常用的傅里叶变换
常用的傅里叶变换+定理+各种变换的规律(推荐)

਼ᰦ F ^g x exp j 2Sf a x ` G f x f a ࠭ᮠ൘オฏѝⲴ〫ˈᑖᶕ仁ฏѝⲴᒣ〫
㪉
[ f ( x)] F (P ) ᷍ x0 㬨⤜㸋㒄⭥㬖⧄㭞᷍䋓䇱
[ f ( x r x0 )] exp(r j 2SP x0 ) F (P ) ᷉㠞䄧㾵䐫᷊ [exp p(r j 2SP0 x) f ( x)] F (P P0 ) ᷉㼁䄧㾵䐫᷊
重 要
名称
连续傅里叶变换对 傅里叶变换 F (ω ) 连续时间函数 f (t )
= sinc ( u)
2
结论: 三角形函数的傅里叶变换是 sinc 函数的平方
9
七、符号函数的傅里叶变换
1 F [sgn( x )] = jπ u
二维 留待推算
1 1 F [sgn( x )sgn( y )] = • jπ u jπ v
八、exp[ jπx ] 函数的傅里叶变换 1 F {exp[ jπx ]} = δ ( u − ) 2
3
二、梳状函数的傅里叶变换
F [comb( x )] = comb( u)
普遍型
x F comb = a comb( au) a
结论
comb 函数的
傅里叶变换 仍是
二维情况
x y F comb comb a b = ab comb( au) comb( bv )
= sinc( u)
−1 / 2
∫ exp(− j 2πux )ห้องสมุดไป่ตู้x
a x ≤ 2 其它
rect(x)
F.T.
sinc(u)
5
普遍型
x F rect a
常用傅立叶变换表完整版

常用傅立叶变换表
Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】
18
δ(ω) 代表分布. 这个变换展示了狄拉克δ函数的重要性:该函数是常函数的傅立叶变换
19 变换23的频域对应
20 由变换3和24得到.
21
由变换1和25得到,应用了:
时域信号
弧频率表示的 傅里叶变换
注释
1线性
2 时域平移
3 频域平移, 变换2的频域对应
4
如果
值较大,则
会收缩到
原点附近,而会扩散并变得扁平. 当 | a | 趋向无穷时,成为 Delta 函数。
5 傅里叶变换的二元性性质。
通过交换时域变量 和频域变量 得到. 6 傅里叶变换的微分性质 7 变换6的频域对应 8 表示 和 的卷积 — 这就是 9
和归一化的 10 变换10的频域对应。
矩形函数是理想的低通滤波器,是这类滤波器对冲击的响应。
11
tri 是 12 变换12的频域对应 13 exp( αt 2) 的傅里叶变换是他本身. 只有当 Re(α) > 0时,这是可积的。
14
15
16 a>0
17
变换本身就是一个公式。
常用傅里叶变换表

时域信号弧频率表示的傅里叶变换注释1|线性2时域平移3频域平移, 变换2的频域对应\4如果值较大,则会收缩到原点附近,而会扩散并变得扁平. 当| a | 趋向无穷时,成为Delta函数。
5傅里叶变换的二元性性质。
通过交换时域变量和频域变量得到.6/傅里叶变换的微分性质7变换6的频域对应8表示和的卷积—这就是卷积定理-9矩形脉冲和归一化的sinc函数10变换10的频域对应。
矩形函数是理想的低通滤波器,sinc函数是这类滤波器对反因果冲击的响应。
11-tri是三角形函数12变换12的频域对应13高斯函数exp( − αt2) 的傅里叶变换是他本身. 只有当Re(α) > 0时,这是可积的。
¥141516》a>018δ(ω) 代表狄拉克δ函数分布. 这个变换展示了狄拉克δ函数的重要性:该函数是常函数的傅立叶变换【19变换23的频域对应20由变换3和24得到.21`由变换1和25得到,应用了欧拉公式: cos(at) = (e iat + e−iat) / 2.22由变换1和25得到23这里, n是一个自然数. δ(n)(ω) 是狄拉克δ函数分布的n阶微分。
这个变换是根据变换7和24得到的。
将此变换与1结合使用,我们可以变换所有多项式。
/ 24此处sgn(ω)为符号函数;注意此变换与变换7和24是一致的.25变换29的推广.17变换本身就是一个公式26【变换29的频域对应.27此处u(t)是单位阶跃函数; 此变换根据变换1和31得到.28u(t)是单位阶跃函数,且a > 0.34狄拉克梳状函数——有助于解释或理解从连续到离散时间的转变.。
傅里叶变换常用公式

傅里叶变换常用公式1. 简介傅里叶变换是一种重要的数学工具,用于将一个信号从时域转换到频域。
它常被应用于信号处理、图像处理、通信等领域。
本文将介绍傅里叶变换的基本概念和常用公式。
2. 傅里叶级数傅里叶级数是傅里叶变换的基础,它用于将周期信号表示为一系列正弦和余弦函数的和。
傅里叶级数的公式如下:傅里叶级数公式傅里叶级数公式在上述公式中,f(t)表示周期为T的函数,a0是直流成分,ak和bk是傅里叶系数。
3. 傅里叶变换傅里叶变换是将非周期信号表示为一组连续的频谱的过程。
傅里叶变换的公式如下:傅里叶变换公式傅里叶变换公式在上述公式中,F(w)表示频域信号,f(t)表示时域信号,j是虚数单位。
4. 反傅里叶变换反傅里叶变换是将频域信号恢复为时域信号的过程。
反傅里叶变换的公式如下:反傅里叶变换公式反傅里叶变换公式在上述公式中,F(w)表示频域信号,f(t)表示时域信号。
5. 常见傅里叶变换公式下面列举了一些常见的傅里叶变换公式:5.1 正弦函数的傅里叶变换正弦函数的傅里叶变换的公式如下:正弦函数的傅里叶变换公式正弦函数的傅里叶变换公式在上述公式中,f(t)是正弦函数,F(w)是其频域信号。
5.2 余弦函数的傅里叶变换余弦函数的傅里叶变换的公式如下:余弦函数的傅里叶变换公式余弦函数的傅里叶变换公式在上述公式中,f(t)是余弦函数,F(w)是其频域信号。
5.3 矩形脉冲的傅里叶变换矩形脉冲的傅里叶变换的公式如下:矩形脉冲的傅里叶变换公式矩形脉冲的傅里叶变换公式在上述公式中,f(t)是矩形脉冲,F(w)是其频域信号。
5.4 高斯函数的傅里叶变换高斯函数的傅里叶变换的公式如下:高斯函数的傅里叶变换公式高斯函数的傅里叶变换公式在上述公式中,f(t)是高斯函数,F(w)是其频域信号。
6. 结论傅里叶变换是一种非常强大的数学工具,用于将信号从时域转换到频域。
本文介绍了傅里叶级数、傅里叶变换和反傅里叶变换的基本公式,并列举了一些常见的傅里叶变换公式。
傅里叶变换常用公式

傅里叶变换常用公式1.傅里叶变换定义:F(w) = ∫[f(t)e^(-jwt)] dt2.傅里叶逆变换定义:f(t) = ∫[F(w)e^(jwt)] dw / (2π)傅里叶逆变换定义了将频域函数F(w)转换回时域函数f(t)的方式。
3.单位冲激函数的傅里叶变换:F(w) = ∫[δ(t)e^(-jwt)] dtδ(t)是单位冲激函数,其傅里叶变换结果为14.周期函数的傅里叶级数展开:f(t) = ∑[a(n)cos(nω0t) + b(n)sin(nω0t)]f(t)可以用无穷级数形式表示,其中ω0为基本角频率,a(n)和b(n)为系数。
5.周期函数的傅里叶变换:F(w)=2π∑[δ(w-nω0)]周期函数f(t)的频谱是一系列频率为nω0的冲激函数。
6.卷积定理:FT[f*g]=F(w)G(w)f*g表示函数f(t)和g(t)的卷积,FT表示傅里叶变换,*表示复数乘法。
卷积定理说明卷积在频域中的运算等于对应的傅里叶变换相乘。
7.积分定理:∫[f(t)g(t)] dt = 1/2π ∫[F(w)G(-w)] dw积分定理表明函数f(t)和g(t)的乘积在时域中的积分等于它们在频域中的乘积的逆变换。
8.平移定理:g(t) = f(t - t0) 对应的傅里叶变换 F(w) = e^(-jwt0) G(w)平移定理说明在时域中将函数f(t)右移t0单位,等价于在频域中将F(w)乘以e^(-jwt0)。
9.缩放定理:g(t) = f(at) 对应的傅里叶变换 G(w) = 1/,a, F(w/a)缩放定理说明在时域中将函数f(t)横向拉伸为af(t),等价于在频域中将F(w)纵向压缩为1/,a,F(w/a)。
除了以上列举的公式,傅里叶变换还有许多性质和定理,如频移定理、频域微分定理、频域积分定理等,这些公式和定理在信号处理中非常有用,可以加速计算和简化问题的分析。
014第三章-5常用信号的傅里叶变换

jct
jc t
F ( j( c ))
相乘,等效于在
频域中将整个频谱向频率增加方向搬移c
F f (t )e
jct
f (t )e
jct jt
e
dt dt F j jc
f (t )e
j c t
例:已知 f (t ) F ( j ) 求 f (t ) cosc t 的频谱。 解:
四、尺度变换特性(时域频域成反比)
1 若:f (t ) F ( j ) 则 f (at) F ( j ) a a
扩展
压缩
压缩
扩展
2 A Sa( )
ASa (
2
)
A Sa ( ) 2 4
四、尺度变换特性(时域频域成反比)
1 若:f (t ) F ( j ) 则 f (at) F ( j ) a a
t
记 f1 (t ) e (t )
1 F f1 (t ) j
则 f (t ) e
|t|
t f1 (t ) f1 (t )
F ( j) F[ f1 (t )] F[ f1 (t )]
F1 ( j) F ( j)
* 1
F f at
f at e
若不符合绝对可积条件则不能直接计算, 但可通过其它变换对推出,并且一般含有 冲激函数。
常用信号的傅氏变换—8 8、周期性冲激序列δT(t)
间隔为T的均匀冲激序列, 以符号δT(t)表示
δT(t)是一个周期函数,可以展开成傅里叶级数:
1 jnt T (t ) (t nT ) An e 2 n n
常用傅里叶变换表

时域信号
弧频率表示的
傅里叶变换
注释
1
线性
2
时域平移
3
频域平移, 变换2的频域对应
4
如果
值较大,则会收缩到原
点附近,而会扩散并变得
扁平. 当 | a | 趋向无穷时,成为
Delta 函数。
5
傅里叶变换的二元性性质。
通过交换时域变量 和频域变量 得到.
6
傅里叶变换的微分性质
7
变换6的频域对应
表示和的卷积—这就是卷积定理
矩形脉冲和归一化的
变换
想的低通滤波器,
滤波器对反因果冲击的响应。
tri
变换
高斯函数
换是他本身
这是可积的。
a>0
变换本身就是一个公式δ
这个变换展示了狄拉克要性:
变换
由变换
由变换
式
由变换
这里
是狄拉克
这个变换是根据变换将此变换与
换所有多项式。
此处
换与变换
变换
变换
此处
根据变换
u
狄拉克梳状函数
理解从连续到离散时间的转变
Welcome !!! 欢迎您的下载,资料仅供参考!。
常用傅里叶变换公式大全

常用傅里叶变换公式大全傅里叶变换是一种重要的数学工具,它可以将时域信号转换为频域信号,从而更好地理解信号的特性。
下面就是常用的傅里叶变换公式大全:1、傅里叶变换:$$F(u)=\int_{-\infty}^{\infty}f(x)e^{-2\pi iux}dx$$2、傅里叶反变换:$$f(x)=\int_{-\infty}^{\infty}F(u)e^{2\pi iux}du$$3、离散傅里叶变换:$$F(u)=\sum_{n=-\infty}^{\infty}f(n)e^{-2\pi iun}$$4、离散傅里叶反变换:$$f(n)=\frac{1}{N}\sum_{u=-\infty}^{\infty}F(u)e^{2\pi iun}$$5、快速傅里叶变换:$$F(u)=\sum_{n=0}^{N-1}f(n)W_N^{nu}$$6、快速傅里叶反变换:$$f(n)=\frac{1}{N}\sum_{u=0}^{N-1}F(u)W_N^{-nu}$$7、离散余弦变换:$$F(u)=\sum_{n=0}^{N-1}f(n)\cos\frac{(2n+1)u\pi}{2N}$$8、离散余弦反变换:$$f(n)=\frac{1}{N}\sum_{u=0}^{N-1}F(u)\cos\frac{(2n+1)u\pi}{2N}$$9、离散正弦变换:$$F(u)=\sum_{n=0}^{N-1}f(n)\sin\frac{(2n+1)u\pi}{2N}$$10、离散正弦反变换:$$f(n)=\frac{1}{N}\sum_{u=0}^{N-1}F(u)\sin\frac{(2n+1)u\pi}{2N}$$以上就是常用的傅里叶变换公式大全,它们可以帮助我们更好地理解信号的特性,并且可以用来解决许多实际问题。
因此,傅里叶变换在科学研究和工程应用中都有着重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用的傅里叶变换
1. 引言
傅里叶变换是一种重要的数学工具,用于将一个函数或信号从时域转换到频域。
它在信号处理、图像处理、通信等领域广泛应用。
本文将介绍傅里叶变换的基本概念、性质和常见应用。
2. 傅里叶级数
傅里叶级数是傅里叶变换的基础,它将周期函数表示为一系列正弦和余弦函数的和。
对于周期为T 的函数f(t),其傅里叶级数表示为:
f (t )=a 0+∑(a n cos (2πnt T )+b n sin (2πnt T ))∞
n=1 其中,a 0、a n 和b n 是系数,可以通过函数f(t)在一个周期内的积分得到。
傅里叶级数展开了周期函数在频域上的频谱分布。
3. 傅里叶变换
傅里叶变换是将非周期函数表示为连续频谱的一种方法。
对于函数f(t),其傅里叶变换表示为:
F (ω)=∫f ∞
−∞(t )e −jωt dt
其中,F (ω)是函数f(t)的频谱,ω是频率。
傅里叶变换的逆变换为:
f (t )=12π∫F ∞
−∞
(ω)e jωt dω 傅里叶变换将函数从时域转换到频域,可以将信号分解为不同频率的成分,从而方便分析和处理。
4. 傅里叶变换的性质
傅里叶变换具有许多重要的性质,其中一些常用的性质包括:
•
线性性质:傅里叶变换是线性的,即对于常数a 和b ,有F(af (t )+bf (t ))=aF(f (t ))+bF(g (t ))。
• 平移性质:如果f (t )的傅里叶变换为F (ω),那么f (t −t 0)的傅里叶变换为
e −jωt 0F (ω)。
•尺度性质:如果f(t)的傅里叶变换为F(ω),那么f(at)的傅里叶变换为
1 |a|F(ω
a
)。
•对称性质:如果f(t)是实函数,并且其傅里叶变换为F(ω),那么F(−ω)为F(ω)的共轭。
这些性质使得傅里叶变换更加灵活和方便,在实际应用中能够简化计算和分析过程。
5. 傅里叶变换的应用
傅里叶变换在信号处理、图像处理、通信等领域有广泛的应用。
以下是一些常见的应用:
•频谱分析:傅里叶变换可以将信号从时域转换到频域,可以分析信号的频谱分布,帮助理解信号的频率成分和特征。
•滤波器设计:通过傅里叶变换,可以将滤波器的设计问题转换为频域上的乘法问题,方便设计和优化滤波器。
•压缩编码:傅里叶变换可以将信号从时域转换到频域,通过保留频谱中的重要成分,可以实现信号的压缩编码,减小数据存储和传输的开销。
•图像处理:傅里叶变换可以将图像从空域转换到频域,通过滤波、增强等操作,可以改善图像质量和实现图像特效。
•通信系统:傅里叶变换在调制解调、信道估计、信号检测等方面有重要应用,可以提高通信系统的性能和可靠性。
6. 傅里叶变换的计算方法
傅里叶变换的计算可以通过解析方法、数值方法和快速傅里叶变换(FFT)来实现。
解析方法适用于一些简单的函数,可以直接使用积分计算得到傅里叶变换。
数值方法通过采样和离散化的方式,将连续信号转换为离散信号,然后使用离散傅里叶变换(DFT)计算频谱。
FFT是一种高效的算法,可以快速计算DFT,广泛应用于信号处理和图像处理领域。
7. 总结
本文介绍了常用的傅里叶变换的基本概念、性质和应用。
傅里叶变换是一种重要的数学工具,可以将信号从时域转换到频域,方便分析和处理。
傅里叶变换具有许多重要的性质,使得计算和分析更加方便。
傅里叶变换在信号处理、图像处理、通信等领域有广泛的应用。
傅里叶变换的计算可以通过解析方法、数值方法和FFT来实现。
希望本文能够为读者提供对傅里叶变换的全面理解和应用指导。