空间直角坐标系与空间大地坐标系的相互转换及其C++源程序

空间直角坐标系与空间大地坐标系的相互转换及其C++源程序
空间直角坐标系与空间大地坐标系的相互转换及其C++源程序

空间直角坐标系与空间大地坐标系的相互转换

1.空间直角坐标系/笛卡尔坐标系

坐标轴相互正交的坐标系被称作笛卡尔坐标系。三维笛卡尔坐标系也被称为空间直角坐标系。在空间直角坐标系下,点的坐标可以用该点所对应的矢径在三个坐标轴上的投影长度来表示,只有确定了原地、三个坐标轴的指向和尺度,就定义了一个在三维空间描述点的位置的空间直角坐标系。

以椭球体中心O为原点,起始子午面与赤道面交线为X轴,在赤道面上与X轴正交的方向为Y轴,椭球体的旋转轴为Z轴构成右手坐标系O.XYZ,在该坐标系中,P点的位置用X,Y,Z表示。

在测量应用中,常将地球空间直角坐标系的坐标原点选在地球质心(地心坐标系)或参考椭球中心(参心坐标系),z轴指向地球北极,x轴指向起始子午面与地球赤道的交点,y轴垂直于XOZ面并构成右手坐标系。

空间直角坐标系

2.空间大地坐标系

由于空间直角坐标无法明确反映出点与地球之间的空间关系,为了解决这一问题,在测量中引入了大地基准,并据此定义了大地坐标系。大地基准指的是用于定义地球参考椭球的一系列参数,包括如下常量:

2.1椭球的大小和形状

2.2椭球的短半轴的指向:通常与地球的平自转轴平息。

2.3椭球中心的位置:根据需要确定。若为地心椭球,则其中心位于地球质心。

2.4本初子午线:通过固定平极和经度原点的天文子午线,通常为格林尼治子午线。

以大地基准为基础建立的坐标系被称为大地坐标系。由于大地基准又以参考椭球为基准,因此,大地坐标系又被称为椭球坐标系。大地坐标系是参心坐标系,其坐标原点位于参考椭球中心,以参考椭球面为基准面,用大地经度L、纬度B 和大地高H表示地面点位置。过地面点P的子午面与起始子午面间的夹角叫P 点的大地经度。由起始子午面起算,向东为正,叫东经(0°~180°),向西为负,叫西经(0°~-180°)。过P点的椭球法线与赤道面的夹角叫P点的大地纬度。由赤道面起算,向北为正,叫北纬(0°~90°),向南为负,叫南纬(0°~-90°)。从地面点P沿椭球法线到椭球面的距离叫大地高。大地坐标坐标系中,P点的位置用L,B表示。如果点不在椭球面上,表示点的位置除L,B外,还要附加另一参数——大地高H。

空间大地坐标系

3.空间直角坐标与大地坐标间的转换

3.1大地坐标转换为空间直角坐标

将同一坐标系下的大地坐标(B、L、H)转换成空间直角坐标(X、Y、Z)的转换公式为:

式中N为卯酉圈的半径,a为参考椭球的长半轴;b为参考椭球的短半轴;e为参考椭球的第一偏心率;并且有

若点在椭球面上,则大地高H=0,上式可简化为:

3.2空间直角坐标转换为空间大地坐标

将同一坐标系下的空间直角坐标(X、Y、Z)转换为空间大地坐标(B、L、H)的公式为:

在使用上式进行空间直角坐标到大地坐标的转换过程中,由于计算大地纬度

口时用到大地高Ⅳ,而计算大地高时又需要用到大地纬度口.因此不能直接由空间直角坐标计算出大地坐标,而需要采用迭代计算的方法。具体计算时,可先根据下式求出大地纬度口的初值:

然后利用该初值来求出H、N的初值,再利用所求出的H和N初值再次求出B 值.如此反复,直至求出的及日、Ⅳ收敛为止。

4.算例

本文根据以上公式在Microsoft VC++6.0环境下编写了一段程序(见附录)。算例中的坐标采用的是武汉大学信息学部友谊广场上的某点的大地坐标作为已知值,然后经过转换函数CRDGEODETICtoCRDCARTESEAN(pcg, pcc, dSemiMajorAxis,dFlatning)把大地坐标转换为空间直角坐标得到坐标X、Y、Z。由得到的空间直角坐标X、Y、Z,经过转换函数CRDCARTESIANtoCRDGEODETIC(pcc,pcg,dSemiMajorAxis,dFlatning)把空间直角坐标还原成空间大地坐标,计算结果如下图所示:

计算结果

从上图可以看出结果比较满意,高程和精度基本能完全还原,而纬度还原后有较大的误差,在测量中这种误差不允许的,需要修改算法,完善结果。可能引起的原因有可能是由于纬度计算公式并不完善,还有可能是由于计算机的截断误差引起的,还要找时间继续修改、完善。

5.心得体会

这次编程自认为很简单,但真动手自己亲自编写,还是或多或少遇到了一些问题,并分析问题,最终解决问题。虽然这次作业很简单,但经过自己这样一步一步的编写出来,还是有很多收获,加强了运用VC++编写程序的能力,也充分认识到了学习VC++的重要性,更找到了自己的一些缺点与不足。

6.附录(程序源代码)

#include

#include

using namespace std;

#define M_PI 3.1415926

typedef struct tagCRDCARTESIAN

{

double x;

double y;

double z;

}CRDCARTESIAN;

typedef CRDCARTESIAN *PCRDCARTESIAN; typedef struct tagCRDGEODETIC

{

double longitude;

double latitude;

double height;

}CRDGEODETIC;

typedef CRDGEODETIC *PCRDGEODETIC;

void DMS_RAD(double DMS,double *Rad)

{

int Deg,Min;

double Sec;

Deg=(int)DMS;

Min=(int)((DMS-Deg)*100);

Sec=((DMS-Deg)*100-Min)*100;

*Rad=(Deg+Min/60.0+Sec/3600.0)/180.0*M_PI;

return;

}

void RAD_DMS(double Rad,double *DMS)

{

int Deg,Min;

double Sec;

double AR,AM;

AR=Rad;

if (Rad<0)

AR=-Rad;

AR=AR+1.0e-10;

AR=AR*180.0/M_PI;

Deg=(int)AR;

AM=(AR-Deg)*60.0;

Min=(int)AM;

Sec=(AM-Min)*60;

*DMS=Deg+Min/100.0+Sec/10000.0;

if(Rad<0)

*DMS=-*DMS;

return;

}

bool CRDCARTESIANtoCRDGEODETIC(PCRDCARTESIAN pcc,PCRDGEODETIC pcg,double dSemiMajorAxis,double dFlattening) {

double B0,R,N;

double B_,L_;

double X=pcc->x;

double Y=pcc->y;

double Z=pcc->z;

R=sqrt(X*X+Y*Y);

B0=atan2(Z,R);

while (1)

{

N=dSemiMajorAxis/sqrt(1.0-dFlattening*(2-dFlattening)*sin(B0)*sin(B0));

B_=atan2(Z+N*dFlattening*(2-dFlattening)*sin(B0),R);

if(fabs(B_-B0)<1.0e-10)

break;

B0=B_;

}

L_=atan2(Y,X);

pcg->height=R/cos(B_)-N;

RAD_DMS(B_,&pcg->latitude);

RAD_DMS(L_,&pcg->longitude);

return true;

}

bool CRDGEODETICtoCRDCARTESEAN(PCRDGEODETIC pcg,PCRDCARTESIAN pcc,double dSemiMajorAxis,double dFlattening) {

double N;

double B_,L_;

double B=pcg->latitude;

double L=pcg->longitude;

double H=pcg->height;

DMS_RAD(B,&B_);

DMS_RAD(L,&L_);

N=dSemiMajorAxis/sqrt(1.0-dFlattening*(2-dFlattening)*sin(B_)*sin(B_));

pcc->x=(N+H)*cos(B_)*cos(L_);

pcc->y=(N+H)*cos(B_)*sin(L_);

pcc->z=(N*(1.0-dFlattening*(2-dFlattening))+H)*sin(B_);

return true;

}

void main()

{

PCRDCARTESIAN pcc=new CRDCARTESIAN;

PCRDGEODETIC pcg=new CRDGEODETIC;

//B=30.31.40.23 L=114.21.20.51 h=41

double rad;

rad=(30*3600+31*60+40.23)/3600;

pcg->latitude=rad;

rad=(114*3600+21*60+20.51)/3600;

pcg->height=41;

pcg->longitude=rad;

double dSemiMajorAxis=6378137;

double dFlatning=1/298.257223563;

cout<

cout<<"转换前已知的大地坐标:"<

cout<<"H(高度)="<height<<" "<<"L(经度)="<longitude<<" "<<"B(纬度)="<latitude<

CRDGEODETICtoCRDCARTESEAN(pcg, pcc, dSemiMajorAxis,dFlatning);

cout<

cout<<"转换后的空间直角坐标:";

cout<<"x="<x<<" "<<"y="<y<<" "<<"z="<z<<" "<

CRDCARTESIANtoCRDGEODETIC(pcc,pcg,dSemiMajorAxis,dFlatning);

cout<

cout<<"由转换后的空间直角坐标x,y,z还原成大地坐标:"<

cout<<"H(高度)="<height<<" "<<"L(经度)="<longitude<<" "<<"B(纬度)="<latitude<

cout<

}

空间直角坐标系坐标转换方法

坐标转换方法 空间直角坐标系如果其原点不动,绕着某一个轴旋转而构成的新的坐标系,这个过程就叫做坐标旋转。在旧坐标系中的坐标与在旋转后新坐标系中的坐标有一定的转换关系,这种转换关系可以用转换矩阵来表示。 如图5.7,直角坐标系XYZ,P点的坐标为(x, y, z),其相应的在XY 平面,XZ平面,YZ平面分别为M(x, y,0),Q(x,0, z)和N(0, y, z)。 图5.7直角坐标系XYZ 设?表示第j 轴的旋转角度,R j (?) 表示绕第j 轴的旋转,其正方向是沿坐标轴向原点看去的逆时针方向。很明显当j 轴为旋转轴时,它对应的坐标中的j 分量是不变的。由于直角坐标系是对称的,下面我们以绕Z轴旋转为例推导其旋转变换矩阵,其它两个轴推导和它是一样的。 设图5.7的坐标绕Z轴逆时针旋转θ角度,新坐标为X 'Y'Z',如图5.8所示: 图5.8 坐标绕Z 轴逆时针旋转θ角度 由于坐标中的z 分量不变,我们可以简化地在XY 平面进行分分析,如图

5.9所示: 图5.9坐标绕Z 轴逆时针旋转θ 角度的XY 平面示意图 点 M X 和点M X ' 分别是M 点在X 轴和X '轴的投影。如图5.9 cos cos() sin sin() X X X X x OM OM MOM OM y MM OM MOM OM ?θ?θ==∠=-??==∠=-? (5-1) cos cos sin sin X X X X x OM OM MOM OM y MM OM MOM OM ? ?'''''==∠=??'==∠=? (5-2) 把(5-1)式按照三角函数展开得: cos cos sin sin sin cos cos sin x OM OM y OM OM ?θ?θ ?θ?θ=+??=+? (5-3) 把(5-2)式代入(5-3)式得: cos sin sin cos x x y y x y θθ θθ''=+??''=-+? (5-4) 坐标中的z 分量不变,即z = z'这样整个三维坐标变换就可以写成(用新坐标表 示旧坐标) cos sin sin cos x x y y x y z z θθ θθ''=+? ?''=-+??' =? (5-5) 把式(5-5)用一个坐标旋转变换矩阵R Z (θ) 表示可以写成:

平面直角坐标系单元测试题及答案

第七章 平面直角坐标系测试题(9班专用) 一、填空题 1.已知点A (0,1)、B (2,0)、C (0,0)、D (-1,0)、E (-3,0),则在y 轴上的点有 个。 2.如果点A ()b a ,在x 轴上,且在原点右侧,那么a ,b 3.如果点()1,-a a M 在x 轴下侧,y 轴的右侧,那么a 的取值范围是 4.已知两点A ()m ,3-,B ()4,-n ,若AB ∥y 轴,则n = , m 的取值范围是 . 5.?ABC 上有一点P (0,2),将?ABC 先沿x 轴负方向平移2个单位长度,再沿y 轴正方向平移3个单位长度,得到的新三角形上与点P 相对应的点的坐标是 . 6,如图所示,象棋盘上,若“将”位于点 (3,-2),“车”位于点(-1,-2),则“马”位于 . 7,李明的座位在第5排第4列,简记为(5,4),张扬的座位在第3排第2列,简记为(3,2),若周伟的座位在李明的后面相距2排,同时在他的左边相距3列,则周伟的座位可简记为 . 8.将?ABC 绕坐标原点旋转180后,各顶点坐标变化特征是: . 二、选择题 9.下列语句:(1)点(3,2)与点(2,3)是同一点;(2)点(2,1)在第二象限;(3)点(2,0) 在第一象限;(4)点(0,2)在x 轴上,其中正确的是( ) A.(1)(2) B.(2)(3) C.(1)(2)(3)(4)D. 没有 10.如果点M ()y x ,的坐标满足 0=y x ,那么点M 的可能位置是( ) A.x 轴上的点的全体 B. 除去原点后x 轴上的点的全体 C.y 轴上的点的全体 D. 除去原点后y 轴上的点的全体 11.已知点P 的坐标为()63,-2+a a ,且点P 到两坐标轴的距离相等,则点P 的坐标是( ) A.(3,3) B.(3,-3) C. (6,-6) D.(3,3)或(6,-6) 12.如果点()3,2+x x 在x 轴上方,y 轴右侧,且该点到x 轴和y 轴的距离相等,则x 的值为( ) A.1 B.-1 C.3 D.-3 13.将某图形的各顶点的横坐标减去2,纵坐标保持不变,可将该图形( ) A.横向右平移2个单位 B.横向向左平移2个单位 C.纵向向上平移2个单位 D.纵向向下平移2个单位 14.下面是小明家与小刚家的位置描述: 小明家:出校门向东走150m ,再向北走200m ; 马将车8题图

(高二数学空间直角坐标系教学教材

(高二数学空间直角坐 标系

宁师中学“自主参与学习法”数学学科导学稿(学生版) 编号SXBx2-2-3 主编人:余奎 审稿人:高二数学 组 定稿日:协编人:高二数学备课组使用人:课题:2.3.1 空间直角坐标系 考纲解读 学习内容学习目标高考考点考查题型 空间坐标系; 空间距离1.明确空间直角坐标系是如何建立;明确 空间中的任意一点如何表示; 2 能够在空间直角坐标系中求出点的坐 标。 1.空间坐标 系 2.空间距离 选择,填空 题、解答题 中分支问题 问题1:空间直角坐标系 (1)定义:以空间中两两垂直且相交于一点O的三条直线分别为x轴、y轴、z轴.这时就说建立了空间直角坐标系Oxyz,其中点O叫作坐标,x轴、y轴、z轴叫作 坐标轴.通过每两个坐标轴的平面叫作坐标平面,分别称为xOy平面、yOz 平面、zOx平面. (2)画法:在平面上画空间直角坐标系Oxyz时,一般使∠xOy=45°或 135°,∠yOz=90°. (3)坐标:设点M为空间的一个定点,过点M分别作垂直于x轴、y轴和z轴的平面,依次交x轴、y轴和z轴于点P、Q和R.设点P、Q和R在x轴、y轴和z轴上的坐标分别为x、y和z,那么点M就和有序实数组(x,y,z)是一一对应的关系,有序实数组(x,y,z)叫作点M在此空间直角坐标系中的坐标,记作M(x,y,z),其中x叫作点M的横坐标,y叫作点M的纵坐标,z叫作点M的竖坐标. (4)说明:本书建立的坐标系都是右手直角坐标系,即在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,则称这个坐标系为右手直角坐标系. 问题2:(1)平面直角坐标系的建立方法,点的坐标的确定过程、表示方法? (2).一个点在平面怎么表示?在空间呢? 二、课内探究 探究一:确定空间内点的坐标 例1.如图,在长方体ABCD—A1B1C1D1 中,AD=3,AB=5,AA1=4, 建立适当的直角坐标系,写出此长方体各顶点的坐标. 变式1.如图,在正方体ABCD-A'B'C'D'中,E,F,G分别是BB',D'B',DB的中点,棱长为1,求E,F点的坐标. 探究二:关于一些对称点的坐标求法 (,,) P x y z关于坐标平面xoy对称的点; (,,) P x y z关于坐标平面yoz对称的点; (,,) P x y z关于坐标平面xoz对称的点; (,,) P x y z关于x轴对称的点; (,,) P x y z关于y对轴称的点; (,,) P x y z关于z轴对称的点; 三、课后练习 1. 关于空间直角坐标系叙述正确的是(). A.(,,) P x y z中,, x y z的位置是可以互换的 B.空间直角坐标系中的点与一个三元有序数组是一种一一对应的关系 C.空间直角坐标系中的三条坐标轴把空间分为八个部分 D.某点在不同的空间直角坐标系中的坐标位置可以相同 2. 已知点(3,1,4) A--,则点A关于原点的对称点的坐标为(). A.(1,3,4) --B.(4,1,3) --C.(3,1,4) -D.(4,1,3) - 3.已知ABC ?的三个顶点坐标分别为(2,3,1),(4,1,2),(6,3,7) A B C -,则ABC ?的重心坐标为 . 4.在空间直角坐标系中,给定点(1,2,3) M-,求它分别关于坐标平面,坐标轴和原点的对称点的坐标. 四、课后反思

不同空间直角坐标系的转换

不同空间直角坐标系的转换 欧勒角 不同空间直角坐标系的转换,包括三个坐标轴的平移和坐标轴的旋转,以及两个坐标系的尺度比参数,坐标轴之间的三个旋转角叫欧勒角。 三参数法 三参数坐标转换公式是在假设两坐标系间各坐标轴相互平行,轴系间不存在欧勒角的条件下得出的。实际应用中,因为欧勒角不大,可以用三参数公式近似地进行空间直角坐标系统的转换。公共点只有一个时,采用三参数公式进行转换。

七参数法 用七参数进行空间直角坐标转换有布尔莎公式,莫洛琴斯基公式和范氏公式等。下面给出布尔莎七参数公式: 坐标转换多项式回归模型 坐标转换七参数公式属于相似变换模型。大地控制网中的系统误差一般呈区域性,当区域较小时,区域性的系统误差被相似变换参数拟合,故局部区域的坐标转换采用七参数公式模型是比较适宜的。但对全国或一个省区范围内的坐标转换,可以采用多项式回归模型,将各区域的系统偏差拟合到回归参数中,从而提高坐标转换精度。 两种不同空间直角坐标系转换时,坐标转换的精度取决于坐标转换的数学模型和求解转换系数的公共点坐标精度,此外,还与公共点的分布有关。鉴于地面控制网系统误差在???? ??????+??????????=??????????000111222Z Y X Z Y X Z Y X ???? ??????+????????????????????---+??????????+=??????????000111111222000)1(Z Y X Z Y X Z Y X m Z Y X X Y X Z Y Z εεεεεε

不同区域并非是一个常数,所以采用分区进行坐标转换能更好地反映实际情况,提高坐标转换的精度。

空间直角坐标系练习题含详细答案

空间直角坐标系(11月21日) 一、选择题 1、有下列叙述: ①在空间直角坐标系中,在ox轴上的点的坐标一定是(0,b,c); ②在空间直角坐标系中,在yoz平面上的点的坐标一定是(0,b,c); ③在空间直角坐标系中,在oz轴上的点的坐标可记作(0,0,c); ④在空间直角坐标系中,在xoz平面上的点的坐标是(a,0,c)。 其中正确的个数是(C ) A、1 B、2 C、3 D、4 2、已知点A(-3,1,4),则点A关于原点的对称点的坐标为(C ) A、(1,-3,-4) B、(-4,1,-3) C、(3,-1,4) D、(4,-1,3) 3、已知点A(-3,1,-4),点A关于x轴的对称点的坐标为(A ) A、(-3,-1,4) B、(-3,-1,-4) C、(3,1,4) D、(3,-1,-4) 4、点(1,1,1)关于z轴的对称点为(A ) A、(-1,-1,1) B、(1,-1,-1) C、(-1,1,-1) D、(-1,-1,-1) 5、点(2,3,4)关于xoz平面的对称点为(C ) A、(2,3,-4) B、(-2,3,4) C、(2,-3,4) D、(-2,-3,4) 6、点P(2,0,3)在空间直角坐标系中的位置是在(C) A.y轴上B.xOy平面上C.xOz平面上D.x轴上 7、以正方体ABCD—A1B1C1D1的棱AB、AD、AA1所在的直线为坐标轴建立空间直角坐标系,且正方体的棱长为一个单位长度,则棱CC1中点坐标为(C ) A、(1 2 ,1,1)B、(1, 1 2 ,1)C、(1,1, 1 2 )D、( 1 2 , 1 2 ,1) 8、点P( 2 2, 3 3,- 6 6)到原点的距离是(B) A.30 6B.1 C. 33 6 D. 35 6 9、点M(4,-3,5)到x轴的距离为(B) A.4 B.34 C.5 2 D.41 10、在空间直角坐标系中,点P(1,2,3),过点P作平面xOy的垂线PQ,垂足为Q,则Q的坐标为(D) A.(0,2,0) B.(0,2,3) C.(1,0,3) D.(1,2,0) 11、点M(-2,1,2)在x轴上的射影的坐标为(B) A.(-2,0,2) B.(-2,0,0) C.(0,1,2) D.(-2,1,0) 12、在长方体ABCD-A1B1C1D1中,若D(0,0,0),A(4,0,0),B(4,2,0),A1(4,0,3),则对角线AC1的长为(B) A.9 B.29 C.5 D.2 6 二、填空题 1、在空间直角坐标系中, 点P的坐标为(1, 3 2,),过点P作yOz平面的垂线PQ, 则垂足Q 的坐标是________________. 2、已知A(x, 5-x, 2x-1)、B(1,x+2,2-x),当|AB|取最小值时x的值为_______________. 3、已知空间三点的坐标为A(1,5,-2)、B(2,4,1)、C(p,3,q+2),若A、B、C三点共线,则p =_________,q=__________. 4、已知点A(-2, 3, 4), 在y轴上求一点B , 使|AB|=7 , 则点B的坐标为________________.

圆的方程及空间直角坐标系(讲义及答案)

X 的方程及空间直角坐标系(讲义) >知识点睛 一、圆的方程 1. 圆的标准方程: ______________________ , 圆心: ________, 半径:________. 2. 圆的一般方程: 圆心: 二、位置关系的判断 (1) 点与圆 由两点间的距离公式计算点到圆心的距离",比较",r 大小. ① 已知点Vo)与圆的标准方程(x-a}\(y'-b)-=r, 则计算矿二 _________________ ,比较沪,尸大小. ② 已知点P(xo, yo)与圆的一般方程X- + y- +Dx + Ey + F = 0 , 则计算 _____________________ ,与0比较大小. (2) 直线与圆 ① 利用点到直线的距离公式求圆心到直线的距离",比较 ",r 大小. ② 联立直线与圆方程,得到一元二次方程,根△判断: 'A 0,直线与圆相交 (3)圆与圆 利用两点间的距离公式求圆心距d,结合两圆半径和〃的关系 判断. 三、常见思考角度 1. 直线与圆位置关系常见考査角度 (1)过定点求圆的切线方程 ① 判断该点与圆的位置关系(若点在圆内,则无切线). ② 根据切线的性质求切线方程. 若点在圆上,则利用切线垂直于过切点的半径求切线方程: 若点在圆外,则分别讨论 ___________________ ,设点斜式 利用〃二r 建方程求解.[gl

(2)直线与圆相交求弦长 结合垂径定理和勾股定理,半径长厂圆心到直线的距离丛 弦长/满足关系式:厂2=〃2+(_厂 2 2. 圆与圆位置关系常见考査角度 (1) 两圆相交求公共弦所在直线方程 设圆G :x2+y2 + DrV + Ej + F| = 0, C2:x2+b+0x + E* + F2 = O,则公共弦所在直线的方程为 (0 — D? )x + (E] — £*2) y + F[—尸2 = 0 - (2) 两圆相交求公共弦长 求出公共弦所在直线方程及其中一圆圆心到公共弦的距离, 垂径定理、勾股定理结合求弦长. 四、轨迹方程 在平面直角坐标系中,点M 的轨迹方程是指点M 的坐标 (X, y )满足的关系式. 五、空间直角坐标系Ovvz (右手直角坐标系) 如图1, 0点叫做坐标原点,牙轴、y 轴、2轴叫做坐标 轴.通过每两个坐标轴的平面叫做坐标平面,分别称为xOy 平面、yOz 平面、zOx 平面. zn 六、空间直角坐标系中点的坐标 如图2,过点M 分别作垂直于X 轴,y 轴和Z 轴的平面,依 次交X 轴,y 轴和Z 轴于点P, e 和设点P, Q 和R 在牙 轴,y 轴和Z 轴上的坐标分别是X, y 和Z,那么点M 对应唯 —确定的有序实数组U ,y,刀. 有序实数组馆)* 201做点M 在此空间直角坐标系中的坐标, 记作MS ,y, z ).其中X 叫做点M 的 __________ , y 叫做点 M 的 __________ , Z 叫做点M 的 __________ . -1 -- B? 1 "Z C' A ' C >1 \ >1 0 X

坐标转换之计算公式

坐标转换之计算公式 一、参心大地坐标与参心空间直角坐标转换 1名词解释: A :参心空间直角坐标系: a) 以参心0为坐标原点; b) Z 轴与参考椭球的短轴(旋转轴)相重合; c) X 轴与起始子午面和赤道的交线重合; d) Y 轴在赤道面上与X 轴垂直,构成右手直角坐标系0-XYZ ; e) 地面点P 的点位用(X ,Y ,Z )表示; B :参心大地坐标系: a) 以参考椭球的中心为坐标原点,椭球的短轴与参考椭球旋转轴重合; b) 大地纬度B :以过地面点的椭球法线与椭球赤道面的夹角为大地纬度B ; c) 大地经度L :以过地面点的椭球子午面与起始子午面之间的夹角为大地经度L ; d) 大地高H :地面点沿椭球法线至椭球面的距离为大地高H ; e) 地面点的点位用(B ,L ,H )表示。 2 参心大地坐标转换为参心空间直角坐标: ?? ???+-=+=+=B H e N Z L B H N Y L B H N X sin *])1(*[sin *cos *)(cos *cos *)(2 公式中,N 为椭球面卯酉圈的曲率半径,e 为椭球的第一偏心率,a 、b 椭球的长短半 径,f 椭球扁率,W 为第一辅助系数 a b a e 2 2-= 或 f f e 1*2-= W a N B W e =-=22sin *1( 3 参心空间直角坐标转换参心大地坐标

[]N B Y X H H e N Y X H N Z B X Y L -+=+-++==cos ))1(**)()(*arctan( )arctan(2 2222 二 高斯投影及高斯直角坐标系 1、高斯投影概述 高斯-克吕格投影的条件:1. 是正形投影;2. 中央子午线不变形 高斯投影的性质:1. 投影后角度不变;2. 长度比与点位有关,与方向无关; 3. 离中央子午线越远变形越大 为控制投影后的长度变形,采用分带投影的方法。常用3度带或6度带分带,城市或工 程控制网坐标可采用不按3度带中央子午线的任意带。 2、高斯投影正算公式: 5 2224253 2236 4254 42232)5814185(cos 120 )1(cos 6 cos )5861(cos sin 720 495(cos sin 24 cos sin 2l t t t B N l t B N Bl N y l t t B B N l t B B N Bl B N X x ηηηηη-++-++-+=+-+++-++=) 3、高斯投影反算公式:

7.1 平面直角坐标系练习题(含答案)

《平面直角坐标系》练习题 班别:___________姓名:_______________ 一、选择题 1. 若m<0,则点P(3,2m)所在的象限是 ( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 2. 点 M(3,-4)关于x轴的对称点的坐标是 ( ) A. (3,4) B. (?3,?4) C. (?3,4) D. (?4,3) 3.P(a,b) 是第二象限内一点,则Q(b,a) 位于 ( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 4. 下列说法:①坐标轴上的点不属于任何象限;②y轴上点的横坐标为0;③平面直角坐标系中,(1,2) 和 (2,1) 表示两个不同的点;④点(3,0) 在x轴上,其中你认为正确的有 ( ) A. 1个 B. 2个 C. 3个 D. 4个 5. 若点A(3?m,n+2)关于原点的对称点B的坐标是(?3,2),则m,n的值为 ( ) A. m=?6,n=?4 B. m=0,n=?4 C. m=6,n=4 D. m=6,n=?4 6. 已知点A(?3,2)与点B(x,y)在同一条平行y轴的直线上,且B点到x轴的矩离等于3,则B点的坐标是 ( ) A. (?3,3) B. (3,?3) C. (?3,3)或(?3,?3) D. (?3,3)或(3,?3) 7. 定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1,l2的距离分别为a,b,则称有序非负实数对(a,b)是点M的“距离坐标”,根据上述定义,距离坐标为(2,3)的点的个数是 ( ) A. 2 B. 1 C. 4 D. 3 8. 若点P(a,b)在第四象限,则点Q(b,?a)所在的象限为 ( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 9. 在平面直角坐标系xOy中,对于点P(x,y),我们把点P(?y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,?,这样依次得到点A1,A2,A3,?,A n,?.例如:点A1的坐标为(3,1),则点A2的坐标为(0,4),?;若点A1的坐标为(a,b),则点 A2015的坐标为 ( ) A. (?b+1,a+1) B. (?a,?b+2) C. (b?1,?a+1) D. (a,b) 10. 在平面直角坐标系中,把点P(?3,2)绕原点O顺时针旋转180°,所得到的对应点P?的坐标为 ( ) A. (3,2) B. (2,?3) C. (?3,?2) D. (3,?2) 11. 在平面直角坐标系中,点A(?2,1)与点B关于原点对称,则点B的坐标为 ( ) A. (?2,1) B. (2,?1) C. (2,1) D. (?2,?1) 12. 如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从 内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示, 则顶点A55的坐标是 A. (13,13) B. (?13,?13) C. (14,14) D. (?14,?14)

高中数学人教A版必修2《空间直角坐标系》讲义

(同步复习精讲辅导)北京市-高中数学空间直角坐标系讲义新 人教A版必修2 重难点易错点解析 题一 题面:有下列叙述 ① 在空间直角坐标系中,在ox轴上的点的坐标一定是(0,b,c); ②在空间直角坐标系中,在yoz平面上的点的坐标一定是(0,b,c); ③在空间直角坐标系中,在oz轴上的点的坐标可记作(0,0,c); ④在空间直角坐标系中,在xoz平面上的点的坐标是(a,0,c)。 其中正确的个数是() A、1 B、2 C、3 D、4 题二 题面:已知点A(-3,1,4),则点A关于原点的对称点的坐标为() A、(1,-3,-4) B、(-4,1,-3) C、(3,-1,-4) D、(4,-1,3) 金题精讲 题一 题面:已知点A(-3,1,-4),点A关于x轴的对称点的坐标为() A、(-3,-1,4) B、(-3,-1,-4) C、(3,1,4) D、(3,-1,-4) 题二

题面:点(2,3,4)关于xoz 平面的对称点为( ) A 、(2,3,-4) B 、(-2,3,4) C 、(2,-3,4) D 、(-2,-3,4) 题三 题面:点P (a ,b ,c )到坐标平面xOy 的距离是( ) A 、22a b + B 、|a| C 、|b| D 、|c| 题四 题面:在空间直角坐标系中,点P 的坐标为(1,2,3),过点P 作yOz 平面的垂线PQ , 则垂足Q 的坐标是______________。 题五 题面:A (1,-2,11),B (4,2,3),C (6,-1,4)为三角形的三个顶点,则ABC ?是( ) A 、直角三角形 B 、钝角三角形 C 、锐角三角形 D 、等腰三角形 题六 题面:若点A (2,1,4)与点P (x ,y ,z )的距离为5,则x ,y ,z 满足的关系式是_______________. 题七 题面:已知点A 在x 轴上,点B (1,2,0),且|AB 则点A 的坐标是_________________. 题八

空间直角坐标系检测题

空间直角坐标系检测题 姓名 得分 一.选择题 1.在空间直角坐标系中,设z 为任意实数,相应的点(3,1,)P z 的集合确定的图形为 ( ) A .点 B .直线 C .圆 D .平面 2.已知点(1,4,2)M -,那么点M 关于y 轴对称点的坐标是 ( ) A .(1,4,2)-- B .(1,4,2)- C . (1,4,2)- D .(1,4,2) 3.点(3,4,5)P 在yoz 平面上的投影点1P 的坐标是 ( ) A .(3,0,0) B .(0,4,5) C .(3,0,5) D . (3,4,0) 4.已知点(1,2,11),(4,2,3),(6,1,4)A B C --,则ABC ?的形状是 ( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰直角三角形 5.已知(4,3,1)M -,记M 到x 轴的距离为a ,M 到y 轴的距离为b ,M 到z 轴的距离为c ,则( ) A .a b c >> B .c b a >> C .c a b >> D .b c a >> 6. 在直角坐标系中,已知两点(4,2),(1,3)M N -,沿x 轴把直角坐标平面折成直二面角后,,M N 两点的距离为 ( ) A B C D 二.填空题 7.点B 是点(3,1,4)A --关于y 轴的对称点,则线段AB 长为 。 8.已知三角形的三个顶点(2,1,4),(3,2,6),(5,0,2)A B C ---,则过点A 的中线长为 。 9.已知正四棱柱1111ABCD A B C D -的顶点坐标分别为(0,0,0),(2,0,0),(0,2,0)A B D ,1(0,0,5)A ,则1C 的坐标为 。 10.已知球面2 2 2 (1)(2)(3)9x y z -+++-=,与点(3,2,5)A -,则球面上的点与点A 距离的最大值与最小值分别是 。 三.解答题

空间直角坐标系与空间大地坐标系的相互转换及其C++源程序

空间直角坐标系与空间大地坐标系的相互转换 1.空间直角坐标系/笛卡尔坐标系 坐标轴相互正交的坐标系被称作笛卡尔坐标系。三维笛卡尔坐标系也被称为空间直角坐标系。在空间直角坐标系下,点的坐标可以用该点所对应的矢径在三个坐标轴上的投影长度来表示,只有确定了原地、三个坐标轴的指向和尺度,就定义了一个在三维空间描述点的位置的空间直角坐标系。 以椭球体中心O为原点,起始子午面与赤道面交线为X轴,在赤道面上与X轴正交的方向为Y轴,椭球体的旋转轴为Z轴构成右手坐标系O.XYZ,在该坐标系中,P点的位置用X,Y,Z表示。 在测量应用中,常将地球空间直角坐标系的坐标原点选在地球质心(地心坐标系)或参考椭球中心(参心坐标系),z轴指向地球北极,x轴指向起始子午面与地球赤道的交点,y轴垂直于XOZ面并构成右手坐标系。 空间直角坐标系 2.空间大地坐标系 由于空间直角坐标无法明确反映出点与地球之间的空间关系,为了解决这一问题,在测量中引入了大地基准,并据此定义了大地坐标系。大地基准指的是用于定义地球参考椭球的一系列参数,包括如下常量: 2.1椭球的大小和形状

2.2椭球的短半轴的指向:通常与地球的平自转轴平息。 2.3椭球中心的位置:根据需要确定。若为地心椭球,则其中心位于地球质心。 2.4本初子午线:通过固定平极和经度原点的天文子午线,通常为格林尼治子午线。 以大地基准为基础建立的坐标系被称为大地坐标系。由于大地基准又以参考椭球为基准,因此,大地坐标系又被称为椭球坐标系。大地坐标系是参心坐标系,其坐标原点位于参考椭球中心,以参考椭球面为基准面,用大地经度L、纬度B 和大地高H表示地面点位置。过地面点P的子午面与起始子午面间的夹角叫P 点的大地经度。由起始子午面起算,向东为正,叫东经(0°~180°),向西为负,叫西经(0°~-180°)。过P点的椭球法线与赤道面的夹角叫P点的大地纬度。由赤道面起算,向北为正,叫北纬(0°~90°),向南为负,叫南纬(0°~-90°)。从地面点P沿椭球法线到椭球面的距离叫大地高。大地坐标坐标系中,P点的位置用L,B表示。如果点不在椭球面上,表示点的位置除L,B外,还要附加另一参数——大地高H。 空间大地坐标系 3.空间直角坐标与大地坐标间的转换 3.1大地坐标转换为空间直角坐标

空间直角坐标系的旋转转换

空间直角坐标系的旋转转换 using System; using System.Collections.Generic; using https://www.360docs.net/doc/4413002593.html,ponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.IO; using System.Windows.Forms; namespace ReferenceTransition { public partial class Form1 : Form { public Form1() { this.MaximizeBox = false; InitializeComponent(); } private double x, y, z; private double i, j, k; private double a1,a2,a3; private double b1, b2, b3; private double c1, c2, c3; private double rx, ry, rz; private string t1, t2, t3; private string k1, k2, k3; private void button1_Click(object sender, EventArgs e) { textBox1.Text = ""; textBox2.Text = ""; textBox3.Text = ""; textBox4.Text = ""; textBox5.Text = ""; textBox6.Text = ""; textBox7.Text = ""; textBox8.Text = ""; textBox9.Text = ""; richTextBox1.Text = ""; } private void button4_Click(object sender, EventArgs e) { try {

《平面直角坐标系》经典练习题88272

《平面直角坐标系》章节复习 考点1:考点的坐标与象限的关系 知识解析:各个象限的点的坐标符号特征如下: (特别值得注意的是,坐标轴上的点不属于任何象限.) 1、在平面直角坐标中,点M (-2,3)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2、在平面直角坐标系中,点P (-2,2x +1)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3、若点P (a ,a -2)在第四象限,则a 的取值范围是( ). A .-2<a <0 B .0<a <2 C .a >2 D .a <0 4、点P (m ,1)在第二象限内,则点Q (-m ,0)在( ) A .x 轴正半轴上 B .x 轴负半轴上 C .y 轴正半轴上 D .y 轴负半轴上 5、若点P (a ,b )在第四象限,则点M (b -a ,a -b )在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 6、在平面直角坐标系中,点(12)A x x --,在第四象限,则实数x 的取值范围是 . 7、对任意实数x ,点2(2)P x x x -,一定不在.. ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 8、如果a -b <0,且ab <0,那么点(a ,b)在( ) A 、第一象限 B 、第二象限 C 、第三象限, D 、第四象限. 考点2:点在坐标轴上的特点 x 轴上的点纵坐标为0, y 轴上的点横坐标为0.坐标原点(0,0) 1、点P (m+3,m+1)在x 轴上,则P 点坐标为( ) A .(0,-2) B .(2,0) C .(4,0) D .(0,-4) 2、已知点P (m ,2m -1)在y 轴上,则P 点的坐标是 。

高中数学-空间直角坐标系与空间向量典型例题

高中数学-空间直角坐标系与空间向量 一、建立空间直角坐标系的几种方法 构建原则: 遵循对称性,尽可能多的让点落在坐标轴上。 作法: 充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系. 类型举例如下: (一)用共顶点的互相垂直的三条棱构建直角坐标系 例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠ A 为直角,A B ∥CD ,AB =4,AD =2,D C =1,求异面直线BC 1与DC 所成角的余弦 值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =--u u u u r ,,,(010)CD =-u u u r ,,. 设1BC u u u u r 与CD uuu r 所成的角为θ, 则11317 cos 17BC CD BC CD θ== u u u u r u u u r g u u u u r u u u r . (二)利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于 C 、C 1的一点,EA ⊥EB 1.已知2AB = ,BB 1=2,BC =1,∠BCC 1= 3 π .求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB = 2,∠BCC 1= 3 π,

高考立体几何复习三部曲—空间直角坐标系的应用

高考数学立体几何三部曲—空间之直角坐标系专项 一、积及坐标运算 1.两个向量的数量积 (1)a·b =|a||b|cos 〈a ,b 〉; (2)a ⊥b ?a·b =0(a ,b 为非零向量); (3)|a |2=a 2,|a |=x 2+y 2+z 2. 2.向量的坐标运算 3、应用共线向量定理、共面向量定理证明点共线、点共面的方法比较: 一、空间向量的简单应用 1.(课本习题改编)已知a =(-2,-3,1),b =(2,0,4),c =(-4,-6,2)则下列结论正确的是( ) A .a ∥c ,b ∥c B .a ∥b ,a ⊥c C .a ∥c ,a ⊥b D .以上都不对 2.(2012·济宁一模)若{a ,b ,c }为空间的一组基底,则下列各项中,能构成基底的一组向量是( ) A .{a ,a +b ,a -b } B .{b ,a +b ,a -b } C .{c ,a +b ,a -b } D .{a +b ,a -b ,a +2b } 3.(教材习题改编)下列命题: ①若A 、B 、C 、D 是空间任意四点,则有AB u u u r +BC u u u r +CD u u u r +DA u u u r =0;

②若MB u u u r =x MA u u u r +y MB u u u r ,则M 、P 、A 、B 共面; ③若p =x a +y b ,则p 与a ,b 共面. 其中正确的个数为( ) A .0 B .1 C .2 D .3 4.在四面体O -ABC 中,OA u u u r =a ,OB u u u r =b ,OC u u u r =c ,D 为BC 的中点,E 为AD 的中点,则OE u u u r = ________(用a ,b ,c 表示). 5.013·大同月考)若直线l 的方向向量为a ,平面α的法向量为n ,能使l ∥α的是( ) A .a =(1,0,0),n =(-2,0,0) B .a =(1,3,5),n =(1,0,1) C .a =(0,2,1),n =(-1,0,-1) D .a =(1,-1,3),n =(0,3,1) 6已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( ) A.62 7 B.637 C.60 7 D.657 二、利用空间向量证明平行或垂直 [例] 已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,边长为2a ,AD =DE =2AB ,F 为CD 的中点. (1)求证:AF ∥平面BCE ; (2)求证:平面BCE ⊥平面CDE . 8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别是棱BC 、DD 1上的点,如 果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.

《平面直角坐标系》单元测试题及答案

平面直角坐标系单元测试题 、选择题(每小题3分,共30分) 1 ?如图是在方格纸上画出的小旗图案,若用(0, 0)表示A 点,(0, 4)表示 B 点,那么C 点的位置可表示为() A. (0,3) B . (2,3) C . (3,2) D . (3,0) 2 ?点 B (— 3,0 )在( ) A . x 轴的正半轴上 B . x 轴的负半轴上 C . y 轴的正半轴上 D . y 轴的负半轴上 3. 平行于x 轴的直线上的任意两点的坐标之间的关系是( A.横坐标相等 B .纵坐标相等 C.横坐标的绝对值相等 D .纵坐标的绝对值相等 4. 下列说法中,正确的是() A. 平面直角坐标系是由两条互相垂直的直线组成的 B. 平面直角坐标系是由两条相交的数轴组成的 C. 平面直角坐标系中的点的坐标是唯一确定的 D. 在平面上的一点的坐标在不同的直角坐标系中的坐标相同 5. 已知点 P i (-4,3)和 R (-4,-3),则 P i 和 R () A.关于原点对称 B .关于y 轴对称 C.关于x 轴对称 D .不存在对称关系 6. 如果点P (5, y )在第四象限,贝U y 的取值范围是( ) A. y>0 B . y v 0 C . y> 0 D . y< 0 7. 一个正方形在平面直角坐标系中三个顶点的坐标为(一 2,— 3 ),(-2, 1), (2,1),则第四个顶点的坐标为( ) A. (2, 2); B . (3, 2); C . (2,— 3) D . (2, 3) 8. 在平面直角坐标系内,把点P (— 5,— 2)先向左平移2个单位长度,再向上 平移4个单位长度后得到的点的坐标是( ) A. (-3 , 2); B . (-7 , -6 ); C . (-7, 2) D . (-3 , -6) 9. 已知P (0, a )在y 轴的负半轴上,则 Q (-a 2-1,-a 1)在() ■— y : . -r" -.* C -: ... r * 1 …_L j, ■ ■■ A

学习知识要点-空间直角坐标系

第5讲 空间直角坐标系 ★知识梳理★ 1.右手直角坐标系 ①右手直角坐标系的建立规则:x 轴、y 轴、z 轴互相垂直,分别指向右手的拇指、食指、 中指; ②已知点的坐标),,(z y x P 作点的方法与步骤(路径法): 沿x 轴正方向(0>x 时)或负方向(0y 时)或负方向(0z 时)或负方向(0

空间直角坐标系练习题含详细答案之欧阳光明创编

空间直角坐标系(11月21日) 一、 欧阳光明(2021.03.07) 二、选择题 1、有下列叙述: ①在空间直角坐标系中,在ox轴上的点的坐标一定是(0,b, c); ②在空间直角坐标系中,在yoz平面上的点的坐标一定是(0, b,c); ③在空间直角坐标系中,在oz轴上的点的坐标可记作(0,0, c); ④在空间直角坐标系中,在xoz平面上的点的坐标是(a,0, c)。 其中正确的个数是( C ) A、1 B、2 C、3 D、4 2、已知点A(-3,1,4),则点A关于原点的对称点的坐标为 ( C ) A、(1,-3,-4) B、(-4,1,-3) C、(3,-1,4) D、 (4,-1,3) 3、已知点A(-3,1,-4),点A关于x轴的对称点的坐标为 ( A )A、(-3,-1,4) B、(-3,-1,-4) C、(3,1,4) D、(3,-1,-4) 4、点(1,1,1)关于z轴的对称点为( A ) A、(-1,-1,1) B、(1,-1,-1) C、(-1,1,-1) D、(-1,-1,-1) 5、点(2,3,4)关于xoz平面的对称点为( C ) A、(2,3,-4) B、(-2,3,4) C、(2,-3,4) D、(-2,-3,4) 6、点P(2,0,3)在空间直角坐标系中的位置是在(C) A.y轴上 B.xOy平面上C.xOz平面上 D.x轴上 7、以正方体ABCD—A1B1C1D1的棱AB、AD、AA1所在的直线为坐标轴建立空间直角坐标系,且正方体的棱长为一个单位长度,则棱CC1中点坐标为( C ) A、(1 2 ,1,1) B、(1,1 2 ,1) C、(1,1,1 2 ) D、 (1 2 ,1 2 ,1) 8、点P( 2 2, 3 3,- 6 6)到原点的距离是(B) A. 30 6B.1C. 33 6 D. 35 6 9、点M(4,-3,5)到x轴的距离为(B) A.4 B.34C.52D.41

相关文档
最新文档