7参数不同大地坐标系的转换

合集下载

土地确权登记中数据七参数坐标转换方法

土地确权登记中数据七参数坐标转换方法

土地确权登记中数据七参数坐标转换方法作者:李俊俊来源:《经营者》2016年第06期摘要农村土地承包经营权确权登记颁证工作中,涉及数据坐标转换的事项较多,对确权、颁证过程中土地信息的准确性以及承包经营权的核准均有重要影响。

本文基于上述背景,对农村土地承包经营权确权登记颁证工作中,数据坐标转换工作进行概述,并探讨数据七参数坐标转换方法,以期能为农村土地确权工作提供参考。

关键词农村土地确权颁证七参数坐标转换 ACRGIS一、开展农村土地确权颁证工作的背景在确权颁证过程中,要以第二轮土地承包合同以及相应的农村土地承包经营权权属资料为主要依据,同时要结合国土二调成果资料、林权发证资料和图件成果、农村集体土地所有权数据、基本农田划定数据、行政区域勘界资料以及相关基础地理信息资料等。

由于涉及多部门的多类资料且坐标基准和投影方式各不相同,其中包含了1980西安坐标系、1954北京坐标系,而本次确权颁证工作明确了坐标系统为2000国家大地坐标系,选择高斯-克吕格投影,采用标准三度分带。

坐标基准不统一将对数据资料的使用造成极大不便,还会引起不必要的权属纠纷和部门纠纷。

因此,对数据坐标进行转换处理在农村土地确权颁证工作中有重要意义。

以下将从实际数据出发,对数据坐标转换的特点进行简要介绍,希望能提高农村土地确权颁证的工作效率。

二、坐标转换方法确权颁证工作中大量数据需从80坐标系转换到2000国家大地坐标系,由于采用不一样的椭球基准,因此转换是不严密的转换,一般选用七参数法,即X平移,Y平移,Z平移,X旋转,Y旋转,Z旋转,尺度变化K。

当然,如果区域范围不大,最远点间的距离小于30Km (经验值),就可以使用三参数法,即X平移,Y平移,Z平移,而将X旋转,Y旋转,Z旋转,尺度变化K视为0,三参数只是七参数的一种特例,因此,本文只对七参数转换法进行介绍。

(一)七参数坐标转换原理两个空间直角坐标系,它们的原点不一致,相应的坐标轴相互不平行,两个坐标轴间除了三个平移参数,还有三个欧勒角,即三个旋转参数,又考虑到两个坐标系的尺度不尽相同,还需设一个尺度变化参数k,总计共有七个参数。

七参数坐标转换实验报告心得

七参数坐标转换实验报告心得

七参数坐标转换实验报告心得一、实验背景在测量和定位领域中,常常需要进行坐标转换。

七参数坐标转换是一种常用的方法,可以将不同坐标系下的点进行转换。

本次实验旨在通过实践掌握七参数坐标转换的基本原理和操作方法。

二、实验设备1.计算机2.测量仪器:全站仪、GPS等3.数据处理软件:ArcGIS、AutoCAD等三、实验步骤1.确定参考椭球体和大地水准面在进行七参数坐标转换前,需要确定参考椭球体和大地水准面。

一般情况下,使用WGS84椭球体和国家2000大地水准面。

2.采集原始数据使用全站仪或GPS等测量仪器采集待转换的原始数据。

要求采集点数充足,并尽可能覆盖整个区域。

3.处理原始数据使用数据处理软件对采集到的原始数据进行处理,得到初始坐标值。

4.计算七参数值利用已知控制点的坐标值和对应的初始坐标值,计算出七个参数的数值。

5.进行坐标转换根据计算出来的七参数值,对所有待转换的点进行坐标转换。

转换后得到的坐标值即为最终结果。

四、实验注意事项1.在采集原始数据时,要注意仪器的精度和稳定性,尽可能减小误差。

2.在处理原始数据时,要注意数据的质量和准确性,避免出现错误。

3.计算七参数值时,要选择合适的算法和方法,确保计算结果正确。

4.进行坐标转换时,要注意坐标系的对应关系和转换方式,避免出现错误。

五、实验心得体会通过本次实验,我深刻认识到了七参数坐标转换在测量和定位领域中的重要性。

同时也学习到了七参数坐标转换的基本原理和操作方法。

在实际应用中,需要根据具体情况选择合适的参考椭球体和大地水准面,并且要注意仪器精度、数据质量等方面的问题。

只有掌握了七参数坐标转换技术,才能更好地完成各种测量和定位任务。

RTK求解参数(三参、四参、七参)详解

RTK求解参数(三参、四参、七参)详解

• 投影讲解 四参数+高程拟合
二、三参数转换
• (1)、架设基准站 • 基准站(基准站架设在已知点上,如果基准站架设在未知点上,手簿 软件使用方法和四参数类似,只是在计算参数时选择计算三参数)。 • 架设点必须满足以下要求: • a、高度角在15度以上开阔,无大型遮挡物; • b、无电磁波干扰(200米内没有微波站、雷达站、手机信号站等, 50米内无高压线); • c、位置比较高,用电台作业时,基准站到移动站之间最好无大型遮 挡物,否则差分传播距离迅速缩短; • d、只需一个已知坐标点 (已知点可以是国家坐标系下的坐标,或坐 标系和WGS-84坐标系之间的旋转很小); • e、此方法都适用于客户对坐标精度要求不是很高的情况,随着移动 站离基准站距离的增加,精度越来越低,一般3KM精度能在5CM以内。
RTK求解参数
罗禹
参数的概念
1、由于GPS所采用的坐标系为WGS-84坐标系,而 在我们国家,实际的工作中所使用的都是BJ-54,国 家-80、或地方坐标系, 因此存在WGS-84和当地坐标系统之间的转换问题。 2、参数转换一般分两种形式: 平面坐标系之间的转换:四参数、校正参数 椭球体之间的转换: 三参数,七参数
• 投影讲解 七参数
四、一步法转换
• 使用要求:至少三个已知坐标点(已知点可以是国家坐标系下的坐标 或自定义坐标系下的坐标,最好三个以上已知点,可以检验已知点的 正确性)。 • 用一步法转换、七参数转换、四参数转换、三参数转换(基准站架设 在未知点)时,仪器和手簿软件操作步骤类似,只是要求的已知点数 据和使用范围不一致。
谢谢
• 一般的:
• • • • 三参数:要求已知一个国家坐标点,精度随传输距离增加而减少 四参数:要求两个任意坐标点,精度在小范围内可靠 七参数:三个国家坐标点,精度高,对已知点要求严格 一步法:三个任意坐标点,在残差不大的情况下,精度可靠

RTK求解参数(三参、四参、七参)讲解

RTK求解参数(三参、四参、七参)讲解
RTK求为WGS-84坐标系,而 在我们国家,实际的工作中所使用的都是BJ-54,国 家-80、或地方坐标系, 因此存在WGS-84和当地坐标系统之间的转换问题。 2、参数转换一般分两种形式: 平面坐标系之间的转换:四参数、校正参数 椭球体之间的转换: 三参数,七参数
1、架设基准站、设置好GPS主机工作模式 2、打开手簿软件、连接基准站、新建项目、设置坐标系统参数、设置好基准 站参数,使基准站发射差分信号。 3、连接移动站,设置移动站,使得移动站接收到基准站的差分数据,并达到 窄带固定解。 4、移动站到测区已知点上测量出窄带固定解状态下的已知点原始坐标。 5、根据已知点的原始坐标和当地坐标求解出两个坐标系之间的转换参数。 6、打开坐标转换参数,则RTK测出的原始坐标会自动转换成当地坐标。 7、到另外你至少一个已知点检查所得到的当地坐标是否正确。 8、在当地坐标系下进行测量,放样等操作,得到当地坐标系下的坐标数据。 9、将坐标数据在手簿中进行坐标格式转换,得到想要的坐标数据格式。 10、将数据经过ActiveSync软件传输到电脑中,进行后续成图操作。
空间直角坐标(X,Y,Z)
大地坐标(B,L,H) 投影正算 平面直角坐标(x,y,h) 平面转换 当地平面坐标(x,y)
RTK简易操作流程
• 以下只是软件的简易操作流程,详细使用步骤请参照接下来的详细说明。此 流程只是我们提供给的一种解决方案,在熟练使用本软件后,可以不依照此 步骤操作。在作业过程中,通常的使用方法为:
• 投影讲解 三参数
三、七参数转换
一:平面四参数+高程拟合(用户常用方法)
• 1、架设基准站 • 基准站可架设在已知点或未知点上(注:如果需要使用求解好的转换 参数,则基准站位置最好和上次位置要一致,打开上次新建好的项目, 在设置基准站,只需要修改基准站的天线高,确定基准站发射差分信 号,则移动站可直接进行工作,不用重新求解转换参数) • 基准站架设点必须满足以下要求: • a、高度角在15度以上开阔,无大型遮挡物; • b、无电磁波干扰(200米内没有微波站、雷达站、手机信号站等, 50米内无高压线); • c、在用电台作业时,位置比较高,基准站到移动站之间最好无大型 遮挡物,否则差分传播距离迅速缩短; • d、至少两个已知坐标点 (已知点可以是任意坐标系下的坐标,最好 为三个或三个以上,可以检校已知点的正确性); • e、不管基站架设在未知点上还是已知点上,坐标系统也不管是国家 坐标还是地方施工坐标,此方法都适用。

控制测量学试题六及参考答案

控制测量学试题六及参考答案

控制测量学试题六及参考答案一、名词解释:1、子午圈2、卯酉圈3、椭圆偏心率4、大地坐标系5、空间坐标系6、法截线7、相对法截线8、大地线9、垂线偏差改正10、标高差改正11、截面差改正12、起始方位角的归算13、勒让德尔定理14、大地元素15、地图投影16、高斯投影17、平面子午线收敛角18、方向改化19、长度比20、参心坐标系21、地心坐标系二、填空题:1、旋转椭球的形状和大小是由子午椭圆的个基本几何参数来决定的,它们分别是。

2、决定旋转椭球的形状和大小,只需知道个参数中的个参数就够了,但其中至少有一个。

3、传统大地测量利用天文大地测量和重力测量资料推算地球椭球的几何参数,我国1954年北京坐标系应用是椭球,1980年国家大地坐标系应用的是椭球,而全球定位系统(GPS)应用的是椭球。

4、两个互相垂直的法截弧的曲率半径,在微分几何中统称为主曲率半径,它们是指和。

5、椭球面上任意一点的平均曲率半径R等于该点和的几何平均值。

6、克莱洛定理(克莱洛方程)表达式为。

7、拉普拉斯方程的表达式为。

8、若球面三角形的各角减去,即可得到一个对应边相等的平面三角形。

9、投影变形一般分为、和变形。

10、地图投影中有、和投影等。

11、高斯投影是投影,保证了投影的的不变性,图形的性,以及在某点各方向上的的同一性。

12、采用分带投影,既限制了,又保证了在不同投影带中采用相同的简便公式进行由于引起的各项改正数的计算。

13、长度比只与点的有关,而与点的无关。

14、高斯—克吕格投影类中,当m0=1时,称为,当m0=0.9996时,称为。

15、写出工程测量中几种可能采用的直角坐标系名称(写出其中三种):、、。

16、所谓建立大地坐标系,就是指确定椭球的,以及。

17、参考椭球的定位和定向,就是依据一定的条件,将具有确定参数的椭球与确定下来。

18、参考椭球的定位和定向,应选择六个独立参数,即表示参考椭球定位的三个参数和表示参考椭球定向的三个参数。

常用的七参数转换法和四参数转换法以及涉及到的基本测量学知识

常用的七参数转换法和四参数转换法以及涉及到的基本测量学知识

常⽤的七参数转换法和四参数转换法以及涉及到的基本测量学知识原⽂:1.背景在了解这两种转换⽅法时,我们有必要先了解⼀些与此相关的基本知识。

我们有三种常⽤的⽅式来表⽰空间坐标,分别是:经纬度和⾼层、平⾯坐标和⾼层以及空间直⾓坐标。

2.经纬度坐标系(⼤地坐标系)这⾥我⾸先要强调:天⽂坐标表⽰的经纬度和⼤地坐标系表⽰的经纬度是不同的。

所以,同⼀个经纬度数值,在BJ54和WGS84下表⽰的是不同的位置,⽽以下我说的经纬度均指⼤地坐标系下的经纬度。

⼤地坐标系是⼤地测量中以参考椭球⾯为基准⾯建⽴起来的坐标系。

下⾯我跟⼤家⼤致谈谈其中涉及到的两个重要概念。

2.1⼤地⽔准⾯和⼤地球体地球表⾯本⾝是⼀个起伏不平、⼗分不规则的表⾯,这些⾼低不平的表⾯⽆法⽤数学公式表达,也⽆法进⾏运算,所以在量测和制图时,我们必须找⼀个规则的曲⾯来代替地球的⾃然表⾯。

当海洋静⽌时,它的⾃由⽔⾯必定与该⾯上各点的重⼒⽅向(铅垂直⽅向)成正交,我们把这个⾯叫做⽔准⾯。

但是,地球上的⽔准⾯有⽆数个,我们把其中与静⽌的平均海⽔⾯相重合的⽔准⾯设想成⼀个可以将地球进⾏包裹的闭合曲⾯,这个⽔准⾯就是⼤地⽔准⾯。

⽽被⼤地⽔准⾯包裹所形成的球体即为⼤地球体。

2.2地球椭球体由于地球体内部质量分布的不均匀,引起重⼒⽅向的变化,这个处处与重⼒⽅向成正交的⼤地⽔准⾯边成为了⼀个⼗分不规则的也不能⽤数学来表⽰的曲⾯。

不过虽然⼤地⽔准⾯的形状⼗分的不规则,但它已经是⼀个很接近于绕⾃转轴(短轴)旋转的椭球体了。

所以在测量和制图中就⽤旋转椭球来代替⼤地球体,这个旋转球体通常称地球椭球体,简称椭球体。

2.3常⽤⼤地坐标系不同坐标系,其椭球体的长半径,短半径和扁率是不同的。

⽐如我们常⽤的四种坐标系所对应的椭球体,它们的椭球体参数就各不相同:BJ54坐标系:属参⼼坐标系,长轴6378245m,短轴6356863,扁率1/298.3。

XIAN80坐标系:属参⼼坐标系,长轴6378140m,短轴6356755,扁率1/298.25722101。

大地测量习题—有答案

大地测量习题—有答案

一、名词解释:1、子午圈:过椭球面上一点的子午面同椭球面相截形成的闭合圈。

2、卯酉圈:过椭球面上一点的一个与该点子午面相垂直的法截面同椭球面相截形成的闭合的圈。

3、椭园偏心率:第一偏心率a ba e2 2-=第二偏心率b ba e2 2-='4、大地坐标系:以大地经度、大地纬度和大地高来表示点的位置的坐标系。

P35、空间坐标系:以椭球体中心为原点,起始子午面与赤道面交线为X轴,在赤道面上与X 轴正交的方向为Y轴,椭球体的旋转轴为Z轴,构成右手坐标系O-XYZ。

P46、法截线:过椭球面上一点的法线所作的法截面与椭球面相截形成圈。

P97、相对法截线:设在椭球面上任意取两点A和B,过A点的法线所作通过B点的法截线和过B点的法线所作通过A点的法截线,称为AB两点的相对法截线。

P158、大地线:椭球面上两点之间的最短线。

9、垂线偏差改正:将以垂线为依据的地面观测的水平方向观测值归算到以法线为依据的方向值应加的改正。

P1810、标高差改正:由于照准点高度而引起的方向偏差改正。

P19 11、截面差改正:将法截弧方向化为大地线方向所加的改正。

P2012、起始方位角的归算:将天文方位角以测站垂线为依据归算到椭球面以法线为依据的大地方位角。

P2213、勒让德尔定理:如果平面三角形和球面三角形对应边相等,则平面角等于对应球面角减去三分之一球面角超。

P2714、大地元素:椭球面上点的大地经度、大地纬度,两点之间的大地线长度及其正、反大地方位角。

P2815、大地主题解算:如果知道某些大地元素推求另外一些大地元素,这样的计算称为大地主题解算。

P2816、大地主题正算:已知P1点的大地坐标,P1至P2的大地线长及其大地方位角,计算P2点的大地坐标和大地线在P2点的反方位角。

17、大地主题反算:如果已知两点的大地坐标,计算期间的大地线长度及其正反方位角。

18、地图投影: 将椭球面上各个元素(包括坐标、方向和长度)按一定的数学法则投影到平面上。

坐标系转换步骤以及公式

坐标系转换步骤以及公式

一、各坐标系下椭球参数WGS84大地参数北京54大地参数西安80大地参数参考椭球体:WGS 84 长半轴:6378137短半轴:6356752.3142 扁率:1/298.257224 参考椭球体:Krasovsky_1940长半轴:6378245短半轴:6356863.0188扁率:1/298.3参考椭球体:IAG 75长半轴:6378140短半轴:6356755.2882扁率:1/298.257000二、WGS84转北京54一般步骤(转80一样,只是椭球参数不同)前期工作:收集测区高等级控制点资料。

在应用手持GPS接收机观测的区域内找出三个以上分布均匀的等级点(精度越高越好)或GPS“B”级网网点,点位最好是周围无电磁波干扰,视野开阔,卫星信号强。

并到测绘管理部门抄取这些点的54北京坐标系的高斯平面直角坐标(x、y),大地经纬度(B、L),高程h ,高程异常值ξ和WGS-84坐标系的大地经纬度(B、L),大地高H。

如果没有收集到WGS-84下的大地坐标,则直接用手持GPS测定已知点B、L、H值。

转换步骤:1、把从GPS中接收到84坐标系下的大地坐标(经纬度高程B、L, H,其中B为纬度,L为经度,H为高程),使用84坐标系的椭球参数转换为84坐标系下的地心直角坐标(空间坐标):式中,N为法线长度,为椭球长半径,b为椭球短半径,为第一偏心率。

2、使用七参数转换为54坐标系下的地心直角坐标(x,y,z):x = △x + k*X- β*Z+ γ*Y+ Xy = △y + k*Y + α*Z - γ*X + Yz = △z + k*Z - α*Y + β*X + Z其中,△x,△y,△z为三个坐标方向的平移参数;α,β,γ为三个方向的旋转角参数;k为尺度参数。

(采用收集到的控制点计算转换参数,并需要验证参数)在小范围内可使用七参数的特殊形式即三参数,即k、α、β、γ都等于0,变成:x = △x+ Xy = △y+ Yz = △z + Z3、根据54下的椭球参数,将第二步得到的地心坐标转换为大地坐标(B54,L54,H54)计算B时要采用迭代,推荐迭代算法为:4、根据工程需要以及各种投影(如高斯克吕格)规则进行投影得到对应的投影坐标,即平面直角坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2·不间大地坐标系间的换算
不同大地坐标系统间的换算除具有不同空间直角坐标系统间换算所需的七个转换参数外,还增加由于两个系统采用的地球椭球元素不同而产生的两个地球椭球转换参数。

不同大地
坐标系统的换算公式又称大地坐标微分公式或变换椭球微分公式。

现仍只介绍大地坐标换算的布尔莎公式。

由(7-30)式
上式即为顾及全部七参数和椭球大小变化的广义大地微分公式。

由式可知:da,da。

对大地
经度没影响;乓对犬地纬度及大地高没影响;着略去旋转参数及尺度变化参数的影响,即为一
般的大地坐标微分公武。

相关文档
最新文档