一维纳米材料的制备
一维纳米材料的制备与应用

一维纳米材料的制备与应用纳米材料是指尺寸在1到100纳米之间的物质,它具有许多优异的物理、化学和生物学特性,因此已成为材料科学、能源、生物技术、医学、环境保护等领域的研究热点。
其中,一维纳米材料尤为重要,因为其具有独特的电子、光学和力学性能,可以应用于电子器件、光电器件、催化剂、储能材料、生物传感器等领域。
一维纳米材料的制备方法包括物理法、化学法和生物法等。
物理法主要是通过物理手段对大分子材料、金属材料、半导体材料等进行削减、拉伸、蒸发、溅射等处理,形成纳米尺寸的单一立体结构。
例如,使用电弧放电法、溅射法、立体雾化法等可制备出金属纳米管、碳纳米管、金属氧化物纳米线等一维纳米材料。
化学法主要是通过化学反应合成一维纳米材料,具体反应条件和形成机制有很大的差异。
例如,溶胶-凝胶法可以实现制备稳定的纳米材料分散液,高温固态反应可制备出金属硫化物、硬质合金等一维纳米材料。
近年来,还出现了一些特殊的“引导物”或“模板”化学合成方法,通过引导剂的作用,形成特定形态、粒径的一维纳米材料。
生物法主要是通过使用生物体复制或控制纳米材料的生长、组装、大小和形状。
这种方法既环保又成本低廉,可以制备出高质量、低成本、具有生物相容性和可生物降解性的一维纳米材料。
例如,DNA、蛋白质、细胞等都可以作为纳米结构的模板,利用生物分子的特殊识别、自组装、生物信号转导等生物功能,在其表面或内部包裹和控制所需的纳米材料。
无论采用以上哪种合成方法,在制备一维纳米材料时,最关键的是要控制好纳米尺度的大小和形态,同时要尽可能避免一维纳米材料的外表面缺陷、内部结构杂质和纳米尺度效应的影响。
一维纳米材料的应用十分广泛,从电子器件到生物传感器,在很多领域中都有应用。
例如,纳米线、纳米管、纳米带等一维纳米材料可以作为高效率能源存储器件或传感器件的核心材料;金属、金属氧化物、碳纳米管等一维材料可以作为高效的催化剂,提高化学反应的速率和选择性;生物纳米线、蛋白质纳米线等一维生物材料则可以用于生物分子传感和制备高灵敏度的生物传感器。
一维纳米材料制备

导热性能(声子传送特性) 当硅纳米线直径小于20 nm时,声子色散的关系可能会改
变(由声子局限效应造成),导致声波速度和热导率大大 低于标准值。分子动力学模拟还表明,在200K到500K的温 度范围内,硅纳米线的热导率比硅块低2个等级。
纳米线的特性及其应用
导电性能 尺寸下降导致导电性能的转变。如Bi纳米线在52nm时由金 属转变为半导体;Si纳米线在15nm时由半导体转变为绝缘 体
通过对一些氧化物纳米线(如SnO2) 电学输运性能(如 电导率)的检测,就可能对其所处的化学环境作出检测,可 用于医疗,环境,或安全检查。
纳米线的制备策略
问题:如何控制晶核(纳米颗粒)的尺寸和生长方向?
局限于特殊结 构的材料
VLS 机制
晶体结构的各项异性导致定向生 长。生长速率 Si {111}< Si{110}
• 液相自发组装
• 基于模板合成(模板法)
• 静电纺丝
纳米线的自发生长
• 气相法 - 气-固(VS)生长机理 - 气-液-固(VLS)生长机理
• 液相法 - 溶液-液相-固相机理 (SLS) - “毒化”晶面控制生长的机理(包覆法); - 溶剂热合成方法。
气相法
在合成纳米线时, 气相合成可能是用得最多的方法。
气-固生长机理又称为位错机理,是通过气-固反应形核并长成纳米线的过程。 是一种经常采用的晶须生长机理。 气固机理的发生过程: • 通过热蒸发或气相反应等方法产生气相; • 气相分子或原子被传输到低温区并沉积在基底上; • 在基底表面反应、形核与生长,通常是以气固界面上微观缺陷 (位错、
孪晶等) 为形核中心生长出一维材料。
碳纳米管制造人造卫星的拖绳
VLS法制备一维纳米材料

四 常用的催化剂与可制备的材料
Au:Si、Ge元素纳米线,ZnO、氧化镓等氧化物纳米线, CdS、ZnS纳米线 Fe:Si 、Ge元素纳米线,SiC 纳米线、 GaN纳米线 Ni: Si纳米线、GaN纳米线
精品课件
五 制备中的两个重要问题 A 如何得到纳米级的催化剂团簇? B 如何提供出所需的蒸气?
2. 膜自组织 蒸镀Au薄膜在GaAs基体上,可形成大量的
纳米级的Au-As合金液滴 制备Zn0纳米线时,将Au薄膜蒸镀在蓝宝
石衬底上,形成纳米级的Au-Zn合金液滴
A4 高温快速加热法:激光烧蚀Si-Fe目标靶,产生蒸气,迅 速浓缩成液态纳米团簇
精品课件
1. B1 激光烧蚀:用含少量的Au、Fe或Ni的硅粉作为靶,以 Ar气作为保护气体,在石英管内,在一定温度下激光烧蚀 即可制得Si纳米线
精品课件
二 生长机理: 在适当温度下,催化剂纳米团簇与生长材料的组元互溶形
成纳米级共溶液滴。
共熔液滴持续吸入生长材料的组元蒸气,以至达到过饱和, 促成了生长材料的晶体晶核在液滴上生成。
蒸气继续被吸入,晶体在已生成的固液界面处不断析出, 推动固液界面移动,从而长出一维纳米材料
第四章-一维纳米材料ppt课件

Au-Ag-Au-Ag nanowire
17
1.3 硬模板:碳纳米管(carbon nanotubes)
用于制备碳化物纳米棒的反应路线示意图
18
碳纳米管
以碳纳米管为模板合成的
GaN纳米线
19
1.4 硬模板:外延模板法
“外延模板法”制备单晶GaN 纳米管的过程示意图 20
A) TEM images of Ag/SiO2 coaxial nanocables that were prepared by directly coating silver nanowires with an amorphous silica sheath using the sol-gel method.
10
1.2 硬模板:多孔氧化铝膜(AAO)
结构特点是孔洞为六边形或圆形且垂直于膜面,呈 有序平行排列。孔径在5至200nm 范围内调节,孔密 度可高达1011 个/cm2。
184nm
477nm
666nm
11
利用AAO模板合成纳米材料
沉积
电抛光 纳米棒
阳极氧化
Al 纳米有序阵列复合结构
纳米管
纳米粒子
32
2.6 软模板法特点: (1) 模拟生物矿化; (2)软模板的形态具有多样性; (3)容易构筑,不需要复杂的设备; (4)稳定性较差,模板效率不够高。
33
2.7 模板法制备纳米材料的比较 共性:能提供一个有限大小的反应空间 区别:硬模板提供的是静态的孔道,物质只能从开口
处进入孔道内部 软模板:提供的则是处于动态平衡的空腔,物质可以
杂后的C60表现出良好的导电性和超导性。 57
碳60超导体
C60中掺杂,引入碱金属、碱土金属原子,
一维纳米材料的制备

的优点,被称为纳米多孔金属材料。
由于贵金属价格昂贵,且资源稀少,提高其利用率以减少其载量对催 化剂的设计非常重要。
江苏大学
6
氮化碳除了具备高硬度和高弹性外,还具有耐磨损、防腐蚀、 耐高温等优异性能,其耐高温和化学稳定性要大大优于金刚石, 在机械加工领域具有良好的应用前景。 它还具有宽能带间隙、高热导、光学非线性,是制造半导体和 光学器件的候选材料,也有可能是一种理想的场致发射材料。
江苏大学
30
江苏大学
31
3、石墨烯及其制备
2004年,英国曼切斯特大学科学家Geim A K等人,通过胶带反复剥离石墨片获得一个 原子厚度的石墨单片—石墨烯(graphene)。
石墨烯是普遍存在于其他碳材料中,并可以 看作是其他维度碳基材料的组成单元。
三维的石墨可以看作是由石墨烯单片经过堆 砌而形成;零维的富勒烯可看作由特定石墨 烯形状团聚而成;而石墨烯卷曲后就可形成 一维的碳纳米管结构。
先进材料的制备及加工技术
江苏大学材料科学与工程学院
江苏大学
第三讲 一维纳米材料的制备
纳米线的制备
纳米柱的制备
碳纳米管制备
碳纳米管阵列制备
江苏大学
2
第四讲 二维纳米材料制备
纳米薄膜简介
纳米薄膜制备技术
石墨烯及其制备
江苏大学
3
1、纳米薄膜简介
典型的碳纳米管在溶液中易聚集成束,几乎不溶于任何溶剂,大大 限制了CNTs在各方面的应用。 近年来,人们利用表面活性剂的包裹作用或CNT 与大π共轭体系之 间的π- π相互作用,成功的将CNTs分散在不同溶剂包括水中。 经过化学反应修饰和各种官能化, 除能获得CNTs的分散液外,还 能增加其与基体的界面结合力,为CNTs的组装及表面反应提供了可 能,基于CNT分散液的诸多薄膜材料相继被成功开发。 由于具有优良的电子电导性、化学稳定性,以及高的比表面积等独 特的物理化学性能,CNT 薄膜可在化学催化、智能响应等领域得到 应用。
一维纳米材料的制备与性能研究

一维纳米材料的制备与性能研究纳米材料是指在纳米尺度下具有特殊性质和应用潜力的材料。
其中,一维纳米材料是指在至少一个维度上具有纳米尺度的材料。
一维纳米材料的制备与性能研究是纳米科学与纳米技术领域的重要研究方向之一。
一维纳米材料的制备方法多种多样,其中最常见的方法是化学合成法。
化学合成法通过控制反应条件和添加特定的助剂,可以实现对纳米材料形貌、尺寸和结构的精确调控。
例如,碳纳米管就是一种常见的一维纳米材料,它可以通过化学气相沉积法、电弧放电法等方法制备得到。
此外,金属纳米线、半导体纳米线等也是常见的一维纳米材料,它们可以通过模板法、溶液法等方法制备。
一维纳米材料的制备方法对其性能具有重要影响。
首先,制备方法可以影响纳米材料的形貌和尺寸。
例如,碳纳米管的直径和壁厚可以通过调控反应温度和碳源浓度来控制。
其次,制备方法还可以影响纳米材料的结构和组成。
例如,金属纳米线的晶格结构和晶面取向可以通过控制溶液中的配位剂和表面活性剂来调控。
最后,制备方法还可以影响纳米材料的表面性质和界面特性。
例如,通过在化学合成过程中加入特定的表面改性剂,可以实现对纳米材料表面的修饰,从而改变其表面能和化学活性。
一维纳米材料的性能研究是纳米科学与纳米技术领域的热点研究方向之一。
一维纳米材料具有独特的电子、光学、热学和力学性质,因此在能源、电子、光电和生物医学等领域具有广泛的应用前景。
例如,碳纳米管具有优异的导电性和力学性能,可以用于制备高性能的导电材料和复合材料。
金属纳米线具有优异的电子输运性能,可以用于制备高性能的电子器件和传感器。
半导体纳米线具有优异的光学性能,可以用于制备高效的光电器件和光催化材料。
此外,一维纳米材料还具有较大的比表面积和较好的可控性,可以用于制备高效的催化剂和吸附材料。
在一维纳米材料的性能研究中,表征方法的发展起到了重要的推动作用。
传统的表征方法如透射电子显微镜、扫描电子显微镜和X射线衍射等可以用于观察纳米材料的形貌和晶体结构。
一维纳米材料

一维纳米材料
一维纳米材料是指至少有一个尺寸在纳米尺度(10^-9米)范围内的材料,但
其它两个维度的尺寸可以远远大于纳米尺度。
一维纳米材料包括纳米线、纳米棒、纳米管等,这些材料在纳米尺度下呈现出特殊的物理和化学性质,因此被广泛应用于各种领域。
一维纳米材料的制备方法多种多样,包括化学气相沉积、溶液法合成、电化学
沉积等。
其中,化学气相沉积是一种常用的方法,通过在高温下将气态前驱体转化为固态纳米材料,可以制备出高质量、高纯度的一维纳米材料。
溶液法合成则是通过在溶液中加入适当的前驱体,利用溶剂的挥发或化学反应来制备一维纳米材料,这种方法简单易行,适用于大规模生产。
一维纳米材料具有许多独特的性质,例如,纳米线的电学性质优异,可以用于
制备高性能的电子器件;纳米管具有优异的力学性能和热学性能,被广泛应用于纳米材料复合材料的制备;而纳米棒则具有优异的光学性能,可用于制备高效的光电器件。
这些特殊的性质使得一维纳米材料在电子、光电、传感、催化等领域有着广泛的应用前景。
除了应用领域的广泛性外,一维纳米材料还具有很强的研究价值。
通过对一维
纳米材料的研究,可以深入了解纳米尺度下的物理和化学性质,为纳米材料的设计与制备提供理论基础。
同时,一维纳米材料还可以作为纳米材料复合材料的增强相,提高复合材料的力学性能和热学性能。
总的来说,一维纳米材料具有独特的物理和化学性质,具有广泛的应用前景和
研究价值。
随着纳米技术的不断发展,一维纳米材料必将在各个领域发挥重要作用,推动科技的进步。
化学气相沉积法制备其他一维纳米材料

化学气相沉积法制备其他一维纳米材料化学气相沉积(Chemical Vapor Deposition,CVD)是一种常用的制备纳米材料的方法。
它是一种在高温环境下,通过在气相中化学反应形成纳米材料的过程。
该方法具有材料成分可控、沉积速度快、制备尺寸可调控等优点,在制备一维纳米材料方面也得到了广泛应用。
一维纳米材料是指其在一个方向上尺寸远小于其他两个方向的材料。
常见的一维纳米材料包括纳米线、纳米棒和纳米管等。
下面将介绍几种常见的一维纳米材料的制备方法及其在化学气相沉积中的应用。
一、碳纳米管(Carbon Nanotube,CNT)碳纳米管是由碳原子通过碳-碳键连接形成的一维纳米材料。
碳纳米管具有优异的电子传输性能和力学性能,因此在纳米电子器件、传感器、储氢材料等领域具有广泛应用。
碳纳米管的制备可以通过化学气相沉积方法实现。
主要步骤包括:将催化剂(如金属颗粒)沉积在基底上,然后将含有碳源(如甲烷气体)的气体通过加热分解的方式使其在催化剂表面发生化学反应,最终在催化剂表面成长碳纳米管。
二、二氧化硅纳米线(Silicon Dioxide Nanowire,SiO2 Nanowire)二氧化硅纳米线是由二氧化硅材料形成的一维纳米材料。
SiO2纳米线具有优异的光学、电学和力学性能,并且可以制备出具有不同形态和尺寸的纳米线。
制备SiO2纳米线的方法中,化学气相沉积是一种常用的方法。
通常采用的方法是,在高温气氛中,使硅烷类气体(如SiH4)在金属催化剂的作用下分解并发生氧化反应,从而在催化剂表面沉积出纳米尺寸的SiO2纳米线。
三、金属氧化物纳米棒(Metal Oxide Nanorod)金属氧化物纳米棒是由金属氧化物材料形成的一维纳米材料。
金属氧化物纳米棒具有优异的光学、电学和催化性能,可用于光电器件、催化剂和传感器等领域。
以上介绍的碳纳米管、二氧化硅纳米线和金属氧化物纳米棒只是化学气相沉积法制备一维纳米材料的几个例子,实际上化学气相沉积方法还可以制备其他一维纳米材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏大学
17
CVD法沉积的薄膜具有很好的阶梯覆盖性能,适用于在形状复
杂的基体表面沉积膜层,因而越来越受到重视。
为了克服是以TiCl4为反应物Cl对膜的污染,人们使用钛醇盐作 为原料来制备TiO2薄膜, 同时还可以显著地降低沉积温度, 提高 工艺的使用范围。
水热法是制备纳米材料的常用方法, 是用前驱体在高温、高压条
件下,在水介质中水解,直接转化为晶态纳米粒子。
江苏大学
18
3)纳米多孔金属薄膜制备
江苏大学
19
江苏大学
20
江苏大学
21
江苏大学
22
欠电位沉积(UPD),氧化还原置换反应(RRR)
江苏大学
江苏大学
4
纳米TiO2薄膜在光催化、太阳能电池、精细陶瓷、传感器等 领域的广泛应用, 引起众多材料学家的关注。 超细TiO2 粉末在应用时存在易团聚、难分离等问题,而将二 氧化钛粉体负载于固体材料的表面,即将TiO2 或其前驱体, 运用各种镀膜工艺涂覆在各种基材(如玻璃、陶瓷、铝材等) 表 面上,可以得到分散性较好的二氧化钛薄膜。
江苏大学
9
CNT 薄膜
江苏大学
10
镍-碳纳米管薄膜的电泳电镀方法示意图
江苏大学
11
碳纳米管的SEM 图
江苏大学
12
超声复合空气搅拌及复合电沉积技术
江苏大学
13
江苏大学
14
2)纳米TiO2薄膜制备
溶胶- 凝胶法,以适宜的无机盐或有机盐为原料制备溶胶,把 溶胶涂覆在基材表面,经水解和缩聚反应等在基材表面胶凝 成膜,再经干燥、焙烧与烧结获得表面膜。
二十年来,众多研究小组对合成该种材料进行了尝试。迄今为 止,已有一系列的技术手段例如阴极电弧、直流与射频溅射、 热丝化学气相沉积、激光烧蚀沉积 (PLD)、等离子体辅助化学 气相沉积 (PCVD)等,被用来合成这种新型物质。 采用等离子体束沉积和活性源辅助PLD方法合成出同时含ββ和g薄膜的厚度、均匀度、晶型等工艺参数是影响二氧化钛 薄膜性能的主要因素,因此其制备工艺成为目前研究的热点 之一。
江苏大学
5
多孔金属材料是指一种内部含有一定数量、尺寸的孔径,具有明显孔 隙特征的金属材料。
由于其独特的结构,多孔金属具有了一系列特殊的性能,如表观密度
低、比表面积大、可压缩性好等,这使得多孔金属材料在现代工业得
先进材料的制备及加工技术
江苏大学材料科学与工程学院
江苏大学
第三讲 一维纳米材料的制备
纳米线的制备
纳米柱的制备
碳纳米管制备
碳纳米管阵列制备
江苏大学
2
第四讲 二维纳米材料制备
纳米薄膜简介
纳米薄膜制备技术
石墨烯及其制备
江苏大学
3
1、纳米薄膜简介
典型的碳纳米管在溶液中易聚集成束,几乎不溶于任何溶剂,大大 限制了CNTs在各方面的应用。 近年来,人们利用表面活性剂的包裹作用或CNT 与大π共轭体系之 间的π- π相互作用,成功的将CNTs分散在不同溶剂包括水中。 经过化学反应修饰和各种官能化, 除能获得CNTs的分散液外,还 能增加其与基体的界面结合力,为CNTs的组装及表面反应提供了可 能,基于CNT分散液的诸多薄膜材料相继被成功开发。 由于具有优良的电子电导性、化学稳定性,以及高的比表面积等独 特的物理化学性能,CNT 薄膜可在化学催化、智能响应等领域得到 应用。
江苏大学
7
2、纳米薄膜制备技术
CNT 薄膜的制备 纳米TiO2薄膜制备 纳米多孔金属薄膜制备 氮化碳纳米薄膜制备 纳米颗粒膜制备
静电纺丝法
江苏大学
8
1)CNT 薄膜的制备
CNT薄膜的制备可分为两种途径:一种为干法,如通过经 典的化学气相沉积( CVD)技术实现CNT在不同衬底上的自 组织生长。 另外一种为湿法,主要是先把CNT分散在溶液中,再借助 于各种成膜技术获得表面平整的CNT薄膜。 湿法主要包括:溶液浇铸法、层-层吸附自组装法、 电泳沉 积法、 电化学沉积法、自组装成膜法( SAM ) 、浸渍涂布 法、 改性表面吸附法、过滤-转移法和LB技术等。
江苏大学
16
液相沉积法( Liquid phase deposit ion, LPD) 是利用金属氟化物 盐的水解制备出相应的金属氧化物或氢氧化物。
液相沉积法制备薄膜需进行热处理促使TiO2晶化,而在热处理过 程中薄膜内的水分以及挥发性物质往往会导致薄膜表面龟裂。 微波辅助液相沉积法( Microwave liquid phase deposition, MWLPD) 是将整个液相沉积过程臵于微波辐射环境下,在较低温 度下实现TiO2由无定型向锐钛矿型的转化,不需要后续的煅烧处 理,从而避免了TiO2纳米薄膜的龟裂。
一般以Ti(OC4H9)4、TiCl4、TiOSO4为原料, 乙醇等为溶剂, HNO3、HCl、CH3COOH、NH4OH 等为催化剂。 可以用离心旋转法、浸渍提拉法、喷镀法在基材表面涂膜, 目前采用较多的是浸渍提拉法。
江苏大学
15
近年来,随着对环境和能源的重视,染料敏化纳米晶TiO2薄膜的研究 也发展得很快。 TiO2薄膜的比表面积、粗糙度、膜厚等性质参数强烈地影响着太阳能 电池的光电性能。 丝网印刷技术制备薄膜时使胶体溶液在刮板的作用下通过网孔,均匀 的沉积到导电基底上,形成纳米 TiO2 胶体膜,大量制备时可用平面 印刷机进行操作。 该技术具有印刷膜层厚、对浆料适应性强、对承印物形状和尺寸适应 性广等特点,近年来备受关注。
到了广泛的应用 纳米材料的兴起与发展使得一类孔壁处于纳米尺度(指1到 100nm)的 金属多孔材料受到了广泛关注和研究,它集中了纳米材料和多孔材料
的优点,被称为纳米多孔金属材料。
由于贵金属价格昂贵,且资源稀少,提高其利用率以减少其载量对催 化剂的设计非常重要。
江苏大学
6
氮化碳除了具备高硬度和高弹性外,还具有耐磨损、防腐蚀、 耐高温等优异性能,其耐高温和化学稳定性要大大优于金刚石, 在机械加工领域具有良好的应用前景。 它还具有宽能带间隙、高热导、光学非线性,是制造半导体和 光学器件的候选材料,也有可能是一种理想的场致发射材料。