第三章假设检验作业

合集下载

假设检验习题及答案

假设检验习题及答案

第三章 假设检验3.2 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。

已知这种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。

{}0100001:1000, H :1000X u=950 100 n=25 1000950-1000u= 2.510025 V=u 0.05H nx u αμμμσσμα-≥<-====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得:拒绝域:本题中:0.950.950u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。

3.4某批矿砂的五个样品中镍含量经测定为(%): 3.25 3.27 3.24 3.26 3.24设测定值服从正态分布,问在0.01α=下能否接受假设,这批矿砂的镍含量为01011020: 3.25 H :t X t=13.252, S=0.0117, n=53.252-3.25t= 0.34190.011751H S n x μμμμσμ==≠--==-提出假设:构造统计量:本题属于未知的情形,可用检验,即取检验统计量为:本题中,代入上式得:否定域为:1-20.995120 V=t>t (1)0.01,(4) 4.6041, 3.25n t t tH ααα-⎧⎫-⎨⎬⎩⎭==<∴ 本题中,接受认为这批矿砂的镍含量为。

3.5确定某种溶液中的水分,它的10个测定值0.452%,0.035%,X S ==2N(,),μσ设总体为正态分布试在水平5%检验假设:0101() H :0.5% H :0.5%() H :0.04% H :0.0.4%i ii μμσσ≥<≥<{}00.95()10.452% S=0.035%-4.1143(1)0.05 n=10 t (9) 1.833i t S n X n ασμα--==-==1-构造统计量:本文中未知,可用检验。

第三章假设检验

第三章假设检验

《数理统计》试题库假设检验1设2521,,,ξξξ 取自正态母体)9,(μN 其中μ为未知参数,ξ为子样均值,对检验问题0100:,:μμμμ≠=H H 取检验的拒绝域:{}c x x x C ≥-=0251:)(μ , 试决定常数c 使检验的显著性水平为0.05.解:因为),,(9N ~μξ所以),(259N ~μξ 在0H 成立下, ,05.03512C 3553P C P 000=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛Φ-=⎪⎪⎪⎭⎫⎝⎛≥-=≥-C μξμξ)( 96.135,975.035==⎪⎭⎫⎝⎛ΦC C , 所以 C=1.176. 2.设子样),,(1n ξξ 取自正态母体2020),,(σσμN 已知,对检验假设0100:,:μμμμ>=H H 的问题,取临界域{}01:)(c x x x C n ≥= .(i )求此检验犯第一类错误的概率α,犯第二类错误的概率β,并讨论它们之间的关系.(ii )设9,05.0,04.0,5.0200====n ασμ,求65.0=μ时不犯第二类错误的概率.解: (i).在0H 成立下, ),(nN ~200σμξ()⎪⎪⎭⎫⎝⎛-≥-=≥=n C n P C P 0000000σμσμξξα, 0100100μμσμσμαα+=∴=-∴--nC n C其中αμ-1是N (0,1)分布的α-1分位点。

在H 1成立下,),(nN ~20σμξ,()⎪⎪⎭⎫⎝⎛-<-=<=n C n P C P 00011σμσμξξβ =⎪⎪⎭⎫⎝⎛--Φ=⎪⎪⎪⎪⎭⎫⎝⎛-+Φ=⎪⎪⎭⎫ ⎝⎛-Φ--n n n n C 001001000σμμμσμμμσσμαα 当α增加时,αμ-1减少,从而β减少;反之当α减少时,将导致β增加。

(ii )不犯第二类错误的概率为1-β。

⎪⎭⎫ ⎝⎛⨯--Φ-=⎪⎪⎭⎫ ⎝⎛--Φ-=--32.05.065.011105.0001μσμμμβαn =()()().7274.0605.0605.0125.2645.11=Φ=-Φ-=-Φ-3.设一个单一观测的子样ξ取自密度函数为f(x)的母体,对f(x)考虑统计假设:⎩⎨⎧≤≤=≤≤⎩⎨⎧=其它)(:其它10021001)(:1100x x x f H x x f H 试求一个检验函数使犯第一,二类错误的概率满足min 2=+βα,并求其最小值。

假设检验作业习题

假设检验作业习题

假设检验与方差分析一、单选题1、假设检验的基本思想是()A、中心极限定理B、小概率原理C、大数定律D、置信区间2、如果一项假设规定的显著水平为0.05,下列表述正确的是()A、接受H0时的可靠性为95%B、接受H1时的可靠性为95%C、H1为假时被接受的概率为5%D、H0为真时被拒绝的概率为5%3、假设检验的步骤()A、建立假设、选择和计算统计量、确定P值和判断结果B、建立原假设、备择假设,确定检验水准C、确定单侧检验或双侧检验、选择t检验或u检验、估计一类错误和二类错误D、计算统计量、确定P值、做出推断结果4、在一次假设检验中,当显著水平设为0.05时,结论是拒绝原假设,现将显著水平设为0.1,那么()A、仍然拒绝原假设B、不一定拒绝原假设C、需要重新进行假设检验D、有可能拒绝原假设5、进行假设时,在其他条件不变的情形下,增加样本量,检验结论犯两类错误的概率将()A.都减小B. 都增加C.都不变D.一个增加一个减少6、在假设检验中,1-α是指()A.拒绝了一个真实的原假设的概率B.接受了一个真实的原假设概率C.拒绝了一个错误的原假设的概率D.接受了一个错误的原假设概率7、在假设检验中,1-β是指()A.拒绝了一个正确的原假设的概率B.接受了一个正确的原假设的概率C.拒绝了一个错误的原假设的概率D. 接受了一个错误的原假设的概率8.将由显著性水平所规定的拒绝域平分为两部分,置于概率分布的两边,每边占显著性水平的二分之一,这是()。

A. 单侧检验B.双侧检验C.右侧检验D.左侧检验9.方差分析要求()A.各个总体方差相等B.各个样本来自同一总体C.各个总体均数相等D.两样本方差相等二、多项选择题1.显著性水平与检验拒绝域关系()A. 显著性水平提高(α变小),意味着拒绝域缩小B. 显著性水平降低,意味着拒绝域扩大C. 显著性水平提高,意味着拒绝域扩大D. 显著性水平降低,意味着拒绝域扩大化E. 显著性水平提高或降低,不影响拒绝域的变化2. β错误()A. 是在原假设不真实的条件下发生B. 是在原假设真实的条件下发生C. 决定于原假设与真实值之间的差距D. 原假设与真实值之间的差距越大,犯β错误的可能性就越小E. 原假设与真实值之间的差距越小,犯β错误的可能性就越大3、假设检验的三个关键点()A.找到一个合适的统计量,使该统计量包括所要检验的参数和与之对应的样本估计量B.从犯“弃真”错误的角度考虑问题,使得弃真的概率很小。

参数估计假设检验练习题

参数估计假设检验练习题

第三章 假设检验例子例1:某糖厂用自动打包机装糖。

已知每袋糖的重量(单位:千克)服从正态分布()2~,X N μσ。

今随机抽查9袋,称出它们的重量并计算得到*48.5, 2.5x s ==。

取显著性水平0.05α=。

在下列两种情形下分别检验()01:50 :50H H μμ=≠22(1) 4 (2)σσ=未知解:()()2*01220.97512~,48.5, 2.5,9,0.05:50 :50(1) 4 (2)(1) 2.251.962.25 1.96X N x s n H H u uu αμσαμμσσ-=====≠======>糖的重量,现在已知显著性水平,在两种情形下检验:未知解:计算检验统计量的观测值 临界值,因为,所以拒绝原假设即不能认为糖的重量50的平均值是千克,即打包机工作不正常。

()()()()2*0120.97512~,48.5, 2.5,9,0.05:50 :50(2) 1.818 2.306 1.8 2.306X N x s n H H t t n t αμσαμμσ-=====≠===-==<糖的重量,现在已知显著性水平,在两种情形下检验:未知解:计算检验统计量的观测值 临界值,因为,所以不能拒绝原假设,即不能认为打包机工作不正常。

例2:在上题中,试在显著性水平0.1α=下检验()2201: 4 :4H H σσ=>()()()()*2201*22202210.948.5, 2.5,9,0.1: 4 :4112.51813.36212.513.362.x s n H H n s n αασσχσχχ-=====>-==-==<显著性水平,解:计算检验统计量的观测值 临界值,因为,所以不能拒绝原假设,即不能认为打包机工作不正常例3:监测站对某条河流每日的溶解氧(DO )质量浓度记录了30个数据,并由此算得 2.52, 2.05x s ==。

已知这条河流的每日DO 质量浓度服从()2,N μσ,试在显著性水平0.05α=下检验()01: 2.7 : 2.7H H μμ=≠。

第三章假设检验例子

第三章假设检验例子

试问,在显著性水平
25%下,能否认为每匹布上的疵点数服从泊松分布。
例:一位环保工程师要考察某条河流的污染情况。 他收集了河流与某个居民点的距离 X (单位:公里) 及河流该处的生化需氧量 Y (单位: 104 mL / L )的 15 对数据如下表:
xi yi 65 2 9 18 20 25 28 50
显著性水平 =0.1 下,对总体 X 是否服从二项分 布 B 2, 0.5 作 2 拟合优度检验,其中 X 表示两 个孩子的家庭中男孩个数,并对结论作直观解释。
例:某厂在全面质量管理工作中,抽查了 50 匹布, 记录下它们的疵点数:
疵点数 频数 0 1 2 3 4
21 18 7 3 1
更新设备后,从新生产的产品中随机抽取 100 个,
测得平均重量 x 12.5 克 , 如果方差不变,问更新 设备后,产品的平均重量是否有显著变化 X ~ N , 2 , 今从一批产品中抽查 10 根测其折断力,算得
均未知,试问在显著性水平 5%下,能否认为距离与 生化需氧量无关?
例:为了考察某地区 50 岁以上的成年人吸烟 习惯与患肺癌之间的关系,调查了 112 名对象, 得列联表如下:
人数 吸烟 不吸烟 n j
患肺癌 未患肺癌 18 12 4 78
ni
,试问在
n 112
显著性水平 1%下,能否认为吸烟习惯与患肺癌无关?
例:为了检查一颗骰子是否均匀,把这颗骰子掷了 100 次,得结果如下表:
出现点数 频数 1 2 3 4 5 6
14 15 13 20 18 20
试在显著性水平
=0.05 下作 2 拟合优度检验。
例:为了检验某厂生产的灯泡的使用寿命是否服从 指数分布,随机地抽查了 150 只灯泡,测得它们的 平均使用寿命 x 200 小时 ,把这 150 个数据 分组整理后如下表:

应用数理统计作业题及参考答案(第三章)

应用数理统计作业题及参考答案(第三章)

第三章 假设检验P1313.2 一种元件,要求其使用寿命不得低于1000(小时)。

现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。

已知该种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。

解:本题需检验0H :0μμ≥,1H :0μμ<.元件寿命服从正态分布,0σ已知,∴当0H成立时,选取统计量X u μ-=,其拒绝域为{}V u u α=<.其中950X =,01000μ=,25n =,0100σ=.则 2.5u ==-.查表得0.05 1.645u =-,得0.05u u <,落在拒绝域中,拒绝0H ,即认为这批元件不合格。

3.3 某厂生产的某种钢索的断裂强度服从正态分布()2N μσ,,其中40σ=(kg / cm 2)。

现从一批这种钢索的容量为9的一个子样测得断裂强度平均值为X ,与以往正常生产时的μ相比,X 较μ大20(kg / cm 2)。

设总体方差不变,问在0.01α=下能否认为这批钢索质量有显著提高?解:本题需检验0H :0μμ=,1H :0μμ>.钢索的断裂强度服从正态分布,0σ已知,∴当0H成立时,选取统计量u =,其拒绝域为{}1V u u α-=>.其中040σ=,9n =,020X μ-=,0.01α=.则 1.5u ==.查表得10.990.01 2.33u u u u αα-==-=-=,得0.99u u <,未落在拒绝域中,接受0H ,即认为这批钢索质量没有显著提高。

3.5 测定某种溶液中的水分。

它的10个测定值给出0.452%X =,0.035%S =。

设总体为正态分布()2N μσ,,试在水平5%检验假设:(i )0H :0.5%μ>; 1H :0.5%μ<. (ii )0H :0.04%σ≥; 1H :0.04%σ<. 解:(i )总体服从正态分布,0σ未知,当0H成立时,选取统计量t =(){}1V t t n α=<-.查表得()()0.050.9599 1.8331t t =-=-.而()4.114 1.83311t t n α==-<-=-.落在拒绝域中,拒绝0H .(ii )总体服从正态分布,μ未知, 当0H 成立时,选取统计量222nSχσ=,其拒绝域为(){}221V n αχχ=<-.查表得()20.059 3.325χ=.而()()()2222100.035%7.65610.04%n αχχ⨯==>-.未落在拒绝域中,接受0H .3.6 使用A (电学法)与B (混合法)两种方法来研究冰的潜热,样品都是-0.72℃的冰块,下列数据是每克冰从-0.72℃变成0℃水的过程中的吸热量(卡 / 克):方法A :79.98,80.04,80.02,80.04,80.03,80.03,80.04,79.97,80.05,80.03,80.02,80.00,80.02方法B :80.02,79.94,79.97,79.98,79.97,80.03,79.95,79.97假定用每种方法测得的数据都服从正态分布,且它们的方差相等。

假设检验例题 (3)

假设检验例题 (3)

假设检验例题引言假设检验是统计学中常用的一种方法,用于通过对样本数据进行推断来判断某个假设是否成立。

在实际应用中,假设检验可以用于验证某个新的产品是否与现有产品相同、进行医学研究是否有显著的治疗效果等。

本文将通过一个例题来介绍假设检验的基本概念和步骤,并以Markdown文本格式输出。

例题描述假设某个公司改变了产品包装的设计,认为新的包装可以提高产品的销售量。

为了验证这个假设,该公司进行了一项实验,在两个不同的市场中随机选择了一部分店铺,其中一部分店铺使用新的包装,另一部分店铺继续使用旧的包装。

经过一段时间的实验,记录下两组店铺的销售量。

以下是两组店铺的销售量数据:新包装店铺销售量:50, 52, 55, 48, 57, 55, 54, 53, 51, 56旧包装店铺销售量:45, 46, 44, 46, 42, 48, 43, 41, 47, 44现在的问题是,是否可以通过这些数据来判断新的包装是否显著地提高了产品的销售量?假设检验步骤进行假设检验的步骤如下:步骤1:建立零假设和备择假设在这个例题中,零假设表示新的包装不会显著地提高产品的销售量,备择假设表示新的包装显著地提高了产品的销售量。

假设检验的目标是通过样本数据来决定是拒绝零假设还是接受备择假设。

零假设 (H0):新的包装不会显著地提高产品的销售量。

备择假设 (H1):新的包装显著地提高了产品的销售量。

步骤2:选择显著性水平显著性水平是假设检验中的一个重要概念,用于决定拒绝或接受零假设的标准。

通常情况下,我们会选择一个合适的显著性水平,常见的显著性水平有0.05和0.01。

在这个例题中,我们选择显著性水平为0.05,表示要求95%的置信水平。

步骤3:计算检验统计量假设检验的目标是通过样本数据来计算一个统计量,并与一个期望的分布进行比较。

在这个例题中,我们可以使用两组店铺的平均销售量作为检验统计量。

步骤4:计算p值p值是一个概率值,表示当零假设为真时,观察到比检验统计量更极端结果的概率。

第三章 总体均数的估计与假设检验

第三章 总体均数的估计与假设检验
2
Sd
d
d Sd / n
2

(
d)
n
n 1
S d 0.1087 t 2.7424 0.1087/ 10 7.925
v 10 1 9
3)确定P值,作出推断结论 T0.05,9=2.262, 7.925>2.262,故P<0.05.可以认为两种 方法对脂肪含量的测定结果不同。
167.41, 2.74
165.56, 6.57
168.20, 5.36 n j=10
…. 165.69, 5.09
将上述100个样本均数看成新变量值,则这个 100个样本均数构成一新分布,绘制直方图
样本均数的抽样分布具有如下特点:
1) 各样本均数未必等于总体均数
2) 各样本均数间存在差异
3) 样本均数的分布很有规律,围绕着总体均 数,中间多,两边少,左右基本对称,也 服从正态分布
假设检验的基本步骤:
1、建立检验假设
H0: 检验假设, 无效假设,零假设 μ=μ0
H1: 备择假设,对立假设
μ≠μ0
2、确定检验水准 α=0.05 单双侧
3、选定检验方法和计算检验统计量
4、确定P值和作出推论结论。
P值是指从H0所规定的总体进行随机抽样,获 得大于(或等于及小于)现有样本获得的检验 统计量值的概率。
(1012/L)
血红蛋白 (g/L)

男 女
255
360 255
4.18
134.5 117.6
0.29
7.1 10.2
4.33
140.2 124.7
*标准值:使用内科学(1976年)所载均数(转位法定单位)
1)说明女性的红细胞数与血红蛋白的变异程度何者为大? 2)抽样误差是? 3)试估计该地健康成年女性红细胞数的均数? 4) 该地健康成年男女血红蛋白含量是否不同? 5)该地男性两项血压指标是否均低于上表的标准值(若测 定方法相同)?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章假设检验作业-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII
1.一种机床加工的零件尺寸绝对平均误差为1.35mm。

生产厂家现采用一种新的机床进行加工以期进一步降低误差。

为检验新机床加工的零件平均误差与旧机床相比是否有显著差异,从某天生产的零件中随机抽取50个进行检验。

利用这些样本数据,检验新机床加工的零件尺寸的平均误差与旧机床相比是否有显著差异如果想检验新机床加工的零件尺寸的平均误差与旧机床相比是否有显著降低,结果会如何? (
50个零件尺寸的误差数据 (mm)
1.26 1.19 1.31 0.97 1.81
1.130.96 1.06 1.000.94
0.98 1.10 1.12 1.03 1.16
1.12 1.120.95 1.02 1.13
1.230.74 1.500.500.59
0.99 1.45 1.24 1.01 2.03
1.98 1.970.91 1.22 1.06
1.11 1.54 1.08 1.10 1.64
1.70
2.37 1.38 1.60 1.26
1.17 1.12 1.230.820.86
2.一种汽车配件的平均长度要求为12cm,高于或低于该标准均被认为是不合格的。

汽车生产企业在购进配件时,通常是经过招标,然后对中标的配件提供商提供的样品进行检验,以决定是否购进。

现对一个配件提供商提供的10个样本进行了检验。

假定该供货商生产的配件长度服从正态分布,在0.05的显著性水平下,检验该供货商提供的配件是否符合要求
10个零件尺寸的长度 (cm)
12.210.812.011.811.9
12.411.312.212.012.3
3.对消费者的一项调查表明,17%的人早餐饮料是牛奶。

某城市的牛奶生产商认为,该城市的人早餐饮用牛奶的比例更高。

为验证这一说法,生产商随机抽取550人的一个随机样本,其中115人早餐饮用牛奶。

在显著性水平0.01下,检验该生产商的说法是否属实?
4.甲、乙两台机床同时加工某种同类型的零件,已知两台机床加工的零件直径(单位:cm)分别服从正态分布,并且方差相等。

为比较两台机床的加工精度有无显著差异,分别独立抽取了甲机床加工的8个零件和乙机床加工的7个零件,通过测量得到如下数据。

在=0.05的显著性水平下,样本数据是否提供证据支持“两台机床加工的零件直径不一致”的看法?
两台机床加工零件的样本数据(cm)
甲20.519.819.720.420.120.019.019.9
乙20.719.819.520.820.419.620.2
5.某饮料公司开发研制出一新产品,为比较消费者对新老产品口感的满意程度,该公司随机抽选一组消费者(8人),每个消费者先品尝一种饮料,然后再品尝另一种饮料,两种饮料的品尝顺序是随机的,而后每个消费者要对两种饮料分别进行评分(0分~10分),评分结果如下表。

取显著性水平=0.05,该公司
两种饮料平均等级的样本数据
旧饮料54735856
新饮料66743976
6.有两种方法生产同一种产品,方法1的生产成本较高而次品率较低,方法2的生产成本较低而次品率则较高。

管理人员在选择生产方法时,决定对两种方法的次品率进行比较,如方法1比方法2的次品率低8%以上,则决定采用方法1,否则就采用方法2。

管理人员从方法1生产的产品中随机抽取300个,发现有33个次品,从方法2生产的产品中也随机抽取300个,发现有84个次品。

用显著性水平=0.01进行检验,说明管理人员应决定采用哪种方法进行生产
7、一家房地产开发公司准备购进一批灯泡,公司打算在两个供货商之间选择一家购买。

这两家供货商生产的灯泡平均使用寿命差别不大,价格也很相近,考虑的主要因素就是灯泡使用寿命的方差大小。

如果方差相同,就选择距离较近的一家供货商进货。

为此,公司管理人员对两家供货商提供的样品进行了检
测,得到的数据如下。

检验两家供货商灯泡使用寿命的方差是否有显著差异(=0.05)
两家供货商灯泡使用寿命数据
样本1
650569622630596
637628706617624
563580711480688
723651569709632
样本2
568540596555
496646607562
589636529584
681539617。

相关文档
最新文档