2020中考数学复习数与式综合复习达标测试题(附答案)
2020年中考数学数与式专题卷(附答案)

2020年中考数学数与式专题卷(附答案)一、选择题1.在实数,- ,,中,是无理数的是()A. ,B. - ,C.D.2.下列所示的数轴中,画得正确的是()A. B. C. D.3.下列说法正确的是( )A. 的系数是3B. 2m2n的次数是2次C. 是多项式D. x2-x-1的常数项是14.若数a的近似数为1.6,则下列结论正确的是()A. a=1.6B. 1.55≤a<1.65C. 1.55<a≤1.56D. 1.55≤a<1.565.把代数式3x3-6x2y+3xy2分解因式,结果正确的是()A. x(3x+y)(x-3y)B. 3x(x2-2xy+y2)C. x(3x-y)2D. 3x(x-y)26.要使式子﹣有意义,字母x的取值必须满足()A. x≤B. x≥﹣C. x≥且x≠3D. x≥7.下列各式中,是最简分式的是()A. B. C. D.8.实数的值在( )A. 0和1之间B. 1和2之间C. 2和3之间D. 3和4之间9.用加减法解方程组中,消x用____法,消y用____法()A. 加,加B. 加,减C. 减,加D. 减,减10.已知x=1是方程x2+bx-2=0的一个根,则方程的另一个根是A. 1B. 2C. -1D. -211.已知:,,那么的值为()A. 3或-3B. 0C. 0或3D. 312.观察一串数:0,2,4,6,….第n个数应为()A. 2(n-1)B. 2n-1C. 2(n+1)D. 2n+113.如果△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x-2,2x-1,若这两个三角形全等,则x等于().A. B. 3 C. 4 D. 514.某商店在甲批发市场以每包m元的价格进了20包茶叶,又在乙批发市场以每包n元(m>n)的价格进了同样的40包茶叶,如果商家以每包元的价格卖出这种茶叶,卖完后,这家商店().A. 盈利了B. 亏损了C. 不赢不亏D. 盈亏不能确定二、填空题15.若|2x﹣y|+(y﹣2)2=0,则x+y=________ .16.若是一个完全平方公式,则m的值为________17.计算﹣(﹣1)2=________18.已知=2,则=________.19.使代数式有意义的x取值范围是________.20. 5x+9的立方根是4,则2x+3的平方根是________.21.使有意义的x的取值范围是________.22.当x变化时,|x-4|+|x-t|有最小值5,则常数t的值为________.三、解答题23.综合题。
2020年中考数学复习:数与式、化简求值问题 专项练习题(含答案解析)

2020年中考数学复习:数与式、化简求值问题 专项练习题1. (2019遂宁第18题)先化简,再求值:÷﹣,其中a ,b 满足(a ﹣2)2+=02.(2019·本溪)先化简,再求值:a a a a a a 2221444222-÷⎪⎪⎭⎫ ⎝⎛--+--. 其中a 满足 a 2+3a -2=0.3.观察下列等式:第1个等式:a 1=11+2=2-1, 第2个等式:a 2=12+3=3-2, 第3个等式:a 3=13+2=2-3, 第4个等式:a 4=12+5=5-2, 按上述规律,回答以下问题:(1)请写出第n 个等式:a n = ;(2)a 1+a 2+a 3+…+a n = .4.(2019·凉山)先化简,再求值:(a +3)2-(a +1)(a -1)-2(2a +4),其中a =-12.53+22,我们可以如下做:∵3+22=2+1+22=(2)2+2×2×1+12=(2+1)2, ∴3+22=(2+1)2=2+1. 仿照上例化简下列各式: (1)4+23= ;(2)13-242= ;(3)14+65-14-65= .6.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=(1+2)2.善于思考的小明进行了以下探索:设a +b 2=(m +n 2)2(其中a 、b 、m 、n 均为整数),则有a +b 2=m 2+2n 2+2mn 2. ∴a =m 2+2n 2,b =2mn .这样小明就找到了一种把类似a +b2的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题:(1)当a ,b ,m ,n 均为正整数时,若a +b 3=(m +n 3)2,用含m ,n 的式子分别表示a ,b 得:a = ,b = ; (2)利用所探索的结论,找一组正整数a ,b ,m ,n 填空: +( +2;(3)若a +43=(m +n 3)2,且a ,m ,n 均为正整数,求a 的值.7.化简:x -3x -2÷(x +2-5x -2).8.先化简,再求值:(a +b )2+b (a -b )-4ab ,其中a =2,b =-12.。
2020年中考数学第一轮复习 第四节 因式分解 知识点+真题(后含答案)

2020年中考数学第一轮复习第一章 数与式第四节 因式分解【基础知识回顾】一、因式分解的定义:1、把一个 式化为几个整式 的形式,叫做把一个多项式因式分解。
2、因式分解与整式乘法是运算,即:多项式 整式的积 【注意:判断一个运算是否是因式分解或判断因式分解是否正确,关键看等号右边是否为 的形式。
】二、因式分解常用方法:1、提公因式法:公因式:一个多项式各项都有的因式叫做这个多项式各项的公因式。
提公因式法分解因式可表示为:ma+mb+mc= 。
【注意:1、公因式的选择可以是单项式,也可以是 ,都遵循一个原则:取系数的 ,相同字母的 。
2、提公因式时,若有一项被全部提出,则括号内该项为 ,不能漏掉。
3、提公因式过程中仍然要注意符号问题,特别是一个多项式首项为负时,一般应先提取负号,注意括号内各项都要 。
】2、运用公式法:将乘法公式反过来对某些具有特殊形式的多项式进行因式分解,这种方法叫做公式法。
①平方差公式:a 2-b 2= ,②完全平方公式:a 2±2ab+b 2= 。
【注意:1、运用公式法进行因式分解要特别掌握两个公式的形式特点,找准里面的a 与b 。
如:x 2-x+14符合完全平方公式形式,而x 2- x+12就不符合该公式的形式。
】 三、因式分解的一般步骤1、 一提:如果多项式的各项有公因式,那么要先 。
2、 二用:如果各项没有公因式,那么可以尝试运用 法来分解。
3、 三查:分解因式必须进行到每一个因式都不能再分解为止。
【注意:分解因式不彻底是因式分解常见错误之一,中考中的因式分解题目一般为两步,做题时要特别注意,另外分解因式的结果是否正确可以用整式乘法来检验】【中考真题考点例析】考点一:因式分解的概念A .a (x-y )=ax-ayB .x +2x+1=x (x+2)+1C .(x+1)(x+3)=x 2+4x+3D .x 3-x=x (x+1)(x-1)考点二:因式分解例2. (2019山东东营)因式分解:x(x-3)-x+3= .对应练习2-1.(2019年济南)分解因式:244m m -+=_____.( ) ( )对应练习2-2.(2019年莱芜)分解因式:a 3﹣4ab 2= .考点三:因式分解的应用例1. 答案:6,1对应练习1-1. 答案:D考点二:因式分解例2. 答案:B对应练习2-1. 答案:2(2)m -对应练习2-2. 答案:a (a+2b )(a ﹣2b )考点三:因式分解的应用例3. 答案:4对应练习3-1. 答案:18【聚焦中考真题】一、选择题:1.(2019年山东临沂)将a 3b -ab 进行因式分解,正确的是( )A .a(a 2b -b)B .ab(a -1)2C .ab(a+1)(a -1)D .ab(a 2-1)2.(2019潍坊)下列因式分解正确的是( )A .3ax 2-6ax=3(ax 2-2ax)B .x 2+y 2=(-x+y)(-x -y)C .a 2+2ab -4b 2=(a+2b)2D .-ax 2+2ax -a=-a(x -1)23.(南昌)下列因式分解正确的是( ) A .x 2-xy+x=x (x -y ) B .a 3-2a 2b+ab 2=a (a -b )2C .x 2-2x+4=(x -1)2+3D .ax 2-9=a (x+3)(x -3)4.(张家界)下列各式中能用完全平方公式进行因式分解的是( )A .x 2+x+1B .x 2+2x-1C .x 2-1D .x 2-6x+95.(佛山)分解因式a 3-a 的结果是( )A .a (a 2-1)B .a (a-1)2C .a (a+1)(a-1)D .(a 2+a )(a-1)6.(恩施州)把x 2y-2y 2x+y 3分解因式正确的是( )A .y (x 2-2xy+y 2)B .x 2y-y 2(2x-y )C .y (x-y )2D .y (x+y )2二、填空题:7.(2019年威海)分解因式:2x 2-2x += .8.(2019年淄博)分解因式:=++x x x 6523 .A .3x -6x=x (3x-6)B .-a +b =(b+a )(b-a )C.4x2-y2=(4x+y)(4x-y)D.4x2-2xy+y2=(2x-y)233.(内江)若m-n=6,且m-n=2,则m+n= .参考答案一、选择题:1-5 CDBDC 6 C二、填空题:6.答案:()221 12x-7.答案:()()32++xxx8.答案:m(x+y)(x-y)9.答案:m(m-5)10.答案:B11.答案:2)2 (-ba12.答案:x(2-x)(2+x)13. 答案:5(x+2)(x -2)14. 答案:m(m+2)(m -2)15. 答案:b(a+2b)(a -2b)17. 答案:-91(3x+1)(3x -1)16. 答案:3(a+2b)(a -2b)17. 答案:2x(x -2)18. 答案:2m(m+2)(m -2)19. 答案:2(a+2b )(a -2b)20. 答案:22)(-x21. 答案:a(b+1)(b -1)22. 答案:(x -1)23. 答案:a(a -2)24. 答案:x(x+y)25. 答案:(a+3)(a -3)26. 答案:x -227. 答案:(x+y)(x -y)28. 答案:(x+3y)(x -3y)29. 答案:a(m+2n)(m -2n)30. 答案:))((22x y x y y x -+ 31. 答案:332. 答案:2433. 答案:x(x+1)(x -1)34. 答案:-31。
2020届初三数学中考复习数与式专题复习练习题含答案及部分解析

2020届初三数学中考复习数与式专题复习练习题21.- 3的相反数是() 、选择题(每小题3分,共45分)3A .— 2 B.2.实数 sin 451, sin 30 3,0.101 001 000 1 …,2中,无理数 的个数是()A. B. C. D. 1 3. F 面各数中,最小的数是(A .B. | - 2|C. (—3)2D. 0.000 14.F 列实数中,在2和3之间的是(A .B. n — 2 C . " 25D. 5.F 列运算正确的是() A. 9 B . (3a 2)3 =9a 6 C . 5—・5— 5= 25 D . \ 8— 50=— 3 26.某桑蚕丝的直径约为 0.000 016 m ,将0.000 016用科学记数法表示是()A . 1.6 x10—4B. 1.6 x 10—5 C . 1.6 x 10—7 D. 16 x 10—47.F列计算正确的是A.3x2y + 5xy = 8x3y2.(x + y)2=C. 2(—2x)宁x = 4x8 .实数a, b, c, d在数轴上的对应点的位置如图所示,下列结论:①a v b;②|b|=|d| ;3a + c = a ;④ad >0 中.正确的有()9 .已知 a + b = 4, c — d = 3,则(b + c) — (d — a)的值为()A . 1 B.— 1 C. 7 D.— 710 .去年2月份,某房地产商将房价提高40%在中央“房子是用来住的,不是 用来炒的”指示下达后,立即降价30%设降价后的房价为x ,则去年2月份之前的房价为() A . (1 + 40%)x 30%cB . (1 + 40%)(1— 30%)x 11. 下列式子的变形是因式分解的是()2 2 2 A . x — 2x — 3= x (x — 2) —3 B . x — 2x — 3 = (x — 1) — 4C. (x + 1)( x — 3) = x 2 — 2x — 3 D . x 2— 2x — 3 = (x + 1)( x — 3)12. 13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位 老妇人,每人赶着7头毛驴,每头毛驴驮着7个口袋,每个口袋里装着7个面包, 每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为()6 7A . 42 B. 49 C. 7 D. 7 13. 若(x — 2)2+ |y + 3| = 0,则(x + y )2 019 的值为()A . 0B. 1C.— 1D.无法确定 2 ' 4、 a 214. 如果a 2+ 2a — 1 = 0,那么代数式a — - •— 的值是()个 ・D个 2 C. x ______ (1+40% X 30%(1+ 40% (1—30%< a丿a —2A.—3 B . —1 C . 1 D . 315 .在数学活动课上,同学们利用如图所示的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()A. 4,2,1 B . 2, 1, 4 C . 1, 4, 2 D . 2, 4, 1二、填空题(每小题3分,共30分)16. 计算:a(a + 1)= ___________ .17. 在我国南海某海域探明可燃冰储量约有194亿m,数194亿用科学记数法表示是____________ .18. 计算:(迄—1)0+ 「= ______________ .19•化简:x—1! - x= ------------------- -20 .若m—2m—1= 0,则代数式2〃—4m+ 3的值为________ .21 .把多项式3n i—6mr+ 3n2分解因式的结果是___________ .2 __________23 .已知(a + 6)+ b2—2b—3= 0,贝 S 2b2—4b—a 的值为_______ .24 .观察下列等式:32—12= 8 , 52—12= 24,〒—12= 48, 92—12= 80,…,由以上规律可以得出第n个等式为______________________________________ .22 .如图,矩形ABCD勺面积为 ________ (______ 用含x的代数式表示).25 .有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:I Q 弋则第n次的运算结果= (用含字母x和n的代数式表示).三、解答题(共25分)26. (每小题4分,共8分)(11(1)计算:I也 + ( n —3)+ a [ —2cos 45 .⑵计算:逅 +2| —3j 2+ (tan 60 ° —1)0.27. (1)(4 分)先化简,再求值:(2x + y)2+ (x —y)(x + y) —5x(x —y),其中x = 2+ 1, y = 2—1.I- ' I- / 'x 1⑵(5 分)先化简,再求值:x —-T宁1+^^,其中x的值是不等式组< x十I丿I X —I丿2(x+ 1)- 3> 0,—3x+ 2> —4的整数解.28. (8分)观察下列等式:12X 231 = 132X 21,13X 341 = 143X 31,23 X 352 = 253X 32,34 X 473 = 374 X 43,62 X 286 = 682 X 26,以上每个等式中两边的数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1) 根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52X ______ = _______ X 25;② ____ X 396= 693X ________ ;(2) 设这类等式左边两位数的十位数字为a,个位数字为b,且2<a+ b<9,写出表示“数字对称等式”一般规律的式子(含a, b),并证明.。
2020中考数学复习数与式综合达标测试题4(附答案)

2020中考数学复习数与式综合达标测试题4(附答案)1.若24(1)25x k x +-+是一个完全平方式,则常数k 的值为( )A .11B .21C .-19D .21或—19 2.下列计算正确的是( )A .3a+4=7abB .7x ﹣3x=4C .3m+m=3m 2D .3x 2y ﹣2x 2y=x 2y 3.下列代数式b ,2ab ,5y ,x y -,22x y +,0,21121ab t ++中,单项式共有( ) A .6个 B .5个C .4个D .3个 4.计算1+2+22+23+…+22010的结果是( )A .22011﹣1B .22011+1C .20111(21)2-D .20111(2+1)25.在数-(-3),0,(-3)2,|-9|,-24中,正数的个数有( )A .1个B .2个C .3个D .4个6. 下列四组选项中,组内两个数都为无理数的是( )A .227 B .5π,1.010010001…(两个“1”之间依次多一个“0”)C ,3.14159D .2π7.已知空气单位体积质量是30.001239g /cm ,将0.001239用科学记数法表示为( )A .212.3910-⨯B .40.123910-⨯C .31.23910-⨯D .31.23910⨯ 8.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积约为250000m 2,则250000用科学记数法表示为( )A .25×104m 2B .0.25×106m 2C .2.5×105m 2D .2.5×106m 29.计算(-27)÷(-514)÷(-56)的结果是( ) A .-23 B .-2425 C .23 D .-64910.如果23x y -=,那么代数式142x y +-的值为A .5B .7C .-5D .7-11.(1)去括号:(m ﹣n )(p ﹣q )=________ .(2)计算:(5a 2+2a )﹣4(2+2a 2)=________ .12.已知多项式 34m a b ﹣2a b+1 是六次三项式,则 m= ____.13.已知:,则代数式的值等于__________.14.10a (a <0)=________;15.若分式22x x +的值为正,则实数x 的取值范围是__________________. 16.已知:25m =,28n =,则2m n +=________.17.我市某日的气温是-2℃~4℃,则该日温差是________℃.18.化简()()200920105252-⋅+ =_____________.19.已知|-x|=|﹣6|,则x 的值为______.20.观察如图图形的构成规律,依照此规律,第100个图形中共有______个“•”.21.观察下列等式,并回答有关问题:3322112234+=⨯⨯; 333221123344++=⨯⨯; 33332211234454+++=⨯⨯; …()1若n 为正整数,猜想3333123...n ++++=________;()2利用上题的结论比较3333123...100++++与25000的大小.22.计算:16-33-3-335⎛⎝. 23.一个底面是正方形的长方体,高为bcm ,底面正方形边长为5cm ,如果它的高不变,底面正方形边长增加了acm ,那么它的体积增加了多少?24.分解因式:x 4﹣81.25.小红爸爸上星期五买进某公司股票1000股,每股28元,星期六和星期天不交易.下表为本周内每日该股票的涨跌情况.(单位:元)(1)通过上表你认为星期五收盘时,每股是多少元?(2)本周内每股最高是多少?最低是多少元?(3)已知股票买入时需交成交额1.5‰的交易费,卖出时需交成交额2.5‰的交易费.若星期五抛出,则小红爸爸这笔股票交易盈亏如何?26.计算:(1()20493 3.144π--;(2233(3)(2)74--. 27.若01x <<,且116,x x x x+=-求的值. 28.已知:644×83=2x ,求x .29.已知水结成冰的温度是0C o ,酒精冻结的温度是117C -o .现有一杯酒精的温度为12C o ,放在一个制冷装置里、每分钟温度可降低1.6C o ,要使这杯酒精冻结,需要几分钟?(精确到0.1分钟)30.已知a ,b 互为相反数,c ,d 互为倒数,m 的倒数等于它的本身,求代数式2m ﹣13735a b cd +-的值.参考答案1.D【解析】已知()24125x k x +-+是一个完全平方式,可得k-1=±20,,解得k=21或k=-19,故选D. 2.D【解析】【详解】解:A.3a 与4不是同类项,不能合并,此选项错误;B.7x ﹣3x=4x ,此选项错误;C.3m+m=4m ,此选项错误;D.3x 2y ﹣2x 2y=x 2y ,此选项正确;故选D .3.D【解析】【分析】直接利用单项式的定义:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式.逐个判断,即可得出结论.【详解】解:代数式b ,2ab ,5y ,x y -,22x y +,0,21121ab t ++中, 单项式有:b ,2ab ,0共3个,故答案为:D.【点睛】本题考查了单项式的定义.解题的关键是理解单项式的定义;分数和常数也是单项式,而分母含有字母的式子不属于单项式.4.A【解析】【分析】可设其和为S ,则2S =2+22+23+24+…+22010+22011,两式相减可得答案.【详解】设S =1+2+22+23+ (22010)则2S =2+22+23+…+22010+22011②②﹣①得:S =22011﹣1.故选A .【点睛】本题考查了整式的混合运算,解答本题的关键是设出和为S ,并求出2S 进行做差求解. 5.C【解析】试题解析:-(-3)=3是正数,0既不是正数也不是负数,(-3)2=9是正数,|-9|=9是正数,-24=-16是负数,所以,正数有-(-3),(-3)2,|-9|共3个.故选C .6.B【解析】分析:根据无理数、有理数的定义即可判定选择项.详解:A. 227是有理数是无理数, 不符合题意;B. 5是无理数,1.010010001…(两个“1”之间依次多一个“0”)是无理数,符合题意;C. 3.14159是有理数;D.2π是有理数,不符合题意.故选B.点睛:本题考查了无理数的定义:无限不循环小数叫无理数.常见形式有:开方开不尽的数,如π等;无限不循环小数,如等;字母表示无理数,如1.010010001…等.7.C【解析】分析:由科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:0.001239=31.23910-⨯.故选C.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.8.C【解析】【分析】科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数. 【详解】解:由科学记数法可知:250000 m 2=2.5×105m 2, 故选C .【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.9.B【解析】【分析】有理数除法法则,两数相除,同号得正,异号得负,除以一个数等于乘以这个数的相反数,先将除法转化为有理数乘法,再根据有理数乘法法则进行计算即可.【详解】(-27)÷(-514)÷(-56), =2146755⎛⎫⎛⎫-⨯-⨯- ⎪ ⎪⎝⎭⎝⎭, =4655⎛⎫⨯- ⎪⎝⎭, =2425-, 故选B.【点睛】本题主要考查有理数的乘法和除法法则,解决本题的关键是要熟练掌握有理数乘法和除法法则.【解析】【分析】因为2x-y=3,把2x-y当成一个整体代入1-4x+2y即可求出结果.【详解】∵2x-y=3,∴1+4x+2y=1+2(2x-y)=1+6=7.故选B.【点睛】本题考查了代数式求值问题.代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取关于2x-y的代数式的值,然后把所求的代数式变形整理出题设中的形式,利用“整体代入法”求代数式的值.11.mp﹣mq﹣np+nq﹣3a2+2a﹣8【解析】(1)(m﹣n)(p﹣q)=mp﹣mq﹣np+nq,故答案为:mp﹣mq﹣np+nq;(2)(5a2+2a)﹣4(2+2a2)=﹣3a2+2a﹣8,故答案为:﹣3a2+2a﹣8.12.2.【解析】【分析】直接利用多项式的定义分析得出答案.【详解】∵多项式3a4b m-a2b+1是六次三项式,∴4+m=6,解得:m=2.故答案为:2.【点睛】本题考查了多项式,正确把握多项式的定义是解题的关键.13.-2013【分析】将代数式的前两项提取公因式后整体代入即可求解.【详解】解:∵m2+m-1=0,∴m2+m=1,∴原式=m3+m2+m2-2014=m(m2+m)+m2+2014=m2+m+2014=1-2014=-2013,【点睛】本题考查了因式分解的应用、整式的混合运算等知识,考查知识比较多,但相对比较基础,难度不大.14.5a-;【解析】||a=,可由a<0知a5<05a=-.故答案为:-a5.15.x>0【解析】【分析】分式值为正,则分子与分母同号,据此进行讨论即可得.【详解】∵分式2xx2+的值为正,∴x与x2+2的符号同号,∵x2+2>0,∴x>0,故答案为x>0.【点睛】本题考查了分式值为正的情况,熟知分式值为正时,分子分母同号是解题的关键. 16.40【解析】【分析】直接利用同底数幂的乘法运算法则计算得出答案.【详解】∵25m =,28n =,∴2m n +=2m ×2n =5×8=40.故答案为40.【点睛】此题主要考查了同底数幂的乘法运算,正确将原式变形是解题关键.17.6【解析】【分析】温差就是最高气温与最低气温的差,列式计算.【详解】依题意,温差=4-(-2)=6+2=6℃,∴该日的温差是6℃.【点睛】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.182【解析】原式=)))20092009222⋅⋅ =))2009222⎡⎤⋅⎣⎦2.故答案为:2.19.±6【解析】【分析】 根据|﹣6|=6,可知|-x|=6,再根据绝对值的定义可知-x=±6,故x=±6. 【详解】解:∵|﹣6|=6∴|-x|=6,根据6的绝对值是6,-6的绝对值也是6故x 的值为: ±6.【点睛】本题考查了绝对值的性质:绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.20.10101.【解析】解:由图形可知:n =1时,“•”的个数为:1×2+1=3; n =2时,“•”的个数为:2×3+1=7;n =3时,“•”的个数为:3×4+1=13;n =4时,“•”的个数为:4×5+1=21;所以n =n 时,“•”的个数为:n (n +1)+1;当n =100时,“•”的个数为:100×(100+1)+1=10101.故答案为:10101.点睛:本题主要考查了规律型:图形的变化类,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律,难度适中.21.(1)221(1)4n n +;(2)> 【解析】【分析】(1)根据所给的数据,找出变化规律,即是14乘以最后一个数的平方,再乘以最后一个数加1的平方,即可得出答案;(2)根据(1)所得出的规律,算出13+23+33+…+1003的结果,再与50002进行比较,即可得出答案.【详解】(1)根据所给的数据可得:13+23+33+…+n 3=22114n n +(). 故答案为22114n n +(). (2)13+23+33+…+1003 =2211001014⨯⨯=211001012⨯⨯()=50502>50002则13+23+33+…+1003>50002.【点睛】本题考查了数字的变化类,通过观察、分析、总结得出题中的变化规律是解题的关键.22.-5【解析】【分析】根据二次根式的运算法则进行计算即可.【详解】原式,⎛=- ⎝=-= 【点睛】考查二次根式的混合运算,掌握运算法则是解题的关键.23.210a b ab +【解析】【分析】先分别求出前后两个长方体的体积,再相减便可.【详解】解:根据题目信息可知,长方体的体积增加了:(5+a)(5+a) ·b-5×5b=(25+a²+10a)b-25b=25b+a²b+10ab-25b=2a b 10ab +.【点睛】本题考核知识点:整式运算的应用.解题关键点:根据题意列出式子并正确运算. 24.(x 2+9)(x+3)(x ﹣3)【解析】试题分析:利用平方差公式分解因式.试题解析:x 4﹣81=(x 2+9)(x 2-9)=(x 2+9)(x +3)(x ﹣3).25.(1)33.5;(2)本周内每股最高是31.5元,最低是26.5元;(3)获利263.2元.【解析】试题分析:(1)根据正负数的意义,将涨跌的数相加计算即可得解;(2)分别计算出每天的股价,即可得解;(3)求出周六时的股价,然后求出获得的利润即可判断.试题解析:解:(1)28+3﹣1.5+3.5﹣0.5+1=33.5元;(2)周一:28+3=31(元),周二:28﹣1.5=26.5(元),周三:28+3.5=31.5(元),周四:28﹣0.5=27.5(元),周五:28+1=29(元),所以,本周内每股最高是31.5元,最低是26.5元;(3)最后获利:1000×28×(29﹣28)﹣1000×28×1.5‰﹣1000×28×(29﹣28)×2.5‰=2800×(1﹣1.5‰﹣2.5‰)=2800×94‰=263.2(元).点睛:本题考查了正数和负数,利用有理数的加法运算是解题关键,注意卖出的交易额减去买进的交易额减去手续费、交易费等于收益.26.(1)12-; (2)9 【解析】【分析】(1)原式利用二次根式性质,平方根定义,以及零指数幂法则计算即可得到结果;(2)原式利用二次根式性质,立方根定义,以及绝对值的代数意义化简,计算即可得到结果.【详解】(1)原式=7-3-12=1-2(2)原式=3-(-2)+(=9【点睛】本题考查的知识点是实数的运算, 负整数指数幂,解题关键是按照运算法则依次化简解答.27.-【解析】【分析】 根据116,?1x x x x +=⨯=,利用完全平方公式得出2211()()4x x x x-=+-,再结合01x <<,即可得到答案.【详解】16x x+=Q , 2211()()436432x x x x∴-=+-=-=, 1x x∴-=± 又01x <<Q ,1x x∴-=-故答案为-.28.33【解析】试题分析:根据幂的乘方和积的乘方关系进行运算即可.试题解析:()()4343632493364822222,⨯=⨯=⨯=Q436482,x ⨯=Q3322,33.x x ∴=∴=29.需要80.6分钟.【解析】【分析】先求出酒精下降的温度,再除以每分钟温度可降低的温度解决问题.【详解】[12﹣(﹣117)]÷1.6=129÷1.6≈80.6(分钟).答:需要80.6分钟.【点睛】本题考查了有理数的混合运算的实际运用,注意题目蕴含的数量关系是解决问题的关键.30.145或-215【解析】【分析】利用相反数,倒数的定义,求出a+b,cd及m的值,将各自的值代入计算即可求出值.【详解】解:根据题意得:a+b=0,cd=1,m=1或-1,当m=1时,原式=2-0-15=145;当m=-1时,原式=-2-0-15=-215.【点睛】此题考查了代数式求值,相反数,倒数,熟练掌握各自的定义是解本题的关键.。
2020中考数学复习数与式综合能力达标测试题1(附答案)

2020中考数学复习数与式综合能力达标测试题1(附答案)1.已知实数a 满足|2000﹣a |+2001a -=a ,那么a ﹣20002的值是( ) A .1999 B .2000 C .2001D .20022.化简的结果是( ) A .B .C .D .3.下列实数是无理数的是( ) A .23B .-14C .0D .-1.010 1014.用代数式表示“2m 与5的差”为( ) A .5-2mB .2m-5C .2(m-5)D .2(5-m)5.用科学记数方法表示0.00000601,得( )A .0.601×10-6B .6.01×10-6C .60.1×10-7D .60.1×10-6 6.将(3x+2)﹣2(2x ﹣1)去括号正确的是( ) A .3x+2﹣2x+1 B .3x+2﹣4x+1C .3x+2﹣4x ﹣2D .3x+2﹣4x+27.如果a 的相反数是34,那么-2a +(-38)等于( )A .-178B .-138C .118D .1588.数轴上原点和原点左边的点表示的数是( ) A .负数 B .正数 C .非负数 D .非正数 9.下列运算中,计算结果正确的是( ) A .236a a a ⋅=B .235a a a +=C .()326a a =D .1262a a a ÷=10.已知实数a 、b 、c 满足2111(b)(c)(b-c)0a a 4+++=.则代数式ab+ac 的值是( ). A .-2B .-1C .1D .211.若a≠0,b≠0,且4a ﹣3b=0,则4545a ba b-+的值为__.12.已知实数a ,b 满足10b a -+=,则代数式22122a b a --+的最大值等于________. 13.计算:()201720161()22⨯-=________. 14.计算:﹣(﹣)=_____.154 的平方根是________.16.已知a 2-6a +9与|b -1|互为相反数,则式子()ab b a-÷(a +b)的值为________. 17.已知代数式2(1)1n x m x +--是关于x 的三次二项式,则m+n=___________. 18.若两对角线长分别为4cm 和6cm 的菱形的面积与一个正方形的面积相等,那么该正方形的边长为_______cm .19.比较大小:3-______4- ;1()2-+____+|12-| ; 20.相反数等于本身的数是_____________. 21.计算: (1)(13)25-+ (2)7(4)(5)--+-(3)110.1253 5.60.2548+-+- (4)113()(60)234--+⨯-(5)231(11)()(11)2(11)555-⨯-+-⨯--⨯(6)142()2153⨯-÷22.计算: (1)11(0.5)06(7)( 4.75)42-+-----;(2)94(81)(8)49-÷⨯÷-;(3)322(2)(3)(4)2(3)(2)⎡⎤-+-⨯-+--÷-⎣⎦.23.(14sin30°+(π-2)0﹣22;(2)解不等式组:3x-152x 2)7x >⎧⎨+<+⎩(.24.已知2277A B a ab -=-,且2467B a ab =-++.求A 等于多少?25.26.先化简,再求值:2222(3)3(2),x y xy xy x y ---+其中11,23x y ==- 27.阅读下列材料:点A,B 在数轴上分别表示有理数,a b .A ,B 两点之间的距离表示为AB .当A,B 两点中有一点在原点时,不妨设点A 在原点,如图1所示,AB OB b a b ===-;当A,B 两点都不在原点时,分三种情况,情况一:如图2所示,点A,B 都在原点的右侧,-AB OB OA b a b a a b ==-=-=-;情况二:如图3所示,点A,B 都在原点左侧,()-AB OB OA b a b a a b ==-=---=-;情况三:如图4所示,点A,B 在原点的两边,()-AB OB OA b a a b a b ==-=+-=-;综上,数轴上A,B 之间的距离AB a b =-.回答下列问题:(1)数轴上表示2和5的两点之间的距离是________,数轴上表示-2和-5的两点之间的距离是____________,数轴上表示3和-1的两点之间的距离是________.(2)数轴上表示x 和-1的两点A,B 之间的距离是________,如果AB =2,那么x 为_______.(3)当4-7x y ++取最小值时,__________,______________.x y ==28.点A 、B 在数轴上的位置如图所示:(1)点A 表示的数是_____,点B 表示的数是_____; (2)在原图中分别标出表示+4的点C 、表示 2.5-的点D ;(3)在上述条件下,B 、C 两点间的距离是___,A 、C 两点间的距离是___. 29.4220x x --=30.计算:(1)15[3(54)]-+-- (2)222.5(2) 1.53⎛⎫--÷-- ⎪⎝⎭参考答案1.C【解析】∵a−2001⩾0,∴a⩾2001,a-=a,则原式可化简为:a−2000+2001a-=2000,即:2001∴a−2001=20002,∴a−20002=2001.选C.2.C【解析】试题分析:原式===.故选C.考点:分式的加减法.3.B【解析】试题解析:14.故选B.点睛:无限不循环小数就是无理数.4.B【解析】根据差的意义知用代数式表示“2m与5的差”为2m−5,故选:B.5.B【解析】试题分析:根据科学记数法表示较小的数,可知a=6.01,n=-6,所以用科学记数法表示为6.01×10-6.故选:B点睛:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 6.D 【解析】(3x+2)﹣2(2x ﹣1)=3x+2-4x+2, 故选D. 7.C 【解析】试题解析:由题意可得:34.a =-3339121.82888a ⎛⎫∴-+-=-== ⎪⎝⎭故选C. 8.D【解析】∵从原点出发朝正方向的射线(正半轴)上的点对应正数,相反方向的射线(负半轴)上的点对应负数,原点对应0,∴数轴上原点和原点左边的点表示的数是0和负数,即非正数, 故选D . 9.C 【解析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解. 解: A 、a 2•a 3=a 5,故A 不正确; B 、a 2+a 3不能合并同类项,故B 不正确; C (a 2)3=a 6,故C 正确; D 、a 12÷a 6=a 12﹣6=a 6,故D 不正确; 故选C .“点睛:本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键. 10.A【解析】试题分析:将式子去括号可得22211(2)04b c bc b bc c a a a ++++-+=,整理得221+1()04b c b c a a +++=,在等号的两边同乘以a 2,即可去分母得22()1()04a b c a b c ++++=,设ab+ac 为x ,则可得2104x x ++=,可求得x=-2.故选:A 11.-14. 【解析】根据4a-3b=0,可以将所求式子变形建立与4a-3b=0的关系,从而可以解答本题. 解:∵4a-3b=0, ∴4545a b a b -+=()()432438a b b a b b ---+=28b b -=-14. 12.2 【解析】试题分析:根据题意可得:a=b+1,则原式=()()2221b 122b 132b b -+-++=-+,则代数式的最大值为2.点睛:本题主要考查的就是代数式的化简以及非负数性质的应用问题,解决这个问题的关键就是将所求的代数式转化为非负数以及常数的和的形式.在求某一个代数式的最值的问题,我们一般情况下会将代数式转化为平方的形式,然后根据非负数的性质得出代数式的最大值或最小值,当出现两个未知数的时候,我们需要用一个字母代替另一个字母,然后进行化简计算. 13.-2 【解析】 【详解】 试题解析:()()201720162016201611()2()2(2)22⨯-=⨯-⨯- =()20161[()2](2)2⨯-⨯-=1×(-2) =-2【解析】先把每个二次根式化简,再括号内合并,然后进行二次根式的加减运算. 解:原式=133233343. 故答案为:33. “点睛”此题考查了二次根式的加减运算,熟练掌握运算法则是解本题的关键. 15.±2 【解析】 42,4的平方根是2±. 故答案是:2±. 16.12【解析】根据题意可得: a 2-6a +9+|b -1|=0,即()2310a b -+-=,利用非负数的非负性可求出:30,10,a b -=-=即3,1,a b ==把3,1,a b ==代入到式子a b b a ⎛⎫- ⎪⎝⎭÷(a +b )得;()()11110.-÷+= 17.4 【解析】试题解析:由题意可得:10,3m n -== 解得:1, 3.m n ==4.m n +=故答案为:4.【解析】试题分析:根据菱形的面积公式可求正方形的面积为4×6÷2=12cm 2,然后根据二次根式可=cm. 19.﹥ ﹤ 【解析】试题分析:利用有理数比较大小的法则:正数大于0,负数小于0,正数大于负数,两个负数,绝对值大的反而小,即可判断大小. 解:∵33,44,-=-= 又∵3<4, ∴3->4-;12⎛⎫-+ ⎪⎝⎭Q =-12,+|12-|=12,又∵-12<12, ∴12⎛⎫-+⎪⎝⎭<+|12-|. 故答案为:﹥;﹤. 20.0 【解析】试题解析:根据相反数的意义知:相反数等于本身的数是零. 21.(1)12 (2)6 (3)8.6 (4)5 (5)-22 (6)15- 【解析】 (1)原式=12. (2)原式=7+4-5 =6.(3)原式=0.125+3.25-0.125+5.6-0.25 =3+5.6 =8.6.(4)原式=113(60)(60)(60)234-⨯--⨯-+⨯- =302045+- =5. (5)原式=23111(2)555-⨯-+- =112-⨯ =22-.(6)原式=1432152-⨯⨯ =15-.考点:有理数的四则混合运算.22.(1)原式=18;(2)原式=2;(3)原式=-57.5. 【解析】试题分析:根据有理数四则运算法则,计算即可得到结果. 试题解析:解:(1)原式=1130.5674424-+++=7+11=18; (2)原式=44181998⨯⨯⨯=2;(3)原式=8(3)(162)9(2)-+-⨯+-÷-=8(3)18 4.5-+-⨯+=854 4.5--+=-57.5. 23.(1)-2;(2) 不等式组的解集为2<x <3. 【解析】试题分析:(1)原式第一项利用二次根式的定义化简,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用乘方的意义化简,计算即可得到结果; (2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可. 试题解析:解:(1)原式=3﹣4×12+1﹣4=3﹣2+1﹣4 =﹣2;(2)由①得:x >2; 由②得:x <3,故不等式组的解集为2<x<3.24.2514a ab-++【解析】【试题分析】本题目可以把代数式A看成未知数,解关于A的一元一次方程,即可.【试题解析】A= 7a2―7ab+2B=7a2―7ab+2(―4a2+6ab+7)= 7a2―7ab―8a2+12ab+14=―a2+5ab+14.【方法点睛】本题目是一道求某个代数式的题目,代入时注意将代数式B看成整体,加上小括号,然后去括号,合并同类项.25.1 2 -【解析】试题分析:根据立方根和平方根的意义,先开方,再进行加减运算.试题解析:原式=3342-+-=12-26.5xy2 ;5 18【解析】试题分析:原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.试题解析:原式=3x2y-xy2+6xy2-3x2y=5xy2,当x=12,y=-13时,原式=518.27.(1)3 ,3 ,4;(2)1x+,-3或1;(3)-4 ,7.【解析】(1)直接根据数轴上A、B两点之间的距离|AB|=|a-b|,代入数值运用绝对值即可求任意两点间的距离;(2)求出AB两点间的距离表达式,然后令|AB|=2解得x的值即可;(3)代数式|x+4|+|y-7|取最小值,即|x+4|=0,|y-7|=0,即可求出xy的值.解:(1)数轴上表示2和5的两点之间的距离是|5-2|=3;数轴上表示-2和-5的两点之间的距离是|-5-(-2)=|3;数轴上表示3和-1的两点之间的距离是|-1-3|=4;(2)数轴上表示x和-1的两点A,B之间的距离是|x+1|;|AB|=|x+1|,令|x+1|=2,解得:x=1或-3.(3)当|x+4|+|y-7|取最小值时,|x+4|=0,|y-7|=0,∴x=-4,y=7.“点睛”本题主要考查数轴和绝对值及两点间的距离的知识点,解答本题的关键是读懂题干,此题比较简单.28.(1)-4, 1;(2)见解析;(3) 3, 8.【解析】(1)根据数轴上点的位置找出A 与B 表示的点即可;(2)在数轴上找出表示+4与-2.5的两个点C 与D 即可;(3)找出B 、C 之间的距离,以及A ,C 之间的距离即可.解:(1)点A 表示的数是-4,点B 表示的数是1;(2)根据题意得:(3)根据题意得:BC=|4-1|=3,AC=|4-(-4)|=8.故答案为(1)-4;1;(3)3;8.29.22(4)(5)x x +-【解析】试题分析:观察可得,原式=(x 2)2+(-5+4)x+(-5)×4,由此即可进行因式分解. 试题解析:原式=(x 2)2+(-5+4)x+(-5)×4=(x 2+4)(x 2-5). 30.(1)21;(2)7.【解析】试题分析:(1)根据有理数加减混合运算法则计算即可;(2)根据有理数四则混合运算顺序计算即可.试题解析:(1)原式=15-[3-9]=15-(-6)=21;(2)原式=32.54() 1.52-⨯--=2.5+6-1.5=7.。
2020中考数学复习数与式综合能力达标测试题3(附答案)
2020中考数学复习数与式综合能力达标测试题3(附答案)1.若使分式2x x -有意义,则x 的取值范围是( ) A .2x ≠ B .2x ≠ C .1x ≠- D .2x =2.若a>0,b<0,且a+b<0,则a 、﹣a 、b 、﹣b 大小表示正确的是( )A .–b>a>-a>bB .a>-a>b>-bC .b>a>-b>-aD .–b<a<-a<b 3.商务部发布数据显示,2019年春节黄金同期间,全国商品市场保持平稳较快增长.除夕至正月初六,全国零售和餐饮企业实现销售额约10050亿元、把10050亿这个数字用科学记数法表示为( )A .41.005010⨯B .91.005010⨯C .121.005010⨯D .131.005010⨯ 4.下列说法正确的个数为( )(1)0是绝对值最小的有理数;(2)-1乘以任何数仍得这个数;(3)0除以任何数都等于0;(4)数轴上原点两侧的数互为相反数;(5)一个数的平方是正数,则这个数的立方也是正数;(6)一对相反数的平方也互为相反数A .0个B .1个C .2个D .3个5.下列运算正确的是( )A ±3B .|﹣3|=﹣3C =﹣3D π﹣46.计算22244(2)4x x x x ++⋅-- 的结果是( ) A .整式B .分式C .可能是整式可能是分式D .既不是整式也不是分式7.在1k ,3m ,a b a b -+,222x y π+中,分式的个数为( ) A .1 B .2 C .3 D .48.实数a 在数轴上的位置如图所示,则下列说法不正确的是( )A .a 的相反数大于2B .a 的相反数是2C .|a|>2D .2 + a <09.某人将2008看成了一个填数游戏式:2□□8.于是,他在每个框中各填写了一个两位数ab 与cd ,结果发现,所得到的六位数28abcd 恰是一个完全立方数.则ab +cd =( )A .40B .50C .60D .7010.下列各数中,最小的数是( )A .-5B .-1C .0.1D .011.如果整式210x x m ++恰好是一个整式的平方,则m 的值是__________.12.有一列数:12,25-,310,417-…,按照该列数的规律,第6个数是________,第n 个数是________.13.已知长方形的长为a ,宽为b ,用含a 、b 的代数式表示长方形的周长:____________. 14.如果向南走5米,记作+5米,那么向北走8米应记作_____米.15.公元3世纪,22r a r a a+≈+得到根式的近似52521=+≈___.16.实数27的立方根的相反数是______. 17.单项式233a b 4-的系数是______; 18.若216y my ++是完全平方式,则m =___.19.近似数8.28万精确到_____位.20.据统计某市微信用户数量已突破18.87万人,近似数18.87万精确到__________. 21.计算(1)8()5()7()a b a b a b -----;(2)()22223222a b ab a b ab ⎡⎤---⎣⎦ 22.计算:4511()()912636--+÷- 23.计算 (1)3-(-8)+(-5)+6(2)-23×(-8)-(-12)3×(-16)+49×(-3)224.求下列各式中的x .(1)31258x =; (2)3(2)216x -+=-;(3)322x -=-; (4)327(1)640x ++=.25.先化简,再求值:12x ﹣(2x ﹣23y²)+(﹣32x+13y²),其中 x =﹣14,y =﹣ 12. 26.(1)解分式方程:23111x x x=---;(2)化简:2221211a a a a a a +⎛⎫÷- ⎪-+-⎝⎭ 27.计算:(1) (232)(223)-⨯+ (2)1(46436)222-+÷ 28.某商场销售一种乒乓球拍和乒乓球,球拍每个定价30元,乒乓球每盒定价6元商场在开展促销活动中,向客户提供两种优惠方案:①买一个球拍送一盒乒乓球.②球拍和乒乓球都按定价的九折付款.现某客户要到该商场购买球拍20个,乒乓球x 盒(x >20)(1)若该客户按方案①购买,需付款多少元(用含x 的代数式表示);若该客户按方案②购买需付款多少元(用含x 的代数式表示).(2)若x =30,通过计算说明此时按哪种方案购买较为合算?29.如果A 、B 两点在数轴上分别表示有理数a 、b ,那么它们之间的距离AB =|a ﹣b|.如图1,已知数轴上两点A 、B 对应的数分别为﹣3和8,数轴上另有一个点P 对应的数为x(1)点P 、B 之间的距离PB = .(2)若点P 在A 、B 之间,则|x+3|+|x ﹣8|= .(3)①如图2,若点P 在点B 右侧,且x =12,取BP 的中点M ,试求2AM ﹣AP 的值.②若点P 为点B 右侧的一个动点,取BP 的中点M ,那么2AM ﹣AP 是定值吗?如果是,请求出这个定值;如果不是,请说明理由.30.一个正方体的体积是125cm 3,现将它锯成8块同样大小的正方体小木块.(1)求每个小正方体的棱长.(2)现有一张面积为36 cm2长方形木板,已知长方形的长是宽的4倍,若把以上小正方体排放在这张长方形木板上,且只排放一层,最多可以放几个小正方体?请说明理由.参考答案1.A【解析】【分析】直接利用分式有意义则其分母不为零,进而得出答案.【详解】解:∵分式2x x - 有意义, ∴x 的取值范围是:x-2≠0,解得:x≠2.故选A .【点睛】本题考查分式有意义的条件,正确把握分式的定义是解题关键.2.A【解析】【分析】根据a>0,b<0,a+b<0,可得a<|b|可判断出-a<0,-b>a ,由此可得出结论.【详解】∵a>0,b<0,a<|b|,∴−a<0,−b>a ,∴−b>a>−a>b.故选A.【点睛】此题考查有理数大小比较,解题关键在于推导出a<|b|即可.3.C【解析】【分析】科学记数法用于表示绝对值较大的数,一般表示成10n a ⨯,其中110a ≤<,n 为整数,本题中先将单位(亿)表示为810⨯,再进行小数点的移动即可解答本题.【详解】将10050亿用科学记数法表示为:1.0050×1012.故选C.【点睛】本题主要考查科学记数法的基本概念,熟练掌握小数点的移动规律(小数点向左移动几位就要乘上10的几次方)是解答本题的关键.4.B【解析】【分析】利用绝对值的意义,有理数的乘除法法则,相反数,数轴和有理数乘方的意义进行一一判断即可选出答案.【详解】(1)0是绝对值最小的有理数,正确;(2)-1乘以任何数仍得这个数,错误,应该是1乘以任何数仍得这个数;(3)0除以任何数都等于0,错误,应该是0除以任何不为0的数都等于0;(4)数轴上原点两侧的数互为相反数,错误,不一定,例如2和-3;(5)一个数的平方是正数,则这个数的立方也是正数,错误,负数的平方也是正数,但是负数的立方仍然是负数;(6)一对相反数的平方也互为相反数,错误,因为正数的平方是正数,负数的平方也是正数,两个正数不可能是相反数,例如:2与-2;综上所述,正确的有1个,所以答案选B.【点睛】本题考查的是有理数的相关知识,涉及绝对值,相反数,数轴,乘法法则和乘方的符号特征,能够熟练掌握这些知识是解题的关键.5.C【解析】【分析】根据绝对值、立方根、算术平方根定义求出每个式子的值,再判断即可.【详解】解:A3,故A错误;B、|﹣3|=3,故B错误;C=﹣3,故C正确;D﹣π,故D错误;故选:C.【点睛】本题考查了对绝对值、立方根、算术平方根定义的应用,主要考查学生的理解能力和计算能力.6.A【解析】【分析】对原式进行化简,然后作出判断.【详解】解:原式222(2)(2)(2)(2)4(2)(2)xx x x xx x+=⋅-+-==-+-,计算的结果是整式,故选:A.【点睛】本题考查了分式的乘除运算,熟练掌握运算顺序和运算法则是解题关键. 7.B【解析】【分析】利用分式的定义:分母中含有字母,判断即可得到结果.【详解】解:在所列的4个代数式中,分式的是1k和a ba b-+这2个,故选B.【点睛】此题考查了分式的定义,熟练掌握分式的定义是解本题的关键.8.B【解析】【分析】根据数轴确定a 的取值范围,进而判定各选项.【详解】解:由数轴可知,a <-2,A 、a 的相反数>2,故本选项正确,不符合题意;B 、a 的相反数≠2,故本选项错误,符合题意;C 、|a|>2,故本选项正确,不符合题意;D 、a <-2则2+a <0,故本选项正确,不符合题意;故选:B .【点睛】本题考查的是数轴知识,属于基础题,熟练掌握数轴和灵活运用数形结合思想是解题的关键.9.D【解析】【分析】 根据题意可设328()abcd xy =,则据末位数字特征得y =2,进而根据603=216000,703=343000确定62xy =,即可求解.【详解】 设328()abcd xy =,则据末位数字特征得y =2,∵603=216000,703=343000, ∴6070xy <<, ∴62xy =,∵623=238328, ∴38,32ab cd ==, ∴70ab cd +=.故选D.【点睛】本题考查的知识点是完全平方数,解题关键是根据末位数字特征得y=2. 10.A【解析】【分析】根据有理数在数轴上的关系进行比较,最左的数最小.【详解】因为-5<-1<0<0.1所以-5最小故选:A【点睛】本题考查的是有理数的大小比较,熟知数轴的特点是解答此题的关键.11.25【解析】【分析】根据完全平方公式的特点即可求解.【详解】∵210x x m++=225x x m+⋅⋅+为整式的平方∴m=52=25.故填25.【点睛】此题主要考查完全平方公式,解题的关键是熟知完全平方公式的特点.12.637-,12(1)1nnn+-+【解析】【分析】通过观察和分析数据可知:分子是序数,分母是序数的平方与1的和,奇数项为负,偶数项为正,据此规律即可得答案.【详解】1 2=2111+,25-=2221-+, 310=2331+, 417-=2441-+, …所以第6个数是637-, 第n 个数是()n 12n 1n 1+-+, 故答案为637- ,()n 12n 1n 1+-+. 【点睛】本题考查了规律型——数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键是通过分析分子、分母与序数间的变化规律.13.2a+2b ;【解析】【分析】根据长方形的周长计算公式列出代数式即可.【详解】根据题意得,长方形的周长=2(a+b )=2a+2b.故答案为:2a+2b.【点睛】此题主要考查了列代数式,熟练掌握长方形周长计算公式是解此题的关键.14.-8【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】解:∵向南走5米,记作+5米,∴向北走8米应记作﹣8米.故答案为:﹣8.【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.15.2.25【解析】【分析】根据近似公式,将2,1a r ==,代入2r a a+计算即可. 【详解】=≈12 2.2522+=´ 故填:2.25.【点睛】本题主要考查的是二次根式的应用,能找出近似公式的规则,正确代入是解题关键. 16.-3【解析】【分析】如果一个数x 的立方等于a ,那么x 是a 的立方根,再根据相反数的定义求解即可.【详解】∵3的立方等于27,∴27的立方根等于3.∴3的相反数-3故答案为-3.【点睛】此题考查立方根,相反数,解题关键在于掌握其定义性质.17.34- 【解析】【分析】根据单项式系数的定义来求解,即单项式中数字因数叫做单项式的系数.【详解】根据单项式系数的定义可得:单项式233a b4-中数字因数是34-,故它的系数是34-.故答案是:3 4 -.【点睛】本题考查了单项式系数的定义.确定单项式的系数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数的关键.18.8±【解析】【分析】利用完全平方公式的题中判断即可求出m的值.【详解】216y my++Q是完全平方式,8m∴=±,故答案为:8±【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.19.百【解析】【分析】8.28万,最后一位8处于百位,所以8.28万精确到百位.【详解】8.28万=82800,最后一个8处于百位,所以近似数8.28万精确到百位.【点睛】本题考查数的精确度,当近似数是科学记数法形式或带有计数单位形式时,需要先把它还原成一般数,再看原数的最后一位在哪一位上,就说这个近似数精确到哪一位.20.百位.【解析】【分析】根据近似数精确到哪一位,应当看末位数字实际在哪一位,找出7在哪一位上即可.【详解】解:近似数18.87万=188700,末位数字7在百位上,即精确到百位,故答案为:百位.【点睛】此题考查了近似数,用到的知识点是近似数,关键是根据近似数的定义确定出最后一位数字所在的数位.21.(1)44a b -+;(2)22710a b ab -【解析】【分析】(1)先去括号,再合并同类项即可;(2)先去小括号,再去中括号,最后合并同类项即可;【详解】解:(1)原式=8a-8b-5a+5b-7a+7b=-4a+4b(2) 原式=()22223a 224b ab a b ab--+ =2223a 104b ab a b -+=22710a b ab -【点睛】本题主要考查了整式的加减,掌握整式的加减运算法则,合并同类项是解题的关键. 22.25【解析】【分析】将除法变为乘法,再利用乘法分配律,进行计算即可.【详解】原式=451()(36)9126--+⨯- =16156+-=25【点睛】本题考查了有理数的混合运算,灵活运用乘法运算律进行计算是解题的关键.23.(1)12;(2)66【解析】【分析】(1)先化简符号,然后直接相加减;(5)先进行幂的运算,然后依次进行乘法、加减法运算即可.【详解】解:(1)3-(-8)+(-5)+6=3+8-5+6=11+6-5=12(2)-23×(-8)-(-12)3×(-16)+49×(-3)2=64-18×16+49×9=64-2+4=66 【点睛】本题考查了有理数的混合运算,解答关键是注意运算顺序及符号变化.24.(1)25x =;(2)4x =-;(3)6x =-;(4)73x =-. 【解析】【分析】题中的四个小题都可用直接开立方法进行解答.【详解】解:(1)因为31258x =,所以38125x =,所以25x =. (2)因为3(2)216x -+=-,所以26x -+=-,所以4x =-.(32=-,所以28x -=-,所以6x =-.(4)因为327(1)640x ++=,所以364(1)27x +=-, 所以413x +=-,所以73x =-. 故答案为:(1)25x =;(2)4x =-;(3)6x =-;(4)73x =-. 【点睛】本题考查立方根的应用,注意掌握立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0.25.y²﹣3x ,原式=1.【解析】【分析】本题应先对代数式进行去括号,合并同类项,然后进行移项,将整式化为最简式,最后把 x 、y 的值代入即可解出整式的值.【详解】 原式=12x ﹣2x+ 23y²﹣32x+13y²=y²﹣3x , 当x =﹣14,y =﹣12时, 原式=(﹣12)²﹣3×(﹣14)= 14+34=1. 【点睛】本题考查的是代数式的化简,学生容易在去括号时单项式的符号出现错误.26.(1)14x =-;(2)2a a 1-. 【解析】【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解可得x 的值,经检验是分式方程的解;(2)原式括号中两项通分并进行同分母减法计算,同时利用除法法则变形、约分即可求解.【详解】(1)解:()231x x =---14x =- 经检验:14x =-是原方程的解,所以原方程的解为14x =-. (2)原式()()()212111a a a a a a a +-+=÷-- ()()()21111a a a a a a +-=⋅+-2a a 1=-. 【点睛】本题考查了解分式方程以及分式方程的混合运算,熟练掌握运算法则是正确解题的关键.27.(1)10;(21 【解析】【分析】(1)运用平方差公式进行计算;(2)先把括号内的各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算.【详解】(1)原式=(22- =10(2)原式=1 【点睛】 本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.28.(1)6x+480;5.4x+540;(2)按方案①购买合算.【解析】【分析】(1)根据题意分别列出所求代数式即可;(2)把x =30分别代入两种方案中计算,比较即可.【详解】解:(1)30×20+6(x-20)=6x+480; 0.9×(30×20+6x)=5.4x+540;(2)当x =30时,6x+480=660,4x+540=702,∵660<702,∴按方案①购买合算.【点睛】此题考查了代数式求值,以及列代数式,熟练掌握运算法则是解本题的关键.29.(1)|8﹣x|;(2)11;(3)①11;②2AM﹣AP是定值,2AM AP=11-. 【解析】【分析】(1)在数轴上A、B两点之间的距离为AB=|a﹣b|,依此即可求解;(2)根据点P在A、B之间可得﹣3<x<8,然后去绝对值符号求解即可;(3)①根据中点坐标公式求出点M对应的数,然后列式求2AM﹣AP即可;②根据中点坐标公式求出点M对应的数,然后列式求2AM﹣AP即可.【详解】解:(1)点P、B之间的距离PB=|8﹣x|,故答案为:|8﹣x|;(2)∵点P在A、B之间,∴﹣3<x<8,∴|x+3|+|x﹣8|=x+3+8﹣x=11,故答案为:11;(3)①∵B对应的数为8,P对应的数为12,点M是BP的中点,∴M对应的数为8122+=10,∴2AM﹣AP=2×(10+3)﹣(12+3)=11;②设点P对应的数为x,∵点M是BP的中点,∴M对应的数为82x +,∴2AM﹣AP=2×(82x++3)﹣(x+3)=11,∴2AM﹣AP是定值,2AM AP=11-.【点睛】本题考查了数轴,绝对值的意义,读懂题目意思,理解数轴上两点间的距离的表示是解题的关键.注意数形结合思想在解题中的运用.30.(1)52cm;(2)4个.【解析】【分析】(1)一个正方体木块的体积是125cm 3,现将它锯成8块同样大小的正方体小木块,求正方体小木块的棱长;(2)设长方形宽为x,根据题意得列出方程,即可解答;【详解】(1)52=, 所以立方体棱长为52cm, (2)设长方形宽为x,可得:2436x =,29x =,∵x>0,∴x=3,5241225÷=,横排可放4个,竖排只能放1个,4×1=4个 所以最多可放4个.【点睛】此题考查立方根的定义,二次根式的应用,根据题意列出方程和熟记概念是解题的关键.。
2020中考数学复习数与式综合达标测试题3(附答案)
【详解】 一个正数 a 必有两个平方根,所以正数 a 的平方根是 ,故选项 A 错误;
的平方根是 ,故选项 B 错误; 负数没有平方根,0 的平方根只有一个,故选项 C 错误;
的平方根有两个,分别是 a 和 ,所以 是 的一个平方根,故选项 D 正确. 故选 D. 【点睛】 本题主要考查了平方根概念的运用.如果 x2=a(a≥0),则 x 是 a 的平方根.若 a>0,则它 有两个平方根,我们把正的平方根叫 a 的算术平方根;若 a=0,则它有一个平方根,即 0 的平方根是 0,0 的算术平方根也是 0,负数没有平方根. 9.B 【解析】 【分析】 先利用幂的乘方公式去括号,再根据同底数幂的乘法公式合并即可. 【详解】 (c2)n·(cn+1)2= c2n·c2n+2= c4n+2,故选 B. 【点睛】 此题主要考察幂的乘方公式与同底数幂的乘法公式的结合. 10.B 【解析】 【分析】 根据负数的定义可得 B 为答案. 【详解】
a3 a 1 a
解:原式 a a a 1 a ① a
(a 1) a
②
(1)上述解答是否有错误? (2)若有错误,从第几步开始出现错误? (3)写出正确的解答过程。 27.圆柱形水池的深是 1.4 米,要使这个水池能蓄水 80 吨(每立方米水有 1 吨),水池 的底面半径应当是多少米?(精确到 0.1 米).
A.52
B.66
C.74
D.82
8.下列叙述中,正确的是( )
A.正数 a 的平方根是
B. 的平方根是
C.一个数总有两个平方根
D. 是 的一个平方根
9.计算(c2)n·(cn+1)2 的结果是( )
A.c4n+4
B.c4n+2
C.c3n+4
D.c2n+2
中考数学复习《数与式》考点及测试题(含答案)
中考数学复习《数与式》考点及测试题(含答案)【专题分析】本专题的主要考点有实数的有关概念,科学记数法,非负数的性质,实数的运算;幂的运算,整式的运算,因式分解;分式的概念,分式的加减,分式的混合运算;二次根式的有关概念,二次根式的性质,二次根式的运算等.中考中数与式的考查一般以客观张题为主,但分式的化简求值经常有开放型题目.数与式的考查常见题型以选择题或填空题为主,整式和分式的化简求值一般以解答题的形式进行考查.数与式在中考中所占比重约为20%~25%. 【解题方法】解决数与式问题的常用方法有数形结合法,特殊值法,分类讨论法,整体代入法,设参数法,逆向思维法等. 【知识结构】【典例精选】:计算:2-1-3tan 60°+(π-2 015)0+⎪⎪⎪⎪⎪⎪-12.【思路点拨】根据负整数指数幂、特殊角的三角函数、零次幂以及绝对值的概念计算即可.【自主解答】解:原式=12-3×3+1+12=-1.把x 2y -2y 2x +y 3分解因式正确的是( )A.y(x2-2xy+y2) B.x2y-y2(2x-y)C.y(x-y)2 D.y(x+y)2【思路点拨】首先提取公因式y,再利用完全平方公式进行二次分解即可.答案:C规律方法:利用两种方法结合的分解因式题目,提公因式后不要忘记利用公式法二次分解,分解因式要在规定的范围内分解彻底.先化简,再求值:(x+3)(x-3)+2(x2+4),其中x= 2.【思路点拨】原式第一项利用平方差公式展开,第二项去括号,合并同类项得到最简结果,将x的值代入计算即可求出代数式的值.【自主解答】解:原式=x2-9+2x2+8=3x2-1.当x=2时,原式=3×(2)2-1=5.规律方法:整式的计算,要根据算式的特点选择合适的方法,可先选择乘法公式展开,然后合并;或先因式分解,然后计算.先化简,再求值:m-33m2-6m÷⎝⎛⎭⎪⎫m+2-5m-2,其中m是方程x2+3x+1=0的根.【思路点拨】在化简时要先算括号里面的,再把除法变为乘法,然后分解因式并约分,最后相乘.【自主解答】解:原式=m-33m m-2÷m2-9m-2=m-33m m-2×m-2m+3m-3=13m m+3.∵m是方程x2+3x+1=0的根,∴m2+3m+1=0,∴m2+3m=-1,即m(m+3)=-1,∴原式=13×-1=-13.规律方法:1.本题采用了整体代入法求解,这是求代数式的值常用的方法,体现了整体思路的应用.2.分式的化简求值是先化简,再求值;化简时一定要化到最简,结果是最简分式或整式.【能力评估检测】一、选择题1.已知空气的单位体积质量是0.001 239 g/cm 3,则用科学记数法表示该数为( A )A .1.239×10-3g/cm 3B .1.239×10-2 g/cm 3C .0.123 9×10-2 g/cm 3D .12.39×10-4 g/cm 3 2.下列运算错误的是( B )A. ⎝ ⎛⎭⎪⎫120=1 B .x 2+x 2=2x 4C .|a |=|-a | D. ⎝ ⎛⎭⎪⎫b a 23=b3a63.下列运算错误的是( D )A.a -b 2b -a2=1 B.-a -ba +b=-1 C. 0.5a +b 0.2a -0.3b =5a +10b 2a -3b D. a -b a +b =b -a b +a4.下列二次根式中,不能与2合并的是( C ) A.12B. 8C. 12D.18 5.若m =22×(-2),则有( C )A .0<m <1B .-1<m <0C .-2<m <-1D .-3<m <-26.(2015·绍兴鲁迅中学模拟)下列三个分式12x 2,5x -14m -n ,3x的最简公分母是( D )A .4(m -n )xB .2(m -n )x 2C. 14x2m -nD .4(m -n )x 27.已知x -1x =3,则4-12x 2+32x 的值为( D )A .1 B. 32 C. 52 D. 72【解析】把x -1x =3两边同乘x ,得x 2-1=3x ,即x 2-3x =1,所以4-12x 2+32x =4-12(x 2-3x )=4-12×1=72. 8.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为( )A .135B .170C .209D .252【解析】观察前四个表格中的数字,第1个表格中 9=2×4+1,第2个表格中20=3×6+2,第3个表格中35=4×8+3,第4个表格中54=5×10+4,且每个表格中左下角的数字是右上角数字的一半,左上角的数字比左下角数字小1,所以b =12×20=10,a =b -1=9,x =20×10+9=209.故选C.答案: C9.实数a ,b 在数轴上对应的点的位置如图所示,计算|a -b |的结果为( C )A .a +bB .a -bC .b -aD .-a -b【解析】由图可知,a <0,b >0,所以a -b <0,所以 |a -b |=-(a -b ),C 正确.10.如图,在边长为2a 的正方形中央剪去一边长为 (a +2)的小正方形(a >2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为( C )第1个 第2个 第3个 第4个 … … …A .a 2+4B .2a 2+4aC .3a 2-4a -4D .4a 2-a -2【解析】平行四边形的面积为(2a )2-(a +2)2=4a 2-(a 2+4a +4)=4a 2-a 2-4a -4=3a 2-4a -4.故选C.11.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x +1x(x >0)的最小值是2”,其推导方法如下:在面积是1的矩形中设矩形的一边长为x ,则另一边的长为1x,矩形的周长为2⎝ ⎛⎭⎪⎫x +1x ;当矩形成为正方形时,就有x =1x (x >0),解得x =1.这时矩形的周长2⎝ ⎛⎭⎪⎫x +1x =4最小, 因此x +1x (x >0)的最小值是2.模仿张华的推导,你求得式子x 2+9x(x >0)的最小值是( )A .2B .4C .6D .10【解析】∵x >0,∴在原式中分母分子同除以x ,即x 2+9x =x +9x ,在面积是9的矩形中设矩形的一边长为x ,则另一边长为9x ,矩形的周长为2⎝⎛⎭⎪⎫x +9x ;当矩形成为正方形时,就有x =9x (x >0),解得x =3.这时矩形的周长2⎝⎛⎭⎪⎫x +9x =12最小,因此x +9x(x >0)的最小值是6.故选C.答案: C 二、填空题12.分解因式:9x 3-18x 2+9x =9x (x -1)2 . 13.若式子2-xx有意义,则实数x 的取值范围是x ≤2且x ≠0 .14.计算:-36+214+327=-32. 15.已知(a +6)2+b 2-2b -3=0,则2b 2-4b -a 的值为12.【解析】由题意知,∵(a +6)2≥0,b 2-2b -3≥0.而(a +6)2+b 2-2b -3=0,∴(a +6)2=0且b 2-2b -3=0.整理,得a =-6,b 2-2b =3,∴2b 2-4b -a =2(b 2-2b )-a =2×3-(-6)=12.三、解答题16.计算:||-3-12+2sin 60°+⎝ ⎛⎭⎪⎫13-1.解:原式=3-23+2×32+3=3. 17.先化简,再求值:(x +y )(x -y )-(4x 3y -8xy 3)÷2xy ,其中x =-1,y =33. 解:原式=x 2-y 2-2x 2+4y 2=-x 2+3y 2. 当x =-1,y =33时,原式=-1+1=0. 18.先化简,再求值:⎝⎛⎭⎪⎫1-1x +2÷x 2+2x +1x +2,其中x =3-1. 解:原式=x +1x +2÷x +12x +2=x +1x +2·x +2x +12=1x +1. 当x =3-1时,原式=13-1+1=13=33.19.探究下面的问题:(1)在图甲中,阴影部分的面积和为a 2-b 2(写成两数平方差的形式); (2)将图甲中的第①块割下来重新与第②块拼成如图乙所示的一个长方形,那么这个长方形的长是a +b ,宽是 a -b ,它的面积是(a +b )(a -b )(写成两个多项式的形式);(3)由这两个图可以得到的乘法公式是(a +b )(a -b )=a 2-b 2(用式子表示);(4)运用这个公式计算:(x -2y +3z )(x +2y -3z ).(x -2y +3z )(x +2y -3z )=[x -(2y -3z )]·[x +(2y -3z )]=x 2-(2y -3z )2=x 2-4y 2+12yz -9z 2.20.如果10b =n ,那么b 为n 的劳格数,记为b =d (n ),由定义可知:10b=n 与b =d (n )所表示的b ,n 两个量之间的同一关系.(1)根据劳格数的定义,填空:d (10)=1,d (10-2)=-2; (2)劳格数有如下运算性质:若m ,n 为正数,则d (mn )=d (m )+d (n ),d ⎝ ⎛⎭⎪⎫m n =d (m )-d (n ).根据运算性质,填空:d a 3d a=3(a 为正数),若d (2)=0.301 0,则d (4)=0.602 0,d (5)=0.6990,d (0.08)=-1.097.(3)如表中与数x 对应的劳格数d (x )有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.x 1.5 3 5 6 8 9 12 27 d (x ) 3a -b +c 2a -ba +c1+a -b -c3-3a -3c4a -2b3-b -2c6a -3b解:(1)1 -2(2)d a 3d a =3d a d a=3.由运算性质可得,d (4)=0.602 0,d (5)=d (10)-d (2)= 1-0.301 0=0.699 0,d (0.08)=-1.097.(3)若d (3)≠2a -b ,则d (9)=2d (3)≠4a -2b ,d (27)=3d (3)≠6a -3b ,从而表中有三个劳格数是错误的,与题设矛盾,∴d (3)=2a -b ;若d (5)≠a +c ,则d (2)=1-d (5)≠1-a -c , ∴d (8)=3d (2)≠3-3a -3c ,d (6)=d (3)+d (2)≠1+a -b -c ,表中也有三个劳格数是错误的,与题设矛盾.∴d(5)=a+c.∴表中只有d(1.5)和d(12)的值是错误的,应纠正为:d(1.5)=d(3)+d(5)-1=3a-b+c-1,d(12)=d(3)+2d(2)=2-b-2c.。
中考数学专题复习《数与式》测试卷(附带答案)
中考数学专题复习《数与式》测试卷(附带答案) 学校:___________班级:___________姓名:___________考号:___________一.科学记数法—表示较大的数(共13小题)1.(2024•平谷区一模)从水利部长江水利委员会获悉,截止2024年3月24日,南水北调中线一期工程自2014年12月全面通水以来,已累计调水700亿立方米.其中70000000000用科学记数法表示为()A.7×108B.7×109C.7×1010D.7×10112.(2024•房山区一模)据中国国家铁路集团有限公司消息:在2024年为期40天的春运期间,全国铁路累计发送旅客4.84亿人次,日均发送12089000人次.将12089000用科学记数法表示应为()A.12.089×106B.1.2089×106C.1.2089×107D.0.12089×1083.(2024•石景山区一模)2023年10月26日,搭载神舟十七号载人飞船的长征二号F摇十七运载火箭在酒泉卫星发射中心成功发射.长征二号F(代号:CZ﹣2F,简称:长二F,绰号:神箭)主要用于发射神舟飞船和大型目标飞行器到近地轨道,其近地轨道运载能力是8500千克.将8500用科学记数法表示应为()A.85×102B.8.5×102C.8.5×103D.0.85×1044.(2024•通州区一模)2024年政府工作报告中提出“大力推进现代化产业体系建设,加快发展新质生产力”.北京正在建设国际科技创新中心,人工智能产业是北京的主导产业之一.目前,人工智能相关企业数量约2200家,全国40%人工智能企业聚集于此.2023年,北京在人工智能领域融资总额约223亿元,约占全国四分之一.数据22300000000用科学记数法表示应为()A.0.223×1011B.2.23×1010C.22.3×109D.223×1085.(2024•北京一模)2023年,我国共授权发明专利92.1万件,同比增长15.4%.将921000用科学记数法表示应为()A.92.1×104B.9.21×104C.9.21×105D.0.921×1066.(2024•西城区一模)2024年5.5G技术正式开始商用,它的数据下载的最高速率从5G初期的1Gbps 提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps表示每秒传输10000000000位(bit)的数据.将10000000000用科学记数法表示应为()A.0.1×1011B.1×1010C.1×1011D.10×1097.(2024•朝阳区一模)2024年1月21日北京市第十六届人民代表大会第二次会议开幕,在政府工作报告中提到,2023年北京向天津、河北输出技术合同成交额74870000000元,将74870000000用科学记数法表示应为()A.74.87×109B.7.487×1010C.7.487×109D.0.7487×10118.(2024•大兴区一模)2024年是京津冀协同发展十周年,高标准建设雄安新区成效显著.从新区设立至2023年底,累计开发面积184平方公里,4017栋楼宇拔地而起,总建筑面积4370万平方米.将43700000用科学记数法表示应为()A.43.7×106B.4.37×107C.4.37×108D.0.437×1099.(2024•海淀区一模)据报道,2024年春节假期北京接待游客约1750万人次,旅游收入同比增长近四成.将17500000用科学记数法表示应为()A.175×105B.1.75×106C.1.75×107D.0.175×10810.(2024•东城区一模)2024年2月29日,在国家统计局发布的《中华人民共和国2023年国民经济和社会发展统计公报》中,2023年全年完成造林面积400万公顷,其中人工造林面积133万公顷.将数字1330000用科学记数法表示应为()A.1.33×107B.13.3×105C.1.33×106D.0.13×10711.(2024•丰台区一模)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.一架C919飞机最大储油量超过19000千克.将数据19000用科学记数法表示为()A.0.19×105B.1.9×104C.1.9×103D.19×10312.(2024•顺义区一模)全国绿化委员会办公室发布的《2023年中国国土绿化状况公报》显示,2023年全国完成国土绿化任务超800万公顷,其中造林3998000公顷.将3998000用科学记数法表示应为()A.3.998×107B.3.998×106C.3998×103D.3.998×10313.(2024•门头沟区一模)近几年全国各省市都在发展旅游业,让游客充分感受地域文化,据统计,某市2023年的游客接待量为210000000人次,将210000000用科学记数法表示为()A.2.1×107B.2.1×108C.2.1×109D.2.1×1010二.实数与数轴(共4小题)14.(2024•大兴区一模)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是()A.b﹣c>0B.ac>0C.b+c<0D.ab<115.(2024•海淀区一模)实数a在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a≥﹣2B.a<﹣3C.﹣a>2D.﹣a≥316.(2024•东城区一模)若实数a,b在数轴上的对应点的位置如图所示,在下列结论中,正确的是()A.|a|<|b|B.a+1<b+1C.a2<b2D.a>﹣b17.(2024•顺义区一模)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.a>﹣1B.b>1C.﹣a<b D.﹣b>a三.估算无理数的大小(共1小题)18.(2024•平谷区一模)写出一个大于1且小于4的无理数.(答案不唯一)四.实数的运算(共12小题)19.(2024•平谷区一模)计算:2cos30°+()﹣1+|﹣1|﹣.20.(2024•房山区一模)计算:.21.(2024•石景山区一模)计算:.22.(2024•通州区一模)计算:.23.(2024•北京一模)计算:4sin45°+|﹣2|﹣+()﹣1.24.(2024•西城区一模)计算:|﹣|﹣()﹣1+2sin60°﹣.25.(2024•朝阳区一模)计算:+|1﹣|+(2﹣π)0﹣2sin45°.26.(2024•大兴区一模)计算:.27.(2024•海淀区一模)计算:2sin60°+|﹣1|+()﹣1﹣.28.(2024•东城区一模)计算:.29.(2024•丰台区一模)计算:|﹣3|+2cos30°﹣.30.(2024•顺义区一模)计算:.五.整式的混合运算—化简求值(共5小题)31.(2024•通州区一模)已知2x2﹣x﹣1=0,求代数式4x(x﹣1)+(2x+1)(2x﹣1)的值.31.(2024•北京一模)已知2x2﹣x﹣1=0,求代数式(3x+2)(3x﹣2)﹣3x(x+1)的值.32.(2024•西城区一模)已知x2﹣x﹣4=0,求代数式(x﹣2)2+(x﹣1)(x+3)的值.33.(2024•大兴区一模)已知a2+3a﹣1=0,求代数式(a+1)2+a(a+4)﹣2的值.34.(2024•顺义区一模)已知x2+2x=1,求代数式4(x+1)+(x﹣1)2的值.六.提公因式法与公式法的综合运用(共11小题)36.(2024•平谷区一模)分解因式:ax2+2ax+a=.37.(2024•房山区一模)分解因式:x2y﹣4y=.38.(2024•石景山区一模)分解因式:xy2﹣4x=.39.(2024•北京一模)分解因式:8a2﹣8b2=.40.(2024•西城区一模)分解因式:x2y﹣12xy+36y=.41.(2024•朝阳区一模)分解因式:3x2+6xy+3y2=.42.(2024•大兴区一模)分解因式:ax2﹣4a=.43.(2024•海淀区一模)分解因式:a3﹣4a=.44.(2024•东城区一模)因式分解:2xy2﹣18x=.45.(2024•丰台区一模)分解因式:ax2﹣4ay2=.46.(2024•顺义区一模)分解因式:4m2﹣4=.七.分式有意义的条件(共3小题)47.(2024•房山区一模)若代数式有意义,则实数x的取值范围是.48.(2024•丰台区一模)若代数式有意义,则实数x的取值范围是.49.(2024•顺义区一模)代数式有意义,则实数x的取值范围是.八.分式的值(共2小题)50.(2024•海淀区一模)已知b2﹣4a=0,求代数式的值.51.(2024•东城区一模)已知2x﹣y﹣9=0,求代数式的值.九.分式的加减法(共1小题)52.(2024•平谷区一模)化简:的结果为.一十.分式的化简求值(共2小题)52.(2024•石景山区一模)已知x2﹣3x﹣6=0,求代数式的值.53.(2024•丰台区一模)已知x﹣3y﹣2=0,求代数式的值.一十一.二次根式有意义的条件(共6小题)55.(2024•平谷区一模)若代数式有意义,则实数x的取值范围是.56.(2024•石景山区一模)若在实数范围内有意义,则实数x的取值范围是.57.(2024•通州区一模)若在实数范围内有意义,则实数x的取值范围为.58.(2024•朝阳区一模)若式子在实数范围内有意义,则x的取值范围是.59.(2024•海淀区一模)代数式在实数范围内有意义,则x的取值范围是.60.(2024•东城区一模)若二次根式有意义,则实数x的取值范围是.参考答案与试题解析一.科学记数法—表示较大的数(共13小题)1.(2024•平谷区一模)从水利部长江水利委员会获悉,截止2024年3月24日,南水北调中线一期工程自2014年12月全面通水以来,已累计调水700亿立方米.其中70000000000用科学记数法表示为()A.7×108B.7×109C.7×1010D.7×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:70000000000=7×1010.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2024•房山区一模)据中国国家铁路集团有限公司消息:在2024年为期40天的春运期间,全国铁路累计发送旅客4.84亿人次,日均发送12089000人次.将12089000用科学记数法表示应为()A.12.089×106B.1.2089×106C.1.2089×107D.0.12089×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:12089000=1.2089×107故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2024•石景山区一模)2023年10月26日,搭载神舟十七号载人飞船的长征二号F摇十七运载火箭在酒泉卫星发射中心成功发射.长征二号F(代号:CZ﹣2F,简称:长二F,绰号:神箭)主要用于发射神舟飞船和大型目标飞行器到近地轨道,其近地轨道运载能力是8500千克.将8500用科学记数法表示应为()A.85×102B.8.5×102C.8.5×103D.0.85×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:8500=8.5×103故选:C.【点评】本题考查了科学记数法表示绝对值较大的数的方法,掌握科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数是关键.4.(2024•通州区一模)2024年政府工作报告中提出“大力推进现代化产业体系建设,加快发展新质生产力”.北京正在建设国际科技创新中心,人工智能产业是北京的主导产业之一.目前,人工智能相关企业数量约2200家,全国40%人工智能企业聚集于此.2023年,北京在人工智能领域融资总额约223亿元,约占全国四分之一.数据22300000000用科学记数法表示应为()A.0.223×1011B.2.23×1010C.22.3×109D.223×108【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:22300000000=2.23×1010故选:B.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.5.(2024•北京一模)2023年,我国共授权发明专利92.1万件,同比增长15.4%.将921000用科学记数法表示应为()A.92.1×104B.9.21×104C.9.21×105D.0.921×106【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:921000=9.21×105故选:C.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.6.(2024•西城区一模)2024年5.5G技术正式开始商用,它的数据下载的最高速率从5G初期的1Gbps 提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps表示每秒传输10000000000位(bit)的数据.将10000000000用科学记数法表示应为()A.0.1×1011B.1×1010C.1×1011D.10×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:10000000000=1×1010.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(2024•朝阳区一模)2024年1月21日北京市第十六届人民代表大会第二次会议开幕,在政府工作报告中提到,2023年北京向天津、河北输出技术合同成交额74870000000元,将74870000000用科学记数法表示应为()A.74.87×109B.7.487×1010C.7.487×109D.0.7487×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:74870000000=7.487×1010故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(2024•大兴区一模)2024年是京津冀协同发展十周年,高标准建设雄安新区成效显著.从新区设立至2023年底,累计开发面积184平方公里,4017栋楼宇拔地而起,总建筑面积4370万平方米.将43700000用科学记数法表示应为()A.43.7×106B.4.37×107C.4.37×108D.0.437×109【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:43700000=4.37×107.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.9.(2024•海淀区一模)据报道,2024年春节假期北京接待游客约1750万人次,旅游收入同比增长近四成.将17500000用科学记数法表示应为()A.175×105B.1.75×106C.1.75×107D.0.175×108【分析】根据科学记数法的规则进行作答即可.【解答】解:17500000=1.75×107.故选:C.【点评】本题主要考查科学记数法,解题的关键是熟练掌握科学记数法的规则.10.(2024•东城区一模)2024年2月29日,在国家统计局发布的《中华人民共和国2023年国民经济和社会发展统计公报》中,2023年全年完成造林面积400万公顷,其中人工造林面积133万公顷.将数字1330000用科学记数法表示应为()A.1.33×107B.13.3×105C.1.33×106D.0.13×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:1330000=1.33×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(2024•丰台区一模)2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.一架C919飞机最大储油量超过19000千克.将数据19000用科学记数法表示为()A.0.19×105B.1.9×104C.1.9×103D.19×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:19000=1.9×104.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(2024•顺义区一模)全国绿化委员会办公室发布的《2023年中国国土绿化状况公报》显示,2023年全国完成国土绿化任务超800万公顷,其中造林3998000公顷.将3998000用科学记数法表示应为()A.3.998×107B.3.998×106C.3998×103D.3.998×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:3998000=3.998×106.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(2024•门头沟区一模)近几年全国各省市都在发展旅游业,让游客充分感受地域文化,据统计,某市2023年的游客接待量为210000000人次,将210000000用科学记数法表示为()A.2.1×107B.2.1×108C.2.1×109D.2.1×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:210000000=2.1×108故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二.实数与数轴(共4小题)14.(2024•大兴区一模)实数a,b,c在数轴上的对应点的位置如图所示,下列结论中正确的是()A.b﹣c>0B.ac>0C.b+c<0D.ab<1【分析】根据数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1,由此逐一判断各选项即可.【解答】解:由数轴可知:﹣3<a<﹣2<b<﹣1<0<c<1A、∵﹣2<b<﹣1,0<c<1,∴b﹣c<0,故选项A不符合题意;B、∵﹣3<a<﹣2,0<c<1,∴ac<0,故选项B不符合题意;C、∵﹣2<b<﹣1,0<c<1,∴b+c<0,故选项C符合题意;D、∵﹣3<a<﹣2<b<﹣1,∴ab>1,故选项D不符合题意;故选:C.【点评】本题考查的是实数与数轴,熟悉数轴上各点的分布特点是解题的关键.15.(2024•海淀区一模)实数a在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a≥﹣2B.a<﹣3C.﹣a>2D.﹣a≥3【分析】由数轴可知,﹣3<a<﹣2,由此逐一判断各选项即可.【解答】解:由数轴可知,﹣3<a<﹣2A、﹣3<a<﹣2,故选项A不符合题意;B、﹣3<a<﹣2,故选项B不符合题意;C、∵﹣3<a<﹣2,∴2<﹣a<3,故选项C符合题意;D、∵﹣3<a<﹣2,∴2<﹣a<3,故选项D不符合题意;故选:C.【点评】本题考查的是实数与数轴,从题目中提取已知条件是解题的关键.16.(2024•东城区一模)若实数a,b在数轴上的对应点的位置如图所示,在下列结论中,正确的是()A.|a|<|b|B.a+1<b+1C.a2<b2D.a>﹣b【分析】根据图示,可得﹣2<a<﹣1,0<b<1,据此逐项判断即可.【解答】解:根据图示,可得﹣2<a<﹣1,0<b<1∵﹣2<a<﹣1,0<b<1∴1<|a|<2,0<|b|<1∴|a|>|b|∴选项A不符合题意;∵﹣2<a<﹣1,0<b<1∴a<b∴a+1<b+1∴选项B符合题意;∵﹣2<a<﹣1,0<b<1∴1<a2<4,0<b2<1∴a2>b2∴选项C不符合题意;∵0<b<1∴﹣1<﹣b<0∵﹣2<a<﹣1∴a<﹣b∴选项D不符合题意.故选:B.【点评】此题主要考查了实数大小比较的方法,以及数轴的特征:一般来说,当数轴正方向朝右时,右边的数总比左边的数大.17.(2024•顺义区一模)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.a>﹣1B.b>1C.﹣a<b D.﹣b>a【分析】根据图示,可得﹣2<a<﹣1,0<b<1,据此逐项判断即可.【解答】解:根据图示,可得﹣2<a<﹣1,0<b<1∵a<﹣1∴选项A不符合题意;∵b<1∴选项B不符合题意;∵﹣2<a<﹣1∴1<﹣a<2∵0<b<1∴﹣a>b∴选项C不符合题意;∵0<b<1∴﹣1<﹣b<0∵﹣2<a<﹣1∴﹣b>a∴选项D符合题意.故选:D.【点评】此题主要考查了实数大小比较的方法,以及数轴的特征:一般来说,当数轴正方向朝右时,右边的数总比左边的数大.三.估算无理数的大小(共1小题)18.(2024•平谷区一模)写出一个大于1且小于4的无理数π.(答案不唯一)【分析】由于开方开不尽的数是无理数,然后确定的所求数的范围即可求解.【解答】解:∵1=,4=∴只要是被开方数大于1而小于16,且不是完全平方数的都可.同时π也符合条件.【点评】此题主要考查了无理数的大小的比较,其中无理数包括开方开不尽的数,和π有关的数,有规律的无限不循环小数.四.实数的运算(共12小题)19.(2024•平谷区一模)计算:2cos30°+()﹣1+|﹣1|﹣.【分析】根据特殊角的三角函数值、负整数指数幂、绝对值、二次根式的化简分别计算即可.【解答】解:2cos30°+()﹣1+|﹣1|﹣===1.【点评】本题考查了实数的运算,熟练掌握特殊角的三角函数值、负整数指数幂、绝对值、二次根式的化简是解题的关键.20.(2024•房山区一模)计算:.【分析】利用特殊锐角三角函数值,负整数指数幂,绝对值的性质,二次根式的性质计算即可.【解答】解:原式=6×+2+3﹣3=3+2+3﹣3=5.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.21.(2024•石景山区一模)计算:.【分析】利用绝对值的性质,二次根式的性质,特殊锐角三角函数值及负整数指数幂计算即可.【解答】解:原式=2﹣+2﹣2×+5=2﹣+2﹣+5=7.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.22.(2024•通州区一模)计算:.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负整数指数幂的性质分别化简得出答案.【解答】解:原式=4×=2+4+1=5.【点评】此题主要考查了实数运算,正确化简各数是解题关键.23.(2024•北京一模)计算:4sin45°+|﹣2|﹣+()﹣1.【分析】sin45°=,再根据实数和指数幂的运算法则计算即可.【解答】解:原式=4×+2﹣3+2=2﹣3+4=4.【点评】本题考查的是实数的运算,指数幂和特殊角的三角函数值,熟练掌握上述知识点是解题的关键.24.(2024•西城区一模)计算:|﹣|﹣()﹣1+2sin60°﹣.【分析】利用特殊角的三角函数值及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式===﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.25.(2024•朝阳区一模)计算:+|1﹣|+(2﹣π)0﹣2sin45°.【分析】分别根据绝对值、零指数幂及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=2=3=2.【点评】本题考查的是实数的运算,熟知绝对值、零指数幂的运算法则,熟记特殊角的三角函数值是解答此题的关键.26.(2024•大兴区一模)计算:.【分析】cos45°=,再根据实数和指数幂的运算法则计算即可.【解答】解:原式==.【点评】本题考查的是实数的运算,指数幂和特殊角的三角函数值,熟练掌握上述知识点是解题的关键.27.(2024•海淀区一模)计算:2sin60°+|﹣1|+()﹣1﹣.【分析】根据实数的运算法则、负整数指数幂和特殊角的三角函数值的定义进行计算.【解答】解:原式=2×+1+2﹣2=+1+2﹣2=3﹣.【点评】本题考查了实数的运算法则、负整数指数幂和特殊角的三角函数值,掌握实数的运算法则、负整数指数幂和特殊角的三角函数值的定义是关键.28.(2024•东城区一模)计算:.【分析】利用二次根式的性质,特殊锐角三角函数值,零指数幂,绝对值的性质计算即可.【解答】解:原式=4﹣2×+1﹣2=4﹣+1﹣2=3﹣1.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.29.(2024•丰台区一模)计算:|﹣3|+2cos30°﹣.【分析】直接利用特殊角的三角函数值、负整数指数幂的性质、二次根式的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=3+2×﹣3﹣2=3+﹣3﹣2=﹣.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.30.(2024•顺义区一模)计算:.【分析】利用负整数指数幂,特殊锐角三角函数值,二次根式的性质,零指数幂计算即可.【解答】解:原式=﹣4×+2+1=﹣2+2+1=.【点评】本题考查实数的运算,熟练掌握相关运算法则是解题的关键.五.整式的混合运算—化简求值(共5小题)31.(2024•通州区一模)已知2x2﹣x﹣1=0,求代数式4x(x﹣1)+(2x+1)(2x﹣1)的值.【分析】利用平方差公式,单项式乘多项式的法则进行计算,然后把2x2﹣x=1代入化简后的式子进行计算,即可解答.【解答】解:4x(x﹣1)+(2x+1)(2x﹣1)=4x2﹣4x+4x2﹣1=8x2﹣4x﹣1∵2x2﹣x﹣1=0∴2x2﹣x=1∴当2x2﹣x=1时,原式=4(2x2﹣x)﹣1=4×1﹣1=4﹣1=3.【点评】本题考查了整式的混合运算﹣化简求值,平方差公式,准确熟练地进行计算是解题的关键.32.(2024•北京一模)已知2x2﹣x﹣1=0,求代数式(3x+2)(3x﹣2)﹣3x(x+1)的值.【分析】利用平方差公式,单项式乘多项式的法则进行计算,然后把2x2﹣x=1代入化简后的式子进行计算,即可解答.【解答】解:(3x+2)(3x﹣2)﹣3x(x+1)=9x2﹣4﹣3x2﹣3x=6x2﹣3x﹣4∵2x2﹣x﹣1=0∴2x2﹣x=1当2x2﹣x=1时,原式=3(2x2﹣x)﹣4=3×1﹣4=3﹣4=﹣1.【点评】本题考查了整式的混合运算﹣化简求值,平方差公式,准确熟练地进行计算是解题的关键.33.(2024•西城区一模)已知x2﹣x﹣4=0,求代数式(x﹣2)2+(x﹣1)(x+3)的值.【分析】利用完全平方公式,多项式乘多项式的法则进行计算,然后把x2﹣x=4代入化简后的式子进行计算,即可解答.【解答】解:(x﹣2)2+(x﹣1)(x+3)=x2﹣4x+4+x2+3x﹣x﹣3=2x2﹣2x+1∵x2﹣x﹣4=0∴x2﹣x=4∴当x2﹣x=4时,原式=2(x2﹣x)+1=2×4+1=8+1=9.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,准确熟练地进行计算是解题的关键.34.(2024•大兴区一模)已知a2+3a﹣1=0,求代数式(a+1)2+a(a+4)﹣2的值.【分析】利用完全平方公式,单项式乘多项式法则进行计算,然后把a2+3a=1代入化简后的式子进行计算即可解答.【解答】解:(a+1)2+a(a+4)﹣2=a2+2a+1+a2+4a﹣2=a2+a2+2a+4a+1﹣2=2a2+6a﹣1∵a2+3a﹣1=0∴a2+3a=1当a2+3a=1时,原式=2(a2+3a)﹣1=2×1﹣1=2﹣1=1.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,准确熟练地进行计算是解题的关键.35.(2024•顺义区一模)已知x2+2x=1,求代数式4(x+1)+(x﹣1)2的值.【分析】利用完全平方公式,单项式乘多项式的法则进行计算,然后把x2+2x=1代入化简后的式子进行计算,即可解答.【解答】解:4(x+1)+(x﹣1)2=4x+4+x2﹣2x+1=x2+2x+5当x2+2x=1时,原式=1+5=6.【点评】本题考查了整式的混合运算﹣化简求值,代数式求值,完全平方公式,准确熟练地进行计算是解题的关键.六.提公因式法与公式法的综合运用(共11小题)【分析】先提取公因式,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a±b)2.【解答】解:ax2+2ax+a=a(x2+2x+1)﹣﹣(提取公因式)=a(x+1)2.﹣﹣(完全平方公式)【点评】本题考查了提公因式法与公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意要分解彻底.37.(2024•房山区一模)分解因式:x2y﹣4y=y(x+2)(x﹣2).【分析】先提公因式,再利用平方差公式继续分解即可解答.【解答】解:x2y﹣4y=y(x2﹣4)=y(x+2)(x﹣2)故答案为:y(x+2)(x﹣2).【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.38.(2024•石景山区一模)分解因式:xy2﹣4x=x(y+2)(y﹣2).【分析】原式提取x,再利用平方差公式分解即可.【解答】解:原式=x(y2﹣4)=x(y+2)(y﹣2)故答案为:x(y+2)(y﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.39.(2024•北京一模)分解因式:8a2﹣8b2=8(a+b)(a﹣b).【分析】提公因式后利用平方差公式因式分解即可.【解答】解:原式=8(a2﹣b2)=8(a+b)(a﹣b)故答案为:8(a+b)(a﹣b).【点评】本题考查因式分解,熟练掌握因式分解的方法是解题的关键.40.(2024•西城区一模)分解因式:x2y﹣12xy+36y=y(x﹣6)2.【分析】提取公因式后用完全平方公式分解即可.【解答】解:x2y﹣12xy+36y=y(x2﹣12x+36)=y(x﹣6)2故答案为:y(x﹣6)2.【点评】本题考查了因式分解,熟练掌握提取公因式和公式法分解因式是关键.【分析】先利用提取公因式法提取数字3,再利用完全平方公式继续进行分解.【解答】解:3x2+6xy+3y2=3(x2+2xy+y2)=3(x+y)2【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.42.(2024•大兴区一模)分解因式:ax2﹣4a=a(x+2)(x﹣2).【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:ax2﹣4a=a(x2﹣4)=a(x+2)(x﹣2).【点评】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.43.(2024•海淀区一模)分解因式:a3﹣4a=a(a+2)(a﹣2).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.44.(2024•东城区一模)因式分解:2xy2﹣18x=2x(y+3)(y﹣3).【分析】提取公因式后再用平方差公式分解即可.【解答】解:2xy2﹣18x=2x(y2﹣9)=2x(y+3)(y﹣3).故答案为:2x(y+3)(y﹣3).【点评】本题考查了因式分解,熟练掌握公式法和提取公因式法是关键.45.(2024•丰台区一模)分解因式:ax2﹣4ay2=a(x+2y)(x﹣2y).【分析】观察原式ax2﹣4ay2,找到公因式a,提出公因式后发现x2﹣4y2符合平方差公式,利用平方差公式继续分解可得.【解答】解:ax2﹣4ay2=a(x2﹣4y2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.已知有理数 x、y、z 满足|x−z−2|+(3y+3z−4)2+|3x−6y−7|=0,则 xyz=____.
13.–2 的倒数是________, 5 _______ .
14.据经济日报报道:青海格尔木枸杞已进入国际市场,出口创汇达 4270000 美元,将 4270000 美元用科学记数法表示为_________________美元.
19.若 xm = 2 , xn = 3 ,则 xm2n 的值为_____.
20.若最简二次根式 a 2 与 4 a 是同类二次根式,那么 a=_____.
21.化简:(1) 50 32 8
(2) ( 6 2 15 ) 3 6 1 2
22.计算:
23.先化简,再求值: 5(3a 2b ab2 ) 3(ab2 5a 2b) ,其中 a 1 , b 1 .
4.A 【解析】 【分析】 根据二次根式有意义的条件可得 x−2≥0,再解不等式可得答案. 【详解】 解:由题意得:x−2≥0, 解得:x≥2, 故选:A. 【点睛】 此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数. 5.C 【解析】 【分析】 根据同类项的定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,结 合选项求解. 【详解】 由同类项的定义可知,a 的指数是 1,b 的指数是 2. A、a 的指数是 2,b 的指数是 1,与 ab2 不是同类项; B、a 的指数是 2,b 的指数是 2,与 ab2 不是同类项; C、a 的指数是 1,b 的指数是 2,与 ab2 是同类项; D、a 的指数是 1,b 的指数是 1,与 ab2 不是同类项. 故选 C. 【点睛】 本题考查了同类项,判断同类项只要两看,即一看所含有的字母是否相同,二看相同字母的 指数是否相同. 6.C 【解析】
14.4.27×106
【解析】
【分析】
科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,要看把 原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值 >10 时,n 是正数;当原数的绝对值<1 时,n 是负数. 【详解】
15.使 1 在实数范围内有意义的 x 应满足的条件是
.
x 1
16.(3+ 7 )(3﹣ 7 )=________________ .
17.如图正方形 ABCD 一边在以点 D 为原点的数轴上,以点 A 为圆心,以 AC 长为半 径画弧,且与数轴相交于点 E,则点 E 所对应的实数是______.
18.计算: ab a =__. b
准备在这个长方形的四个顶点处修建一个半径为 1 b 米的扇形花台,然后在花台内种 2
花,其余种草.如果建造花台及种花费用每平方米需要资金 100 元,种草每平方米需 要资金 50 元,那么美化这块空地共需资金多少元?
29. 在正方形 ABCD 中. (1)如图 1,点 E、F 分别在 BC、CD 上,AE、BF 相交于点 O,∠AOB=90°,试判断 AE 与 BF 的数量关系,并说明理由; (2)如图 2,点 E、F、G、H 分别在边 BC、CD、DA、AB 上,EG、FH 相交于点 O, ∠GOH=90°,且 EG=7,求 FH 的长; (3)如图 3,点 E、F 分别在 BC、CD 上,AE、BF 相交于点 O,∠AOB=90°,若 AB=5, 图中阴影部分的面积与正方形的面积之比为 4:5,求△ ABO 的周长.
的性质,转化思想是解决数学问题的一种重要的方法.具体地说,就是把新知识转化为旧知
识,把未知转化为已知,把复杂转化为简单问题的思想方法. 巧妙地运用转化思想,把问题
化难为易,收到良好的效果.
12.1.
【解析】
【分析】
根据非负数的性质即可求出 x、y 与 z 的值,从而可求出答案. 【详解】
x z 2 0 解:由题意可知: 3y 3z 4 0
解:4270000=4.27×106. 故答案为:4.27×106.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10, n 为整数,表示时关键要正确确定 a 的值以及 n 的值.
15.x>1 【解析】
试题分析:根据二次根式的性质可得:二次根式的被开方数为非负数;分式的分母不为零,
3
2
24.分解因式:
11 a2 b2 2ab ;
29a2 x y 4b2 y x .
25.写出下列各数的相反数,并将这些数连同它们的相反数在数轴上表示出来:-4,-1.5,
0, 9 2
26.已知(2x-4) 2 =16,求 x 的值. 27.写出下面每个式子所表示的意义. (1)学校买篮球每个 a 元,每个足球比篮球少 5 元. a-5 表示: 5a 表示: (2)四年级有 68 人参加课外活动小组,五年级参加人数比四年级多 x 人. 68+x 表示: 68×2+x 表示: 28.如图是某居民小区的一块长为 2a 米,宽为 b 米的长方形空地,为了美化环境,
1.D 【解析】 分析:根据倒数定义即可求解.
参考答案
详解: 3 × 3 =1, 3
故选 D. 点睛:此题考查了倒数的定义.在求倒数时注意:小数先化为分数,再对调分子和分母的位 置. 2.D 【解析】 【分析】 根据合并同类项的法则判断 A、B;根据乘法分配律判断 C、D. 【详解】
A. 2a2 3a2 a2 是同类项,合并,所以 A 选项错误 B. 3a a 2a ,所以 B 选项错误 C. 2(a b) 2a 2b ,所以 C 选项错误;
6
6
考点:相反数
11.3
【解析】
根据非负数的性质,若几个非负数的和为 0,则这几个非负数均为 0,得到关于 a、b 的一元
一次方程,解这两个方程可求出 a、b 的值,使问题得以解决.
解:由非负数的意义与性质可知,m-1=0,m=1, n-2=0,n=2,
∴m+n=1+2=3,
故答案为:3.
“点睛”非负数的性质是中考的一个考点,我们应当正确认识几种非负数的形式,掌握非负数
则 x-1>0,解得:x>1. 考点:(1)分式的性质;(2)二次根式的性质 16.2
【解析】试题分析:根据平方差的公式可得:原式= 32
2
7 =9-7=2.
17.1 2
【解析】 【分析】
先利用勾股定理求出 AC 的长,即为 AE 的长,再由 DE AE AD求出 DE,然后根据 E
在原点的左边求出数轴上的点 E 所对应的实数. 【详解】
D.选项正确 故选:D. 【点睛】 本题考查了整式的加减,熟练掌握运算法则是解题的关键. 3.B 【解析】 【分析】 根据无理数是无限不循环小数,可得答案. 【详解】
, ,, ,
(每两个 之间依次增加一个 )中,无理数有 ,
故选:B.
(每两个 之间依次增加一个 )共计 2 个.
【点睛】
考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为 无理数.如 π, ,0.8080080008…(每两个 8 之间依次多 1 个 0)等形式.
∵最简二次根式 a 2 与 4 a 是同类二次限式, ∴a+2=4−a. 解得:a=1. 故答案为:1. 【点睛】 本题主要考查的是同类二次根式的定义,掌握定义是解题的关键.
21.(1) 9 ;(2) 6 5 . 2
【解析】 试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;
(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.
【分析】 把各项因式分解即可找到公因式. 【详解】 A. (x+2) 2,(x-2) 2,没有公因式; B. x2-2x=x(x-2),4x-6=2(2x-3),没有公因式; C. 3x-6=3(x-2), x2-2x=x(x-2), 公因式为(x-2) D. x-4,6x-18=6(x-3), 没有公因式; 故选 C. 【点睛】 此题主要考查公因式的求解,解题的关键是把各式因式分解进行求解. 7.C 【解析】 【分析】 先化简,再合并同类项解答即可. 【详解】
3
9
⑤( 3 )2= 9 ,错误; 5 25
⑥
1 3
2
1 9
,正确.
故选 B.
点睛:本题主要考查有理数的乘方,解题的关键是熟练掌握有理数的乘法运算法则.
9.C
【解析】
试题分析:先通分,再进行分式的除法运算.
解:原式=(
+
)÷
=
•
=,
故选 C.
考点:分式的混合运算.
10.A
【解析】
试题分析:利用相反数和为 0 计算,因为 a+(-a)=0,∴ 1 的相反数是 1
试题解析:(1)原式= 5 2 4 2 9 ; 22 2
(2)原式= 6 3 2 15 3 3 2 3 2 6 5 3 2 6 5 .
)
A.(x+2) 2,(x-2) 2
B.x2-2x,4x-6
C.3x-6, x2-2x
D.x-4,6x-18
D.4 个
D. x 0
D.2ab
7.计算:3
12 ÷3
1
-2
3 的结果为(
)
3
A.-2 3
B. 3
C.6-2 3
D.36-2 3
8.下列计算:①-(0.1)3=-0.001;②-32=9;③(-1)3=-1;④- ( 1)2 1 ; 39
解: 正方形 ABCD 的边长 AD 1, AC 12 12 2 ,
AE AC 2 ,
DE AE AD 2 1 ,
点 D 在原点,点 E 在原点的左边,
点 E 所对应的实数为1 2 ,
故答案为1 2 .