+c 2+ac -b 2=0. 答案:07.在△ABC 中,若b =1,c =3,C =2π3,则a =________. 解析:∵c 2=a 2+b 2-2ab cos C , ∴(3)2=a 2+12-2a ×1×cos2π3, ∴a 2+a -2=0,即(a +2)(a -1)=0, ∴a =1,或a =-2(舍去).∴a =1. 答案:18.在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________.解析:因为b +c =7,所以c =7-b . 由余弦定理得:b 2=a 2+c 2-2ac cos B , 即b 2=4+(7-b )2-2×2×(7-b )×⎝⎛⎭⎫-14, 解得b =4. 答案:49.在△ABC 中,A +C =2B ,a +c =8,ac =15,求b . 解:在△ABC 中,∵A +C =2B ,A +B +C =180°, ∴B =60°. 由余弦定理,得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac -2ac cos B=82-2×15-2×15×12=19.∴b =19.10.在△ABC 中,已知a =7,b =3,c =5,求最大角和sin C . 解:∵a >c >b ,∴A 为最大角. 由余弦定理的推论,得cos A =b 2+c 2-a 22bc =32+52-722×3×5=-12.又∵0°<A <180°, ∴A =120°, ∴sin A =sin 120°=32. 由正弦定理,得sin C =c sin Aa =5×327=5314. ∴最大角A 为120°,sin C =5314. 层级二 应试能力达标1.在△ABC 中,有下列关系式:①a sin B =b sin A ;②a =b cos C +c cos B ;③a 2+b 2-c 2=2ab cos C ;④b =c sin A +a sin C . 一定成立的有( ) A .1个 B .2个 C .3个D .4个解析:选C 对于①③,由正弦、余弦定理,知一定成立.对于②,由正弦定理及sin A =sin(B +C )=sin B cos C +sin C cos B ,知显然成立.对于④,利用正弦定理,变形得sin B =sin C sin A +sin A sin C =2sin A sin C ,又sin B =sin(A +C )=cos C sin A +cos A sin C ,与上式不一定相等,所以④不一定成立.故选C.2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若C =120°,c =2a ,则a ,b 的大小关系为( )A .a >bB .a <bC .a =bD .不能确定解析:选A 在△ABC 中,c 2=a 2+b 2-2ab cos 120°=a 2+b 2+ab .∵c =2a ,∴2a 2=a 2+b 2+ab ,∴a 2-b 2=ab >0,∴a 2>b 2,∴a >b .3.在△ABC 中,cos 2B 2=a +c 2c ,则△ABC 是( )A .正三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形解析:选B ∵cos 2B 2=a +c2c ,∴cos B +12=a +c 2c ,∴cos B =ac ,∴a 2+c 2-b 22ac =a c ,∴a 2+c 2-b 2=2a 2,即a 2+b 2=c 2,∴△ABC 为直角三角形.4.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若b 2+c 2+bc -a 2=0,则a sin (30°-C )b -c =( )A.12B.32C .-12D .-32解析:选A 由余弦定理得cos A =b 2+c 2-a 22bc ,又b 2+c 2+bc -a 2=0,则cos A =-12,又0°<A <180°,则A =120°,有B =60°-C ,所以a sin (30°-C )b -c =sin A sin (30°-C )sin (60°-C )-sin C=34cos C -34 sin C 32cos C -32sin C =12.故选A. 5.在△ABC 中,AB =2,AC =6,BC =1+3,AD 为边BC 上的高,则AD 的长是________.解析:∵cos C =BC 2+AC 2-AB 22BC ·AC =22,∴sin C =22,∴AD =AC sin C = 3. 答案: 36.在△ABC 中,A =120°,AB =5,BC =7,则sin Bsin C 的值为________.解析:由余弦定理可得49=AC 2+25-2×5×AC ×cos 120°,整理得: AC 2+5·AC -24=0,解得AC =3或AC =-8(舍去), 再由正弦定理可得sin B sin C =AC AB =35.答案:357.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B=2c -ab .(1)求sin Csin A的值; (2)若cos B =14,△ABC 的周长为5,求b 的长.解:(1)由正弦定理可设a sin A =b sin B =csin C =k ,则2c -a b =2k sin C -k sin A k sin B =2sin C -sin A sin B ,所以cos A -2cos C cos B =2sin C -sin Asin B,即(cos A -2cos C )sin B =(2sin C -sin A )cos B , 化简可得sin(A +B )=2sin(B +C ). 又A +B +C =π,所以sin C =2sin A , 因此sin Csin A =2.(2)由sin Csin A=2,得c =2a . 由余弦定理及cos B =14,得b 2=a 2+c 2-2ac cos B =a 2+4a 2-4a 2×14=4a 2,所以b =2a .又a +b +c =5,所以a =1,因此b =2.8.如图,D 是直角三角形△ABC 斜边BC 上一点,AC =3DC . (1)若∠DAC =30°,求B ;(2)若BD =2DC ,且AD =22,求DC . 解:(1)在△ADC 中,根据正弦定理, 有AC sin ∠ADC =DCsin ∠DAC,∵AC =3DC ,所以sin ∠ADC =3sin ∠DAC =32, 又∠ADC =∠B +∠BAD =∠B +60°>60°, ∴∠ADC =120°,∴∠C =180°-120°-30°=30°,∴∠B =60°. (2)设DC =x ,则BD =2x ,BC =3x ,AC =3x ,∴sin B=ACBC =33,cos B=63,AB=6x,在△ABD中,AD2=AB2+BD2-2AB·BD·cos B,即(22)2=6x2+4x2-2×6x×2x×63=2x2,得x=2.故DC=2.应用举例第一课时解三角形的实际应用举例[新知初探]实际测量中的有关名称、术语名称定义图示仰角在同一铅垂平面内,视线在水平线上方时l与水平线的夹角俯角在同一铅垂平面内,视线在水平线l下方时与水平线的夹角方向角从指定方向线到目标方向线的水平角(指定方向线是指正北或正南或正东或正西,方向角小于90°)错误!方位角从正北的方向线按顺时针到目标方向线所转过的水平角[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)已知三角形的三个角,能够求其三条边()(2)两个不可到达的点之间的距离无法求得()(3)方位角和方向角是一样的()解析:(1)错误,要解三角形,至少知道这个三角形的一条边长.(2)错误,两个不可到达的点之间的距离我们可以借助第三个点和第四个点量出角度、距离求得.(3)错误.方位角是指从正北方向顺时针转到目标方向线的水平角,而方向角是以观测者的位置为中心,将正北或正南方向作起始方向旋转到目标的方向线所成的角(一般指锐角).答案:(1)×(2)×(3)×2.若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A在点B的()A.北偏东15°B.北偏西15°C.北偏东10°D.北偏西10°解析:选B如图所示,∠ACB=90°,又AC=BC,∴∠CBA=45°,而β=30°,∴α=90°-45°-30°=15°.∴点A在点B的北偏西15°.故选B.3.从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为() A.α>βB.α=βC.α+β=90°D.α+β=180°解析:选B根据题意和仰角、俯角的概念画出草图,如图.知α=β,故应选B.4.已知船A在灯塔C北偏东85°且到C的距离为1 km,船B在灯塔C西偏北25°且到C的距离为 3 km,则A,B两船的距离为________km.解析:由题意得∠ACB=(90°-25°)+85°=150°,又AC=1,BC=3,由余弦定理得AB2=AC2+BC2-2AC·BC cos 150°=7,∴AB=7.答案:7测量高度问题[典例]如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两点C与D.现测得∠BCD=α,∠BDC=β,CD=s,并在点C测得塔顶A的仰角为θ,求塔高AB.[解] 在△BCD 中, ∠CBD =π-(α+β).由正弦定理得BC sin ∠BDC =CDsin ∠CBD .∴BC =CD sin ∠BDC sin ∠CBD =s ·sin βsin (α+β).在Rt △ABC 中,AB =BC tan ∠ACB =s ·sin βtan θsin (α+β).测量高度问题的解题策略(1)“空间”向“平面”的转化:测量高度问题往往是空间中的问题,因此先要选好所求线段所在的平面,将空间问题转化为平面问题.(2)“解直角三角形”与“解斜三角形”结合,全面分析所有三角形,仔细规划解题思路.[活学活用]1.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的A 处测得水柱顶端的仰角为45°,沿A 向北偏东30°方向前进100 m 到达B 处,在B 处测得水柱顶端的仰角为30°,则水柱的高度是( )A .50 mB .100 mC .120 mD .150 m 解析:选A 如图,设水柱高度是h m ,水柱底端为C ,则在△ABC 中,A =60°,AC =h ,AB =100,BC =3h ,根据余弦定理得,(3h )2=h 2+1002-2×h ×100×cos 60°,即h 2+50h -5 000=0,解得h =50或h =-100(舍去),故水柱的高度是50 m.2.如图所示,在山底A 处测得山顶B 的仰角∠CAB =45°,沿倾斜角为30°的山坡向山顶走1 000 m 到达S 点,又测得山顶仰角∠DSB =75°,则山高BC 为________m.解析:因为∠SAB =45°-30°=15°,∠SBA =∠ABC -∠SBC =45°-(90°-75°)=30°, 所以∠ASB =180°-∠SAB -∠SBA =135°.在△ABS 中,AB =AS ·sin 135°sin 30°=1 000×2212=1 0002,所以BC=AB·sin 45°=1 0002×22=1 000(m).答案:1 000测量角度问题[典例]如图所示,A,B是海面上位于东西方向相距5(3+3) n mile的两个观测点.现位于A点北偏东45°方向、B点北偏西60°方向的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距20 3 n mile的C点的救援船立即前往营救,其航行速度为30 n mile/h,则该救援船到达D点需要多长时间?[解]由题意,知AB=5(3+3) n mile,∠DBA=90°-60°=30°,∠DAB=90°-45°=45°,∴∠ADB=180°-(45°+30°)=105°.在△DAB中,由正弦定理得BDsin∠DAB=ABsin∠ADB,即BD=AB sin∠DABsin∠ADB=5(3+3)sin 45°sin 105°=5(3+3)sin 45°sin 45°cos 60°+cos 45°sin 60°=10 3 n mile.又∠DBC=∠DBA+∠ABC=60°,BC=20 3 n mile,∴在△DBC中,由余弦定理,得CD=BD2+BC2-2BD·BC cos∠DBC=300+1 200-2×103×203×1 2=30 n mile,则救援船到达D点需要的时间为3030=1 h.测量角度问题主要是指在海上或空中测量角度的问题,如确定目标的方位,观察某一建筑物的视角等.解决它们的关键是根据题意和图形及有关概念,确定所求的角在哪个三角形中,该三角形中已知哪些量,需要求哪些量.通常是根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得到所求的量,从而得到实际问题的解.[活学活用]在海岸A处,发现北偏东45°方向,距离A处(3-1)n mile的B处有一艘走私船,在A处北偏西75°的方向,距离A 2 n mile的C处的缉私船奉命以10 3 n mile的速度追截走私船.此时,走私船正以10 n mile/h的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?解:设缉私船用t h在D处追上走私船,画出示意图,则有CD=103t,BD=10t,在△ABC中,∵AB=3-1,AC=2,∠BAC=120°,∴由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠BAC=(3-1)2+22-2·(3-1)·2·cos 120°=6,∴BC=6,且sin∠ABC=ACBC·sin∠BAC=26·32=22,∴∠ABC=45°,BC与正北方向成90°角.∵∠CBD=90°+30°=120°,在△BCD中,由正弦定理,得sin∠BCD=BD·sin∠CBDCD=10t sin 120°103t=12,∴∠BCD=30°.即缉私船沿北偏东60°方向能最快追上走私船.测量距离问题题点一:两点间不可通又不可视1.如图所示,要测量一水塘两侧A,B两点间的距离,其方法先选定适当的位置C,用经纬仪测出角α,再分别测出AC,BC的长b,a,则可求出A,B两点间的距离.即AB=a2+b2-2ab cos α.若测得CA=400 m,CB=600 m,∠ACB=60°,试计算AB的长.解:在△ABC中,由余弦定理得AB2=AC2+BC2-2AC·BC cos∠ACB,∴AB2=4002+6002-2×400×600cos 60°=280 000.∴AB=2007 (m).即A,B两点间的距离为2007 m.题点二:两点间可视但有一点不可到达2.如图所示,A ,B 两点在一条河的两岸,测量者在A 的同侧,且B 点不可到达,要测出A ,B 的距离,其方法在A 所在的岸边选定一点C ,可以测出A ,C 的距离m ,再借助仪器,测出∠ACB =α,∠CAB =β,在△ABC 中,运用正弦定理就可以求出AB .若测出AC =60 m ,∠BAC =75°,∠BCA =45°,则A ,B 两点间的距离为________ m.解析:∠ABC =180°-75°-45°=60°, 所以由正弦定理得,AB sin C =ACsin B,∴AB =AC ·sin C sin B =60×sin 45°sin 60°=206(m).即A ,B 两点间的距离为20 6 m. 答案:20 6题点三:两点都不可到达3.如图,A ,B 两点在河的同侧,且A ,B 两点均不可到达,测出A ,B 的距离,测量者可以在河岸边选定两点C ,D ,测得CD =a ,同时在C ,D 两点分别测得∠BCA =α,∠ACD =β,∠CDB =γ,∠BDA=δ.在△ADC 和△BDC 中,由正弦定理分别计算出AC 和BC ,再在△ABC 中,应用余弦定理计算出AB .若测得CD =32km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,求A ,B 两点间的距离.解:∵∠ADC =∠ADB +∠CDB =60°,∠ACD =60°, ∴∠DAC =60°, ∴AC =DC =32. 在△BCD 中,∠DBC =45°,由正弦定理,得BC =DCsin ∠DBC ·sin ∠BDC =32sin 45°·sin30°=64. 在△ABC 中,由余弦定理,得 AB 2=AC 2+BC 2-2AC ·BC cos 45° =34+38-2×32×64×22=38. ∴AB =64(km).∴A ,B 两点间的距离为64km.当A ,B 两点之间的距离不能直接测量时,求AB 的距离分为以下三类:(1)两点间不可通又不可视(如图①):可取某点C ,使得A ,B 与C 之间的距离可直接测量,测出AC =b ,BC =a 以及∠ACB =γ,利用余弦定理得:AB =a 2+b 2-2ab cos γ.(2)两点间可视但不可到达(如图②):可选取与B 同侧的点C ,测出BC =a 以及∠ABC 和∠ACB ,先使用内角和定理求出∠BAC ,再利用正弦定理求出AB .(3)两点都不可到达(如图③):在河边测量对岸两个建筑物之间的距离,可先在一侧选取两点C ,D ,测出CD =m ,∠ACB ,∠BCD ,∠ADC ,∠ADB ,再在△BCD 中求出BC ,在△ADC 中求出AC ,最后在△ABC 中,由余弦定理求出AB .层级一 学业水平达标1.学校体育馆的人字屋架为等腰三角形,如图,测得AC 的长度为4 m ,∠A =30°,则其跨度AB 的长为( )A .12 mB .8 mC .3 3 mD .4 3 m解析:选D 由题意知,∠A =∠B =30°, 所以∠C =180°-30°-30°=120°, 由正弦定理得,AB sin C =ACsin B, 即AB =AC ·sin C sin B =4·sin 120°sin 30°=4 3.2.一艘船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68 n mile 的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为( )A.1762 n mile/hB .34 6 n mile/h C.1722n mile/hD .34 2 n mile/h解析:选A 如图所示,在△PMN 中,PM sin 45°=MNsin 120°,∴MN =68×32=346,∴v =MN 4=1762 n mile/h.3.如图,D ,C ,B 三点在地面同一直线上,DC =a ,从C ,D 两点测得A 点仰角分别是β,α(α<β),则A 点离地面的高度AB 等于( )A.a sin α·sin βsin (β-α) B.a sin α·sin βcos (α-β) C.a sin α·cos βsin (β-α) D.a cos α·sin βcos (α-β)解析:选A 设AB =x ,则在Rt △ABC 中,CB =x tan β,所以BD =a +x tan β,又因为在Rt △ABD 中,BD =x tan α,所以BD =a +x tan β=x tan α,从中求得x =a1tan α-1tan β=a tan αtan βtan β-tan α=a sin αsin βsin βcos α-sin αcos β=a sin αsin βsin (β-α),故选A.4.设甲、乙两幢楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两幢楼的高分别是( )A .20 3 m ,4033m B .10 3 m,20 3 m C .10(3-2)m,20 3 mD.1532 m ,2033m解析:选A 由题意,知h 甲=20tan 60°=203(m), h 乙=20tan 60°-20tan 30°=4033(m). 5.甲船在岛B 的正南A 处,AB =10 km ,甲船以4 km/h 的速度向正北航行,同时乙船自岛B 出发以6 km/h 的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们的航行时间是( )A.1507 min B.157 hC .21.5 minD .2.15 h解析:选A 由题意可作出如图所示的示意图,设两船航行t 小时后,甲船位于C 点,乙船位于D 点,如图.则BC =10-4t ,BD =6t ,∠CBD =120°,此时两船间的距离最近,根据余弦定理得CD 2=BC 2+BD 2-2BC ·BD cos ∠CBD =(10-4t )2+36t 2+6t (10-4t )=28t 2-20t +100,所以当t =514时,CD 2取得最小值,即两船间的距离最近,所以它们的航行时间是1507min ,故选A.6.某人从A 处出发,沿北偏东60°行走3 3 km 到B 处,再沿正东方向行走2 km 到C 处,则A ,C 两地的距离为________km.解析:如图所示,由题意可知AB =33,BC =2,∠ABC =150°. 由余弦定理,得AC 2=27+4-2×33×2×cos 150°=49,AC =7. 则A ,C 两地的距离为7 km. 答案:77.坡度为45°的斜坡长为100 m ,现在要把坡度改为30°,则坡底要伸长________m. 解析:如图,BD =100,∠BDA =45°,∠BCA =30°, 设CD =x ,所以(x +DA )·tan 30°=DA ·tan 45°, 又DA =BD ·cos 45°=100×22=502, 所以x =DA ·tan 45°tan 30°-DA =502×133-50 2=50(6-2)m. 答案:50(6-2)8.一蜘蛛沿东北方向爬行x cm 捕捉到一只小虫,然后向右转105°,爬行10 cm 捕捉到另一只小虫,这时它向右转135°爬行回它的出发点,那么x =________cm.解析:如图所示,设蜘蛛原来在O 点,先爬行到A 点,再爬行到B 点,易知在△AOB 中,AB =10 cm ,∠OAB =75°,∠ABO =45°,则∠AOB =60°,由正弦定理知: x =AB ·sin ∠ABO sin ∠AOB =10×sin 45°sin 60°=1063(cm).答案:10639.如图,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里,当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里,求乙船航行的速度.解:如图,连接A 1B 2,在△A 1A 2B 2中,易知∠A 1A 2B 2=60°,又易求得A 1A 2=302×13=102=A 2B 2,∴△A 1A 2B 2为正三角形, ∴A 1B 2=10 2.在△A 1B 1B 2中,易知∠B 1A 1B 2=45°, ∴(B 1B 2)2=400+200-2×20×102×22=200, ∴B 1B 2=102,∴乙船每小时航行302海里.10.如图所示,某旅游景点有一座风景秀丽的山峰,山上有一条笔直的山路BC 和一条索道AC ,小王和小李打算不坐索道,而是花2个小时的时间进行徒步攀登.已知∠ABC =120°,∠ADC =150°,BD =1 千米,AC =3 千米.假设小王和小李徒步攀登的速度为每小时1.2 千米,请问:两位登山爱好者能否在2个小时内徒步登上山峰(即从B 点出发到达C 点).解:由∠ADC =150°知∠ADB =30°,由正弦定理得1sin 30°=AD sin 120°,所以AD = 3. 在△ADC 中,由余弦定理得:AC 2=AD 2+DC 2-2AD ·DC ·cos 150°,即32=(3)2+DC 2-2·3·DC cos 150°,即DC 2+3·DC -6=0,解得DC =-3+332≈1.372 (千米),∴BC ≈2.372 (千米),由于2.372<2.4,所以两位登山爱好者能够在2个小时内徒步登上山峰.层级二 应试能力达标1.如图,从气球A 上测得其正前下方的河流两岸B ,C 的俯角分别为75°,30°,此时气球的高度AD 是60 m ,则河流的宽度BC 是( )A .240(3-1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m解析:选C 由题意知,在Rt △ADC 中,∠C =30°,AD =60 m ,∴AC =120 m .在△ABC 中,∠BAC =75°-30°=45°,∠ABC =180°-45°-30°=105°,由正弦定。

高中数学解三角形知识详细总结

高中数学解三角形知识详细总结

解三角形知识全面详细总结一、正弦定理文字:在ABC ∆中,各边与其所对角的正弦的比值都相等。

符号:R CcB b A a 2sin sin sin ===公式变形:①C R c B R b A R a sin 2sin 2sin 2===(角转化成边)②RcC R b B R a A 2sin 2sin 2sin ===(边转化成角) ③C B A c b a sin :sin :sin ::=④R CcB b A aC B A c b a 2sin sin sin sin sin sin ====++++ 二、余弦定理文字:在ABC ∆中,任意一边的平方,等于另外两边的平方和,减去这两边与它们夹角的余弦值的乘积的两倍。

符号:A bc c b a cos 2222-+= B ac c a b cos 2222-+= C ab b a c cos 2222-+=变形:bc a c b A 2cos 222-+= ac b c a B 2cos 222-+= abc b a C 2cos 222-+=三、解三角形的类型①三角形的六个要素: A 、B 、C 、a 、b 、c ②解三角形:由三角形的几个元素,求其它元素的过程,成为解三角形。

(养成先求角,再求边的习惯;若求角尽量用余弦定理和内角和定理)③解三角形的类型:解三角形,依据是正弦定理和余弦定理。

研究正余弦定理发现,要解三角形,必须至少知道三个元素,再求其它三个元素(知三,求三)。

六个元素,知三求三的话总共分成以下几种类型:(a)知三角,求三边(不可解) (b)知三边,求三角(c)知两角一边,求另一角及两边(d)知两边一对角,求另一边及两角(存在无解,一解,和两解的情况) (e)知两边一夹角,求另一边及两角四、题目类型解析 ★正弦定理解决的类型 ①两边一对角模型:在ABC ∆中,已知边b a ,和角A ,解三角形。

A B C b ca解析:首先,应用正弦定理B b A a sin sin =,得aAb B sin sin =,由此先求得角B (一定要结合边b a ,的大小确定角B ,存在多解的情况),再根据内角和定理求得角C ,最后再根据正弦定理CcA a sin sin =(或C cB b sin sin =)求得边AC a c sin sin =(或BCb c sin sin =) 说明:最后求边c 也可以使用余弦定理C ab b a c cos 2222-+= 例题1:在ABC ∆中,已知045,2,2===A c a ,解三角形。

2024高中数学解三角形ppt课件

2024高中数学解三角形ppt课件

目录•三角形基本概念与性质•正弦定理及其应用•余弦定理及其应用•三角形面积公式及其应用•解三角形综合应用举例三角形基本概念与性质三角形的分类按边可分为不等边三角形、等腰三角形;按角可分为锐角三角形、直角三角形、钝角三角形。

三角形的定义由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形。

三角形的定义与分类三角形内角和定理01三角形内角和定理三角形的三个内角之和等于180°。

02证明方法通过平行线的性质或者撕拼法等方法进行证明。

三角形外角性质三角形外角的定义三角形的一个外角等于与它不相邻的两个内角的和。

三角形外角的性质三角形的外角大于任何一个与它不相邻的内角。

三角形边与角关系01正弦定理在任意三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径。

02余弦定理在任意三角形中,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。

03三角形的面积公式S=1/2absinC,其中a、b为两边长,C为两边夹角。

正弦定理及其应用正弦定理的推导与证明推导过程通过三角形的外接圆和正弦函数的定义,推导出正弦定理的表达式。

证明方法利用三角形的面积公式和正弦函数的性质,证明正弦定理的正确性。

利用正弦定理求解三角形已知两边及夹角求第三边通过正弦定理计算出已知两边夹角对应的第三边的长度。

已知两角及夹边求其他元素利用正弦定理和三角形内角和定理,求出三角形的其他元素。

解决三角形中的角度问题通过正弦定理计算出三角形中的未知角度。

解决三角形中的边长问题利用正弦定理求出三角形中的未知边长。

解决力学问题在力学中,正弦定理可用于解决涉及三角形的问题,如力的合成与分解等。

解决光学问题在光学中,正弦定理可用于解决涉及光的反射和折射等问题。

余弦定理及其应用余弦定理的推导与证明向量法推导余弦定理通过向量的数量积和模长关系,推导余弦定理的表达式。

几何法证明余弦定理利用三角形的面积公式和正弦定理,结合相似三角形的性质,证明余弦定理。

解三角形完整讲义

解三角形完整讲义

正余弦定理知识要点:1、正弦定理:或变形:2、余弦定理:或3、解斜三角形的常规思维方法是:(1 )已知两角和一边(如A、B C),由A+B+C = n求C,由正弦定理求a、b;(2)已知两边和夹角(如a、b、c),应用余弦定理求c边;再应用正弦定理先求较短边所对的角,然后利用A+B+C = n求另一角;(3)已知两边和其中一边的对角(如a、b、A),应用正弦定理求B,由A+B+C = n求C, 再由正弦定理或余弦定理求c边,要注意解可能有多种情况;(4)已知三边a、b、c,应余弦定理求A、B,再由A+B+C = n求角C。

4、判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式•5、解三角形问题可能出现一解、两解或无解的情况,这时应结合三角形中大边对大角定理及几何作图来帮助理解”。

6、已知三角形两边a,b,这两边夹角C,则S = 1/2 * absinC7、三角学中的射影定理:在△ ABC中,,… &两内角与其正弦值:在△ ABC中,,…【例题】在锐角三角形ABC中,有(B )A. cosA>sinB 且cosB>sinAB. cosA<sinB且cosB<sinAC. cosA>sinB 且cosB<sinAD. cosA<sinB且cosB>sinA9、三角形内切圆的半径:,特别地,正弦定理专题:公式的直接应用1、已知中,,,,那么角等于()A. B. C. D.2、在厶AB(中, a=, b =, B= 45°贝U A 等于(C )A. 30 °B. 60 °C. 60 或120 ° D 30 或1503、的内角的对边分别为,若,则等于()A. B. 2 C. D.4、已知△ AB(中,,,则a等于(B )A. B. C. D.5、在△ AB(中, = 10 , B=60° ,C=4则等于(B )A. B. C. D.6、已知的内角,,所对的边分别为,,,若,,则等于.()7、△ AB(中,,,,则最短边的边长等于(A )A . B. C . D .& △ AB(中,,的平分线把三角形面积分成两部分,则( C )A .B .C .D .9、在△ AB(中,证明:。

(完整版)高中数学必修五解三角形知识点归纳,推荐文档

(完整版)高中数学必修五解三角形知识点归纳,推荐文档
a a0
的距离 ; 代数意义: | a | 0 a 0
a a0
2、 如果 a 0, 则不等式:
(1)
|x| a |x| a (3) | x | a
x a 或x a ;(2)
x a 或x a
axa

(4) | x | a
axa
注意 : 上式中的 x 可换成 f(x)
3、解含有绝对值不等式的主要方法:解含绝对
注意:
使用均值不等式的条件:一正、二定、三相等
3、平均不等式:( a、b 为正数),即
a2 b2 2
ab 2
2 ab
1 1 (当 a = b 时取等)
ab
4、常用的基本不等式:
① a2
b2
2ab a, b
R ;② ab
a2 b2 a,b R
2
; ③ ab .
2
ab
2
a
0,b
0 ;④ a2 b2
2
ab a, b R
d n2 2
(a1
d )n 2
(2) 找到通项的正负分界线
s a1 0
若 d 0 则 n 有最大值,当 n=k 时取到的
最大值 k 满足
ak 0 ak 1 0
a1 0 d0

则sn 有最大值,当 n=k 时取到的最

值 k 满足
ak 0 ak 1 0
等比数列
一.定义、如果一个数列从第 2 项起,每一项与
a f ( x ) a g( x ) (0 a 1) f ( x ) g( x )
③对数不等式:
log a f ( x ) log a g( x )( a 1)
f (x) 0
g( x) 0

高中数学必修5第一章解三角形内容讲解(精编文档).doc

【最新整理,下载后即可编辑】高中数学必修5第一章解三角形内容讲解考点1:正弦定理正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin abAB=sin cC=默写公式:____________________________________ 考试题型:1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( )A.6B.2 C.3D .2 62.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .42B .43 C .46D.3233.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( )A .45°或135° B.135° C .45° D.以上答案都不对4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( )A .1∶5∶6B .6∶5∶1C .6∶1∶5D .不确定5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )A .1 B.12 C .2 D.146.在△ABC 中,若cos A cos B =ba,则△ABC 是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰三角形或直角三角形7.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3 D. 28.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________.9.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________.10.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________.11.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.12.△ABC 中,a 、b 、c 分别是角A 、B 、C 所对的边,已知a =3,b =3,C =30°,则A =________.13、在ABC ∆中,已知2=a ,2=c ,︒=30A ,那么B 等于( ) A .︒15 B .︒15或︒105 C .︒45 D .︒45或︒13514、已知ABC ∆中,︒=45A ,4=b ,2=c ,那么B cos 的值是( ) A .10103B .10103- C .55D .55-15、如果在ABC ∆中,3=a ,7=b ,2=c ,那么B 等于( )A .6πB .4π C .3πD .32πABC 中,k CcB b A a ===sin sin sin ,则k 为( )R R R 2(R 为△ABC 外接圆半径)18、已知在B b a C A c ABC 和求中,,,30,45,1000===∆19.C B b a A c ABC ,,2,45,60和求中,===∆考点2:余弦定理 余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。

解三角形知识点课件.doc

《三角函数及解直角三角形》知识结点总1、正弦、余弦、正切定义出的,要避免应用时对任意的注意:(1)正弦、余弦、正切、余切都是在直角三角形中给三角形随便套用定义;,是三角形函数记号,是一个整体。

“sinA”表示一个(2)sinA不是sin 与A的乘积的;,其他三个三角函数记号也是一样比值长短无关,只与锐角的大小有关。

(3)锐角三角函数值与三角形三边的关系2、同角的三角函数之间(1)平方关系:sin2α+c os2α=1α为锐角,即同一锐角的正弦和余弦的平方和等于1;sin2α是(sinα)2的简写,读作“sinα”的平方;不能将sin2α写成sinα2,前者是α的的平方,后者表示α2的正弦值。

正弦值(2)互为余角的两个三角函数关系:若∠A+ ∠B=∠90,则s inA=cosB,cosA=sinB.3、特殊角的三角函数值如下表:特殊角有0°、30°、45°、60°、90°,它们的三角函数值α0°30°45°60°90°三角函数值sinα01cosα10tanα01不存在余角的三角函数之间的关系(诱导公式)4、互为若∠A+∠B=90°则sinA=cos(90°-A)=cosB任意锐角的正弦值等于它的余角的余弦值cosA=sin(90°-A)=sinB任意锐角的余弦值等于它的余角的正弦值算三角函数值算器计5、用计的锐角是必须掌握的。

应算器求已知锐用计求对角的三角函数值和由三角函数值及规围律换范6、三角函数值的变,(1)当0°<α<90°时sinα、tanα随着α的增大(或减小)而增大(或减小),cosα、随着α的增大(或减小)而减小(或增大);,0≤sinα≤1,0≤cosα≤1。

(2)当0°≤α≤90°时7、直角三角形的边角关系之间的关系:a2+b2=c2(勾股定理);(1)三边的关系:∠A+∠B=90°;(2)锐角之间(3)边角之间的关系:sinA=a/c,cosA=b/c,tanA=a/b8、解直角三角形的概念及基本类型(1)概念:在直角三角形中,用除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形。

三角函数与解三角形专题讲座.doc

三角函数与解三角形一、角的有关概念1.角的概念的推广(1)定义:角可以看成平面内的一条射线绕其竝从一个位置旋转到另一个位置所成的图形.7」按旋转方向不同分为正角、负角和零角.(2)分类[按终边位置不同分为象限角和轴线角.(3)终边相同的角:所冇与角a终边相同的角,连同角u在内,可构成_个集合S={〃|〃=a + &・360。

,圧Z}.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.⑵公式3.(1)象限角的表示:①第一象限角的表示:②第二象限角的表示:③第三象限角的表示:④第四象限角的表示:(2)象限角的表示:①终边落x轴非负半轴上的角的表示:_________________________________②终边落x轴非正半轴上的角的表示:_________________________________③终边落x轴上的角的表示:_________________________________ ;④终边落y轴非负半轴上的角的表示:_________________________________⑤终边落y轴非正半轴上的角的表示:_________________________________⑥终边落y轴上的角的表示:_________________________________ ;⑦终边落在坐标轴上的角的表示:________________________________ o二、任意角的三角函数注:1.三角函数的定义屮,当角G终边上的点P(兀,y)是单位圆上的点时,有sin«=y, cos a=x> (ana=¥,但若角a终边上的点P(x, y)不是单位圆上的点时,图屮圆的半径为/-0P= Jx2 + y2 ,则sin a=\ cos a=~,t tan a=\! t X2.已知三角函数值的符号确定角的终边位置时,不要遗漏终边在坐标轴上的情况.3.在解简单的三角方程或三角不等式时,单位圆中的三角函数线是一个很好的工具.2.三角公式(1).同角三角函数的基本关系①平方关系:sin2a+cos2a = 1 ;②商数关系:tanct=2^・注:1・在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.2•注意求值与化简后的结果一般要尽可能有理化、整式化.3.弦切互化法:主要利用公式tan 成正、余弦.4.和积转换法:利用(sin &土cos &)2=l±2sin 0cos 0的关系进行变形、转化.(2).三角函数的诱导公式①把ct+2刼伙WZ)、±兀土a、一a的三角函数化成a的三角函数时,遵循的原则是“函数名不变,符号看象限”;② 把土-±a 、± — ±a 的三角函数化成&的三角函数时,遵循的原则是“函数名改变,符2 2号看象限”;Ljr③ 一般的把——±Q 伙WZ )的三角函数化成G 的三角函数时,遵循的原则是“奇变偶不变,符2号看象限”(3〉•两角和与差的正弦、余弦和正切公式 sin (么切)=sinacos/^ 土 costzsin"; cos (aT 0 )=cosacos B ±sinasin/?;tan a 土tan" tanW )=1Ttanatan/? •(4)・二倍角的正弦、余弦、正切公式 sin2a=2sinacosa •cos2a=cos 2a —sin 2a=2cos 2a — 1 = 1—2sin 2a. 、 2tan alan2(z= " ~•1—tan a <5).有关公式的逆用、变形① tan a + tan p= tan(a±/?)( ITtan <ztan 0).7 1+cos 2a 、 1—cos la ② cos ・@= ----------- , sin a= ----- --- 、2 2③ 1+sin 2a=(sin a+cos a)291—sin 2a=(sin a —cos a)2, sin a±cos a=^/2sin(6)・函数f (a )=asin a+bcos a (a> /?为常数),可以化为a 1+b 2sin (a+中住m或弘)=寸庄匚产・ cos (a —卩)(其中tan (p注:三角恒等变换的常用方法与技巧1. 变角:通过对角的拆分尽可能化为同角、特殊角、己知角的和与差,角的变换是三角恒这种手法通常叫“配凑”.2. 变名:通过变换尽可能减少函数种类、降低次数、减少项数,其手法通常有“切化 弦”、“升幕与降幕”等.3. 变式:根据式子的结构特征进行变形,使其更简化、更贴近某个公式或某个期待的目f-等变换的核心, 如〃=(a+0)—弘 2 0=@+0)—(a —0), a = 2xf,^ = (^^)-| 等,标,其手法通常有:“常值代换”(如1根据需要可换成tan兰.sin2 674-cos2 tz,丄根4 271 71据需要可换成Si陀或C。

最全面的解三角形讲义

解三角形【高考会这样考】1.考查正、余弦定理的推导过程.2.考查利用正、余弦定理判断三角形的形状. 3.考查利用正、余弦定理解任意三角形的方法.4.考查利用正弦定理、余弦定理解决实际问题中的角度、方向、距离及测量问题.基础梳理1.正弦定理:a sin A =b sin B =csin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ; (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题.2.余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3.面积公式:S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r .4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则A 为锐角A 为钝角或直角图形关系 式 a <b sin A a =b sin A b sin A <a <b a ≥b a >b a ≤b解的 个数无解 一解 两解 一解 一解 无解5.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等. 6.实际问题中的常用角 (1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)). (2)方位角指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图(2)). (3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等. (4)坡度:坡面与水平面所成的二面角的度数.考向探究题型一 正弦余弦定理运用【例题1】在△ABC 中,已知a=3,b=2,B=45°,求A 、C 和c. 【例题2】 在△ABC 中,a 、b 、c 分别是角A ,B ,C 的对边,且C B cos cos =-ca b+2.(1)求角B 的大小;(2)若b=13,a+c=4,求△ABC 的面积.【例题3】 (14分)△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2-a 2+bc=0. (1)求角A 的大小;(2)若a=3,求bc 的最大值; (3)求cb C a --︒)30sin(的值.【变式】1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c=2,b=6,B=120°,则a= .2.(1)△ABC 中,a=8,B=60°,C=75°,求b; (2)△ABC 中,B=30°,b=4,c=8,求C 、A 、a.3.在△ABC 中,A=60°,AB=5,BC=7,则△ABC 的面积为 .4.已知△ABC 中,三个内角A ,B ,C 的对边分别为a,b,c,若△ABC 的面积为S ,且2S=(a+b )2-c 2,求tanC 的值.5. 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c.若(3b-c )cosA=acosC ,则cosA= .6. 在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tanB=3ac ,则角B 的值为 . 7. 在△ABC 中,内角A 、B 、C 对边的边长分别是a 、b 、c.已知c=2,C=3π. (1)若△ABC 的面积等于3,求a 、b 的值; (2)若sinC+sin(B-A)=2sin2A,求△ABC 的面积. 题型二 判断三角形形状【例题】在△ABC 中,a 、b 、c 分别表示三个内角A 、B 、C 的对边,如果(a 2+b 2)sin (A-B )=(a 2-b 2)sin (A+B ),判断三角形的形状.【变式】 已知△ABC 的三个内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等差数列,且2cos2B-8cosB+5=0,求角B 的大小并判断△ABC 的形状. 题型三 测量距离问题 【例题】如图所示,为了测量河对岸A ,B 两点间的距离,在这岸定一基线CD ,现已测出CD =a 和∠ACD =60°,∠BCD =30°,∠BDC =105°,∠ADC =60°,试求AB 的长.【变式】 如图,A ,B ,C ,D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶,测量船于水面A 处测得B 点和D 点的仰角分别为75°,30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.试探究图中B 、D 间距离与另外哪两点间距离相等,然后求B ,D 的距离. 题型四 测量高度问题【例题】如图,山脚下有一小塔AB ,在塔底B 测得山顶C 的仰角为60°,在山顶C 测得塔顶A 的俯角为45°,已知塔高AB =20 m ,求山高CD .【变式】如图所示,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,现测得∠BCD =α,∠BDC =β,CD =s ,并在点C 测得塔顶A 的仰角为θ,求塔高AB . 题型五 正、余弦定理在平面几何中的综合应用【例题】如图所示,在梯形ABCD 中,AD ∥BC ,AB =5,AC =9,∠BCA =30°,∠ADB =45°,求BD 的长. 【变式】 如图,在△ABC 中,已知∠B =45°,D 是BC 边上的一点,AD =10,AC =14,DC =6,求AB 的长.巩固训练1.在△ABC 中,若2cosBsinA=sinC,则△ABC 一定是 三角形.2.在△ABC 中,A=120°,AB=5,BC=7,则CB sin sin 的值为 .3.已知△ABC 的三边长分别为a,b,c,且面积S △ABC =41(b 2+c 2-a 2),则A= .4.在△ABC 中,BC=2,B=3π,若△ABC 的面积为23,则tanC 为 .5.在△ABC 中,a 2-c 2+b 2=ab,则C= .6.△ABC 中,若a 4+b 4+c 4=2c 2(a 2+b 2),则C= .7.在△ABC 中,角A ,B ,C 所对的边分别为a,b,c ,若a=1,b=7,c=3,则B= . 8.某人向正东方向走了x 千米,他右转150°,然后朝新方向走了3千米,结果他离出发点恰好3千米,那么x 的值是 .9.下列判断中不正确的结论的序号是 . ①△ABC 中,a=7,b=14,A=30°,有两解 ②△ABC 中,a=30,b=25,A=150°,有一解 ③△ABC 中,a=6,b=9,A=45°,有两解 ④△ABC 中,b=9,c=10,B=60°,无解10. 在△ABC 中,角A ,B ,C 所对的边分别为a,b,c ,并且a 2=b(b+c). (1)求证:A=2B ;(2)若a=3b,判断△ABC 的形状. 11. 在△ABC 中,cosB=-135,cosC=54.(1)求sinA 的值;(2)△ABC 的面积S △ABC =233,求BC 的长.12.已知a 、b 、c 是△ABC 的三边长,关于x 的方程ax 2-222b c - x-b=0 (a >c >b)的两根之差的平方等于4,△ABC 的面积S=103,c=7. (1)求角C ; (2)求a ,b 的值. 13. 在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知a+b=5,c=7,且4sin 22B A +-cos2C=27.(1)求角C 的大小; (2)求△ABC 的面积.14.(人教A 版教材习题改编)如图,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为( ). A .50 2 m B .50 3 m C .25 2 m D.2522 m15.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为( ). A .α>β B .α=β C .α+β=90° D .α+β=180° 16.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( ). A .北偏东15° B .北偏西15° C .北偏东10° D .北偏西10°17.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ). A .5海里 B .53海里C .10海里 D .103海里18.海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C 间的距离是________海里.19.如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里,当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里.问:乙船每小时航行多少海里? 参考答案例题答案题型一 正弦、余弦定理 【例题1】 解 ∵B=45°<90°且asinB <b <a,∴△ABC 有两解.由正弦定理得sinA=b B a sin =245sin 3︒ =23, 则A 为60°或120°.①当A=60°时,C=180°-(A+B)=75°, c=BCb sin sin =︒︒45sin 75sin 2=︒︒+︒45sin )3045sin(2=226+.②当A=120°时,C=180°-(A+B)=15°, c=B C b sin sin =︒︒45sin 15sin 2=︒︒-︒45sin )3045sin(2=226-. 故在△ABC 中,A=60°,C=75°,c=226+或 A=120°,C=15°,c=226-. 【例题2】 解(1)由余弦定理知:cosB=ac b c a 2222-+,cosC=ab c b a 2222-+.将上式代入C B cos cos =-ca b+2得:ac b c a 2222-+·2222cb a ab -+=-c a b +2 整理得:a 2+c 2-b 2=-ac∴cosB=acb c a 2222-+=ac ac2- =-21∵B 为三角形的内角,∴B=32π.(2)将b=13,a+c=4,B=32π代入b 2=a 2+c 2-2accosB,得b 2=(a+c)2-2ac-2accosB ∴b 2=16-2ac ⎪⎭⎫ ⎝⎛-211,∴ac=3.∴S △ABC =21acsinB=433. 【例题3】解(1)∵cosA=bca cb 2222-+=bc bc2-=-21, 又∵A ∈(0°,180°),∴A=120°.(2)由a=3,得b 2+c 2=3-bc,又∵b 2+c 2≥2bc (当且仅当c=b 时取等号),∴3-bc ≥2bc(当且仅当c=b 时取等号). 即当且仅当c=b=1时,bc 取得最大值为1.(3)由正弦定理得:===CcB b A a sin sin sin 2R, ∴CR B R C A R c b C a sin 2sin 2)30sin(sin 2)30sin(--︒=--︒=C B C A sin sin )30sin(sin --︒ =CC C C sin )60sin()sin 23cos 21(23--︒- C C C C sin 23cos 23)sin 43cos 43--==21【变式】1.22. 解(1)由正弦定理得BbA a sin sin =. ∵B=60°,C=75°,∴A=45°,∴b=︒︒⨯=45sin 60sin 8sin sin A B a =46. (2)由正弦定理得sinC=430sin 8sin ︒=b B c =1. 又∵30°<C <150°,∴C=90°.∴A=180°-(B+C)=60°,a=22b c -=43. 3. 1034. 解 依题意得absinC=a 2+b 2-c 2+2ab, 由余弦定理知,a 2+b 2-c 2=2abcosC. 所以,absinC=2ab(1+cosC), 即sinC=2+2cosC,所以2sin2C cos 2C =4cos 22C 化简得:tan 2C=2.从而tanC=2tan 12tan22C C -=-34. 5.336. 3π或32π7. 解 (1)由余弦定理及已知条件,得a 2+b 2-ab=4.又因为△ABC 的面积等于3, 所以21absinC=3,所以ab=4. 联立方程组⎪⎩⎪⎨⎧==-+,4,422ab ab b a 解得⎩⎨⎧==22b a .(2)由题意得sin(B+A)+sin(B-A)=4sinAcosA,即sinBcosA=2sinAcosA, 当cosA=0时,A=2π,B=6π,a=334,b=332. 当cosA ≠0时,得sinB=2sinA,由正弦定理得b=2a,联立方程组⎪⎩⎪⎨⎧==-+,2,422a b ab b a 解得⎪⎪⎩⎪⎪⎨⎧==.334332b ,a所以△ABC 的面积S=21absinC=332. 题型二 判断三角形形状【例题】 解方法一 已知等式可化为a 2[sin (A-B )-sin (A+B )]=b 2[-sin (A+B )-sin(A-B)] ∴2a 2cosAsinB=2b 2cosBsinA 由正弦定理可知上式可化为:sin 2AcosAsinB=sin 2BcosBsinA ∴sinAsinB(sinAcosA-sinBcosB)=0 ∴sin2A=sin2B,由0<2A,2B <2π 得2A=2B 或2A=π-2B, 即A=B 或A=2π-B,∴△ABC 为等腰或直角三角形. 方法二 同方法一可得2a 2cosAsinB=2b 2sinAcosB 由正、余弦定理,可得a 2b bca cb 2222-+= b 2a ac b c a 2222-+∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2)即(a 2-b 2)(a 2+b 2-c 2)=0 ∴a=b 或a 2+b 2=c 2∴△ABC 为等腰或直角三角形.【变式】 解 方法一 ∵2cos2B-8cosB+5=0, ∴2(2cos 2B-1)-8cosB+5=0. ∴4cos 2B-8cosB+3=0, 即(2cosB-1)(2cosB-3)=0.解得cosB=21或cosB=23(舍去).∴cosB=21. ∵0<B <π,∴B=3π.∵a ,b ,c 成等差数列,∴a+c=2b. ∴cosB=acbc a 2222-+=acc a c a 2)2(222+-+=21, 化简得a 2+c 2-2ac=0,解得a=c. 又∵B=3π,∴△ABC 是等边三角形. 方法二 ∵2cos2B-8cosB+5=0, ∴2(2cos 2B-1)-8cosB+5=0. ∴4cos 2B-8cosB+3=0, 即(2cosB-1)(2cosB-3)=0.解得cosB=21或cosB=23(舍去). ∴cosB=21,∵0<B <π,∴B=3π,∵a,b,c 成等差数列,∴a+c=2b. 由正弦定理得sinA+sinC=2sinB=2sin 3π=3. ∴sinA+sin ⎪⎭⎫⎝⎛-A 32π=3, ∴sinA+sin A cos 32π-cos A sin 32π=3. 化简得23sinA+23cosA=3,∴sin ⎪⎭⎫ ⎝⎛+6πA =1. ∴A+6π=2π,∴A=3π, ∴C=3π,∴△ABC 为等边三角形.题型三 测量距离问题【例题】解 在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC =60°,所以AC =a .∵∠BCD =30°,∠BDC =105°∴∠CBD =45°在△BCD 中,由正弦定理可得BC =a sin 105°sin 45°=3+12a .在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A ,B 两点之间的距离为AB =AC 2+BC 2-2AC ·BC ·cos 30°=22a . 【变式】解 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,所以CD =AC =0.1 km.又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD =BA . 又∵∠ABC =15°在△ABC 中,AB sin ∠BCA =ACsin ∠ABC ,所以AB =AC sin 60°sin 15°=32+620(km),同理,BD =32+620(km).故B 、D 的距离为32+620 km.题型四 测量高度问题【例题】解 如图,设CD =x m , 则AE =x -20 m , tan 60°=CD BD,∴BD =CD tan 60°=x 3=33x (m).在△AEC 中,x -20=33x , 解得x =10(3+3) m .故山高CD 为10(3+3) m. 【变式】解 在△BCD 中,∠CBD =π-α-β, 由正弦定理得BC sin ∠BDC =CDsin ∠CBD ,所以BC =CD sin ∠BDCsin ∠CBD =s ·sin βsin α+β在Rt △ABC 中,AB =BC tan ∠ACB =s tan θsin βsin α+β.题型五 正、余弦定理在平面几何中的综合应用 【例题】解 在△ABC 中,AB =5,AC =9,∠BCA =30°. 由正弦定理,得AB sin ∠ACB =ACsin ∠ABC,sin ∠ABC =AC ·sin ∠BCA AB =9sin 30°5=910.∵AD ∥BC ,∴∠BAD =180°-∠ABC , 于是sin ∠BAD =sin ∠ABC =910.同理,在△ABD 中,AB =5,sin ∠BAD =910,∠ADB =45°,由正弦定理:AB sin ∠BDA =BDsin ∠BAD,解得BD =922.故BD 的长为922.【变式】解 在△ADC 中,AD =10,AC =14,DC =6,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC=100+36-1962×10×6=-12,∴∠ADC =120°,∴∠ADB =60°.在△ABD 中,AD =10,∠B =45°,∠ADB =60°, 由正弦定理得AB sin ∠ADB =ADsin B,∴AB =AD ·sin ∠ADB sin B =10sin 60°sin 45°=10×3222=5 6巩固训练1. 等腰;2.53;3. 45°;4. 33;5. 60°;6. 45°或135°;7. 65π; 8. 3或23;9. ①③④10.(1)证明 因为a 2=b(b+c),即a 2=b 2+bc, 所以在△ABC 中,由余弦定理可得,cosB=acb c a 2222-+=ac bc c 22+=a cb 2+=ab a 22=b a 2=BA sin 2sin , 所以sinA=sin2B,故A=2B. (2)解 因为a=3b,所以ba=3, 由a 2=b(b+c)可得c=2b,cosB=ac b c a 2222-+=22223443b b b b -+=23,所以B=30°,A=2B=60°,C=90°. 所以△ABC 为直角三角形.11. 解 (1)由cosB=-135,得sinB=1312, 由cosC=54,得sinC=53.所以sinA=sin(B+C)=sinBcosC+cosBsinC=6533. (2)由S △ABC =233,得21×AB×AC×sinA=233. 由(1)知sinA=6533,故AB×AC=65.又AC=CB AB sin sin ⨯=1320AB,故1320AB 2=65,AB=213. 所以BC=CA AB sin sin ⨯=211.12. 解 (1)设x 1、x 2为方程ax 2-222b c -x-b=0的两根,则x 1+x 2=ab c 222-,x 1·x 2=-a b .∴(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=222)(4a b c -+ab4=4. ∴a 2+b 2-c 2=ab. 又cosC=abc b a 2222-+=ab ab 2=21, 又∵C ∈(0°,180°),∴C=60°. (2)S=21absinC=103,∴ab =40 ……① 由余弦定理c 2=a 2+b 2-2abcosC, 即c 2=(a+b)2-2ab(1+cos60°). ∴72=(a+b)2-2×40×⎪⎭⎫⎝⎛+211.∴a+b=13.又∵a >b ……②∴由①②,得a=8,b=5.13. 解 (1)∵A+B+C=180°,由4sin 22B A +-cos2C=27, 得4cos 22C-cos2C=27,∴4·2cos 1C +-(2cos 2C-1)=27,整理,得4cos 2C-4cosC+1=0,解得cosC=21, ∵0°<C <180°,∴C=60°.(2)由余弦定理得c 2=a 2+b 2-2abcosC, 即7=a 2+b 2-ab,∴7=(a+b)2-3ab , 由条件a+b=5,得7=25-3ab,ab=6, ∴S △ABC =21absinC=21×6×23=233. 14.解析 由正弦定理得AB sin ∠ACB =ACsin B ,又∵B =30°∴AB =AC ·sin ∠ACBsin B =50×2212=502(m).答案 A15.解析 根据仰角与俯角的定义易知α=β. 答案 B 16.解析 如图. 答案 B17.解析 如图所示,依题意有∠BAC =60°,∠BAD =75°,所以∠CAD =∠CDA =15°,从而CD =CA =10(海里),在Rt △ABC 中,得AB =5(海里),于是这艘船的速度是50.5=10(海里/时). 答案 C18.解析 由正弦定理,知BC sin 60°=ABsin 180°-60°-75.解得BC =56(海里).答案 5 619.如图,连接A 1B 2由已知A 2B 2=102,A 1A 2=302×2060=102,∴A 1A 2=A 2B 2.又∠A 1A 2B 2=180°-120°=60°, ∴△A 1A 2B 2是等边三角形,∴A 1B 2=A 1A 2=10 2.由已知,A 1B 1=20, ∠B 1A 1B 2=105°-60°=45°,(8分) 在△A 1B 2B 1中,由余弦定理得B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45°=202+(102)2-2×20×102×22=200, ∴B 1B 2=10 2.因此,乙船的速度为10220×60=302(海里/时).(12分)11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微专题31解三角形中的要素一、基础知识: 1、正弦定理:2sin sin sin a b cR A B C===,其中R 为ABC 外接圆的半径 正弦定理的主要作用是方程和分式中的边角互化。

其原则为关于边,或是角的正弦值是否具备齐次的特征。

如果齐次则可直接进行边化角或是角化边,否则不可行 例如:(1)222222sin sin sin sin sin A B A B C a b ab c +-=⇔+-= (2)cos cos sin cos sin cos sin b C c B a B C C B A +=⇒+=(恒等式) (3)22sin sin sin bc B Ca A= 2、余弦定理:2222cos a b c bc A =+-变式:(1)222cos 2b c a A bc+-=① 此公式通过边的大小(角两边与对边)可以判断出A 是钝角还是锐角 当222b c a +>时,cos 0A >,即A 为锐角;当222b c a +=(勾股定理)时,cos 0A =,即A 为直角; 当222b c a +<时,cos 0A <,即A 为钝角② 观察到分式为齐二次分式,所以已知,,a b c 的值或者::a b c 均可求出cos A(2)()()2221cos a b c bc A =+-+ 此公式在已知b c +和bc 时不需要计算出,b c 的值,进行整体代入即可3、三角形面积公式:(1)12S a h =⋅ (a 为三角形的底,h 为对应的高) (2)111sin sin sin 222S ab C bc A ac B ===(3)()12S a b c r =++⋅ (r 为三角形内切圆半径,此公式也可用于求内切圆半径)(4)海伦公式:()12S p a b c ==++(5)向量方法:()()22S a ba b=⋅-⋅ (其中,a b 为边,a b 所构成的向量,方向任意)证明:()2222222111sin sin 1cos 244S ab C S a b C a b C =⇒==-S ∴=cos a b ab C ⋅=∴ ()()22S a b a b =⋅-⋅坐标表示:()()1122,,,a x y b x y =,则122112S x y x y =- 4、三角形内角和A B C π++=(两角可表示另一角)。

()sin()sin sin A B C C π+=-= ()cos()cos cos A B C C π+=-=-5、确定三角形要素的条件: (1)唯一确定的三角形: ① 已知三边(SSS ):可利用余弦定理求出剩余的三个角 ② 已知两边及夹角(SAS ):可利用余弦定理求出第三边,进而用余弦定理(或正弦定理)求出剩余两角③ 两角及一边(AAS 或ASA ):利用两角先求出另一个角,然后利用正弦定理确定其它两条边(2)不唯一确定的三角形 ① 已知三个角(AAA ):由相似三角形可知,三个角对应相等的三角形有无数多个。

由正弦定理可得:已知三个角只能求出三边的比例:::sin :sin :sin a b c A B C = ② 已知两边及一边的对角(SSA ):比如已知,,a b A ,所确定的三角形有可能唯一,也有可能是两个。

其原因在于当使用正弦定理求B 时,sin sin sin sin a b b AB A B a=⇒=,而0,,22B πππ⎛⎫⎛⎫∈ ⎪⎪⎝⎭⎝⎭时,一个sin B 可能对应两个角(1个锐角,1个钝角),所以三角形可能不唯一。

(判定是否唯一可利用三角形大角对大边的特点,具体可参考例1)6、解三角形的常用方法:(1)直接法:观察题目中所给的三角形要素,使用正余弦定理求解(2)间接法:可以根据所求变量的个数,利用正余弦定理,面积公式等建立方程,再进行求解7、三角形的中线定理与角平分线定理(1)三角形中线定理:如图,设AD 为ABC 的一条中线,则()22222AB AC AD BD +=+ (知三求一)证明:在ABD 中2222cos AB AD BD AD BD ADB =+-⋅ ① 2222cos AC AD DC AD DC ADC =+-⋅ ②D 为BC 中点 B D C D∴= ADB ADC π∠+∠= c o s c o s A D B A D C∴=- ∴ ①+②可得:()22222AB AC AD BD +=+B(2)角平分线定理:如图,设AD 为ABC 中BAC ∠的角平分线,则AB BDAC CD=证明:过D 作DE ∥AC 交AB 于E BD BEDC AE∴=E D A D A C ∠=∠ AD 为BAC ∠的角平分线EAD DAC ∴∠=∠ E D A E A D ∴∠=∠ EAD ∴为等腰三角形 E A E D∴= BD BE BE DC AE ED ∴== 而由BED BAC 可得:BE ABED AC = AB BDAC CD∴=二、典型例题:例1:(1)ABC 的内角,,A B C 所对的边分别为,,a b c,若60c b B ===,则C =_____(2))ABC 的内角,,A B C 所对的边分别为,,a b c ,若30c ===,则B =_____思路:(1)由已知,,B b c 求C 可联想到使用正弦定理:sin sin sin sin b c c BC B C b=⇒=代入可解得:1sin 2C =。

由c b <可得:60C B <=,所以30C = 答案:30C =(2)由已知,,C b c 求B 可联想到使用正弦定理:sin sin sin sin b c b CB BC c=⇒=代入可解得:sin 2B =,则60B =或120B =,由c b <可得:C B <,所以60B =和120B =均满足条件答案:60B =或120B =小炼有话说:对比(1)(2)可发现对于两边及一边的对角,满足条件的三角形可能唯一确定,也有可能两种情况,在判断时可根据“大边对大角”的原则,利用边的大小关系判断出角之间的大小关系,判定出所求角是否可能存在钝角的情况。

进而确定是一个解还是两个解。

例2:在ABC 中,2,60BC B ==,若ABC的面积等于2,则AC 边长为_________ 思路:通过条件可想到利用面积S 与,BC B ∠求出另一条边AB ,再利用余弦定理求出AC 即可B解:11sin 222ABCSAB BC B AB =⋅⋅⇒⋅=1AB ∴=22212cos 142232AC AB BC AB BC B ∴=+-⋅=+-⋅⋅=AC ∴=例3:(2012课标全国)已知,,a b c 分别为ABC 三个内角,,A B C 的对边,且有cos sin 0a C C b c +--=(1)求A(2)若2a =,且ABC ,求,b c(1)思路:从等式cos sin 0a C C b c +--=入手,观察每一项关于,,a b c 齐次,考虑利用正弦定理边化角:cos sin 0sin cos sin sin sin 0a C C b c A C A C B C +--=⇒+--=,所涉及式子与,A C 关联较大,从而考虑换掉()sin sin B A C =+,展开化简后即可求出A解:cos sin 0a C C b c +--=sin cos sin sin sin 0A C A C B C ⇒+--=()sin cos sin sin sin 0A C A C A C C ⇒-+-=sin cos sin sin cos sin cos sin 0A C A C A C C A C ⇒+---=1cos 12sin 1sin 662A A A A ππ⎛⎫⎛⎫-=⇒-=⇒-= ⎪ ⎪⎝⎭⎝⎭ 66A ππ∴-=或566A ππ-=(舍) 3A π∴=(2)思路:由(1)可得3A π=,再由ABCS2a =可想到利用面积与关于A 的余弦定理可列出,b c 的两个方程,解出,b c 即可A解:1sin 42ABCSbc A bc === 222222cos 4a b c bc A b c bc =+-⇒=+-22224844b c bc b c bc bc ⎧⎧+-=+=∴⇒⎨⎨==⎩⎩可解得22b c =⎧⎨=⎩ 小炼有话说:通过第(1)问可以看出,在遇到关于边角的方程时,可观察边与角正弦中是否具备齐次的特点,以便于进行边角互化。

另一方面当角,,A B C 同时出现在方程中时,通常要从所给项中联想到相关两角和差的正余弦公式,然后选择要消去的角例4:如图,在ABC 中,D 是边AC 上的点,且,2,2AB AD AB BC BD ===,则sin C 的值为___________思路:求sin C 的值考虑把C 放入到三角形中,可选的三角形有ABC 和BDC ,在BDC 中,已知条件有两边,BD BC ,但是缺少一个角(或者边),看能否通过其它三角形求出所需要素,在ABD 中,三边比例已知,进而可求出BDA∠,再利用补角关系求出BDC ∠,从而BDC 中已知两边一角,可解出C 解:由2AB =可设2BD k =则AB =,4AD BC k ∴== ∴ 在ADB 中,()2222222cos 23k AD BD ABADB AD BD+-+-===⋅ cos cos BDC ADB ∴=-= s i n B D C ∴=在BDC 中,由正弦定理可得:sin sin sin sin 6BD BC BD BDC C C BDC BC ⋅=⇒== 小炼有话说:(1)在图形中求边或角,要把边和角放入到三角形当中求解,在选择三角形时尽量选择要素多的,并考虑如何将所缺要素利用其它条件求出。

(2)本题中给出了关于边的比例,通常对于比例式可考虑引入一个字母(例如本题中的k ),这样可以将比例转化为边的具体数值,便于计算例5:已知ABC 中,,,a b c 分别是角,,A B C 所对边的边长,若ABC 的面积为S ,且()222S a b c =+-,则tan C 等于___________思路:由已知()222S a b c =+-可联想到余弦定理关于cos C 的内容,而1sin 2S ab C =,所以可以得到一个关于sin ,cos C C 的式子,进而求出tan C 解:()22222122sin 22S a b c ab C a b c ab =+-⇔⋅=+-+ 而2222cos c a b ab C =+- 2222c o s a b c a b C ∴+-=代入可得:sin 22cos sin 22cos ab C ab ab C C C =+⇒=+224sin sin 22cos 53sin cos 1cos 5C C C C C C ⎧=⎪=+⎧⎪∴⇒⎨⎨+=⎩⎪=-⎪⎩4tan 3C ∴=-答案:4tan 3C =-例6:在ABC ∆ 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为,12,cos ,4b c A -==- 则a 的值为 .思路:已知cos A 求a 可以联想到余弦定理,但要解出,b c 的值,所以寻找解出,b c的条件,1sin 2ABCSbc A ==,而sin A ==代入可得24bc =,再由2b c -=可得 ()22222cos 22cos 64a b c bc A b c bc bc A =+-=-+-=,所以8a = 答案:8例7:设ABC 的内角,,A B C 所对边的长分别为,,a b c,若sin cos 0b A B -=,且2b ac =,则a cb+的值为( ) A.2B.C. 2D. 4思路:由sin cos 0b A B -=可得:sin sin cos 0B A A B -=,从而tan B =,解得3B π=,从2b ac =可联想到余弦定理:222222cos b a c ac B a c ac =+-=+-,所以有()2220a c ac ac a c +-=⇒-=,从而a c =再由2b ac =可得a b c ==,所以a cb+的值为2 答案:C小炼有话说:本题的难点在于公式的选择,2b ac =以及所求a cb+也会让我们想到正弦定理。

相关文档
最新文档