人教版初二数学上册因式分解---公式法:平方差公式

合集下载

人教版数学八年级上册+因式分解(2)——公式法(平方差公式)课件

人教版数学八年级上册+因式分解(2)——公式法(平方差公式)课件

-b2=(a+b)·(a-b).
(3)4x2 - 1 = ( 2x )2 - (
(2x+1)(2x-1)
______________;
3.因式分解与整式乘法的关系:
(4)25 - 4m2 = (
a2-b2
(5+2m)(5-2m)
_________________.
(a+b)(a-b)
1
)2 =
5 )2 - ( 2m )2 =
1
024,y=
,求(x+y)2-(x-y)2的值.
2 024
解:(x+y)2-(x-y)2=[(x+y)+(x-y)][(x+y)-(x-y)]=4xy.
当x=2
1
024,y=
时,原式=4×2
2 024
1
024×
=4.
2 024
因式分解(2)——公式法(平方差公式)
预习导学
1.如果把乘法公式反过来,就可
以把某些多项式因式分解,这种
方法叫公式法.
将下列各式因式分解:
(a+x)(a-x)
(1)a2-x2=____________;
(x+3)(x-3)
(2)x2-9=x2-( 3 )2=____________;
2.运用平方差公式因式分解:a2
课堂导学
知识点1
直接运用公式因式分解
【例1】将下列各式因式分解.
(3m+2n)(3m-2n)
(1)9m2-4n2=(3m)2-(2n)2=__________________;
2-62
2
2
(xy)
(xy+6)(xy-6)
(2)x y -36=__________=________________;

人教版八年级数学上册《因式分解-公式法》第3课时课件

人教版八年级数学上册《因式分解-公式法》第3课时课件

分析
设: + = ,
2
则原式= − 12 + 36
2
2
= −2 ∙ ∙ 6 + 6 .
探究新知

1
分解因式:
+
2
− 12 + + 36;
解:原式= +
2
2
−2∙ + ∙6+6
2
= ห้องสมุดไป่ตู้−6 .
探究新知

2
分解因式:
2
49 − 28 + + 4 + ;
2
+ 2 ∙ − 4 ∙ 4 + 4
= 2 − 4 + 4
2 2
2
2
探究新知

2
2
已知 − 4 + − 10 + 29 = 0,
2 2
求 + 2 + 1 的值.
2
2
2
− 4 + 2
2
− 10 + 5
2
= −2∙∙2 +2
2
−2∙∙+
2
2
2
− 2 ∙ − ∙ 5 + 5
2
= − − 5 .
2
探究新知

3
分解因式:

2
2
+ 10 − + 25 ;
解:原式= −
2
= −
2
方法二
+ 10 − + 25
2
+ 2 ∙ − ∙ 5 + 5

人教版八年级上册14.3.2因式分解-平方差公式(教案)

人教版八年级上册14.3.2因式分解-平方差公式(教案)
同学们,今天我们将要学习的是《平方差公式》这一章节。在开始之前,我想先问大家一个问题:“你们在解数学题时是否遇到过需要分解多项式的情况?”例如,x² - 4这样的表达式。这个问题与我们将要学习的平方差公式密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平方差公式的奥秘。
(二)新课讲授(用时10分钟)
在小组讨论环节,我发现同学们的参与度很高,能够积极提出自己的观点,并尝试解决实际问题。但我也注意到,部分小组在讨论过程中可能会偏离主题,这需要我在以后的课堂上更加注意引导,确保讨论的内容紧扣教学目标。
此外,对于平方差公式与完全平方公式的混淆问题,我觉得在今后的教学中,我应该设计一些对比练习,帮助同学们明确这两个公式的区别和适用场景。通过具体的练习,让他们在实际操作中感受到这两个公式的不同。
五、教学反思
在今天的教学过程中,我发现同学们对于平方差公式的理解整体上是积极的,但也存在一些需要我进一步关注和引导的地方。在讲解平方差公式时,我注意到有些同学在推导过程中对(a + b)(a - b) = a² - b²的理解还不够深入,可能需要通过更多的实际例题来加强他们的理解。
课堂上,我尝试通过引入日常生活中的例子来激发同学们的兴趣,这种方式似乎收到了不错的效果。大家对于将数学知识应用到实际生活中的讨论非常积极,这让我感到欣慰。然而,我也意识到在接下来的课程中,需要更多地设计这样的环节,让同学们感受到数学的实用性和趣味性。
3.成展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平方差公式在实际数学题中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。

人教版八年级数学上册课件:14.3.2因式分解(公式法-平方差公式)

人教版八年级数学上册课件:14.3.2因式分解(公式法-平方差公式)
--因式分解的平方差公式
你学了什么方法进行分解因式?
把下列各式因式分解:
(1) ax - ay = a( x – y ) (2) 9a2 - 6ab+3a =3a(a-2b+1) (3) 3a(a+b)-5(a+b) =(a+b)(3a - 5) (4) ax2 - a3 =a(x2-a2) =a(x+a)(x-a) (5) 2xy2 - 50x =2x(y2-25) =2x(y+5)(y - 5)
个整体,加括号
熟记公式 a2 b2 (a b)(a b)
把下列式子分解因式
(x p)2 (x q)2
a² - b²= ( a + b)( a - b )
(1)a2-1
=( a )2-( 1 )2
(2)x4y2-4
=( x2y )2-( 2 )2
(3) 9 x2-0.01y2
49
=( 3
=(x+2)(x-2) =(3+y)(3-y)
(3) 1-a2
(4) 4x2-y2
=(1+a)(1-a) =(2x+y)(2x-y)
把下列各式分解因式
(1) 1-25x2
解: 1-25x2
=12-(5x)2
把两项写成平方的形式,
=(1+5x)(1-5x) 找出a和b。底数既有数
字还有字母,需要看成一
7
x )2-( 0.1y )2
(4)0.0001-121x2源自=( 0.01 )2-( 11x )2
因式分解:
1、 – a4 + 16 2、 4(a+2)2 - 9(a - 1)2 3、 (x+y+z)2 - (x-y-z)2

因式分解(2)——公式法(人教版)八年级数学上册PPT课件

因式分解(2)——公式法(人教版)八年级数学上册PPT课件
原式=(x-y)(a2-b2) =(x-y)(a+b)(a-b).
13. 分解因式:n2(m-2)+(2-m).
解:原式=(m-2)(n+1)(n-1).
三级检测练
一级基础巩固练
14. 分解因式:
(1)x2-25=
(x+5)(x-5)

(2)4b2-a2=
(2b+a)(2b-a)

(3)9b2-4a2=
5. 分解因式:
(1)x2-25=
(x+5)(x-5)Biblioteka ;(2)x2-36=
(x+6)(x-6)
.
6. (例 2)分解因式:
(1)4x2-25=
(2x+5)(2x-5)

(2)9x2-16y2=
(3x+4y)(3x-4y)
.
7. 分解因式:
(1)16x2-1=
(4x+1)(4x-1)

(2)36x2-25y2=
)2.
知识点.公式法(平方差公式)
3. 平方差公式:
整式乘法:(a+b)(a-b)= a2-b2

分解因式:a2-b2=
(a+b)(a-b)
.
4. (例 1)分解因式:
(1)x2-4=
(x+2)(x-2)

(2)x2-9=
(x+3)(x-3)
.
总结:能用平方差公式分解因式的条件: ①二项式;②能化成两个平方相减.
(1)设 S1,S2 分别是图 1,图 2 的面积,若用
含 a,b 的代数式表示它们的面积,则
S1=
a2-b2

人教版八年级上册14.3.2因式分解--平方差公式教案设计

人教版八年级上册14.3.2因式分解--平方差公式教案设计

14.3.2因式分解-平方差公式教案一.教学目标1.能说出平方差公式的特点.2.能较熟练地应用平方差公式分解因式.3.知道因式分解的要求:把多项式的每一个因式都分解到不能再分解.4.经历探究平方差公式分解因式的过程,掌握利用平方差公式分解因式的方法.二.学情分析1.学生已经掌握了整式的乘法运算中的平方差公式.2.学生已经掌握了什么叫做因式分解.3.学生能够进行简单的提公因式因式分解.4.学生已经掌握了简单添括号和去括号计算.三.教学重难点1.应用平方差公式分解因式.2.灵活应用平方差公式分解因式.四.教学学具多媒体课件、小黑板、彩粉笔等五.教学过程(一)复习回顾1,练习:(1)将mn n m 282+因式分解 ()12+m mn(2)将2912x xz -因式分解,选择正确的结果( C )()x z x A 912-()x xz B 343-()x z x C 343-()x z x D 343+2,提公因式法分解因式的步骤:(1)找:找公因式(2)提:提公因式(3)留:多项式除以公因式(二)问题引入:这个多项式能用因式分解吗?22b a -追问:能用提公因式法吗?--引入课题:因式分解-平方差公式(三)探究1,计算:22y x - ()222y x - 22b a - ∴ 22b a -2,回到问题,怎样将多项式22b a -进行因式分解?整式乘法 因式分解归纳:因式分解平方差公式:()()b a b a b a -+=-22 因式分解平方差公式法文字叙述:因式两数的平方差,等于这两数的和与这两数差的积.()()=-+y x y x ()()=-+y x y x 22=-+))((b a b a Θ))((22b a b a b a -+=-∴22))((b a b a b a -=-+Θ))((22b a b a b a -+=-∴等式的左边:两数的平方差,形如:()()22-.等式的右边:两数的和与这两数差的积.3,练习1:下列多项式能否用平方差公式分解因式?书上117页1题 ()221y x + ()222y x - ()223y x +- ()224y x --追问:利用平方差公式进行因式分解的多项式应满足什么条件?1.多项式只含a2,b2两项;2.a2和b2的符号相反;3.与a2和b2位置无关.(四)例题分析例1:分解因式()222942b a a -追问:利用平方差公式因式分解的步骤:归纳:(1)先改写成a2和b2的形式()9412-x ()()22321-=x 原式解:()()3232-+=x x ()()22322ab a -⎪⎭⎫ ⎝⎛=原式⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=ab a ab a 3232(2)再确定a,b(3)套公式练习2:分解因式:例2:分解因式: ()()()221q x p x +-+ ()()()229162y x y x +--要求:分小组讨论:(1)独立思考(2)小组讨论(3)小组展示和点评()()()[]()()[]y x y x y x y x +-++-=3-4342原式()()y x y x 77--= 归纳:(1)公式中的a 和b 也可以表示多项式;(2)这个例题把括号中的多项式作为一个整体,运用了整体思想.(3)计算过程中注意添括号和去括号的计算.练习3:把下列各式分解因式:249)1(x +-22241)2(z y x -9412-=x )原式解:(()2232-=x ()()3232-+=x x ()()22212⎪⎭⎫ ⎝⎛-=z xy 原式⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=z xy z xy 2121()()()()[]q x p x q x p x +-++++=原式解:1()()q p q p x -++=2归纳:a 和b 不仅可以表示一个数字或者单个的字母,也可以表示一个单项式或者多项式.例3:分解因式:()441y x - ()ab b a -32分析:观察这样的式子有什么不同的地方?归纳:(1)因式分解要分到不能分解为止.(2)结合着我们之前所学的提公因式法因式分解,抓住一提二套的原则.练习4:分解因式,书上第117页第2题:比比谁快,比比谁正确的最多,加油!加油!加油!()()221c b a -+()()()222m z y x ---()()()c b a c b a -+++=原式解:1()()()()[]m z y x m z y x ----+-=原式2()()m z y x m z y x +---+-=()()()221y x -=原式解:()()122-=a ab 原式()()2222y x y x -+=()()11-+=a a ab ()()()y x y x y x -++=2216)2(4)1(42+--a yy x学生在黑板上面练习,展示成果,学生点评归纳,找出易错点.(五)课堂小结:畅所欲言,本堂课自己的收获和疑问?1.因式分解的平方差公式?()()b2+-2=ba-baa2.平方差公式因式分解的方法与步骤:(1)先改写成a2和b2的形式(2)再确定a,b(3)套公式3.分解因式时应注意哪些?(1)找准a与b;(2)分解的结果应彻底,即分解到不能再分解为止。

初二【数学(人教版)】因式分解——公式法(第一课时) 教学设计

初二【数学(人教版)】因式分解——公式法(第一课时) 教学设计

2分钟1.5分钟0.5分钟归纳总结拓展提升例:利用因式分解计算22224914.35114.3)2(202120202020)1(⨯-⨯-+分析:(1)中2220212020-可利用平方差公式分解成)20212020()20212020(-⨯+,进而再进行化简运算;(1)中可以先提取共同的因数3.14,再利用平方差公式分解计算.解:2021202120202020)1()20212020(2020)20212020()20212020(2020202120202020)1(22-=--=-⨯++=-⨯++=-+28.6210014.3)4951()4951(14.3)4951(14.34914.35114.3)2(2222=⨯⨯=-⨯+⨯=-⨯=⨯-⨯例:如图,在一块长为a的正方形纸片的四角,各减去一个边长为b的正方形,其中a=1.86,b=0.34,求剩余部分面积.分析:求正方形减去四角后的面积,即用大正方形的面积,减去四个小正方面即可。

先可以列出式子为a2-4b2,若直接带入数值,发现运算量较大,所以可以先将a2-4b2因式分解后,再代入数值运算,可大大简化运算过程。

解:S剩= a2-4b2=(a+2b)(a-2b)把a=1.86,b=0.34带入S剩=(1.86+2×0.34)×(1.86-2×0.34)=2.72×1 =2.72四.归纳总结问题:今天我们主要学了哪些知识?利用平方差公式分解因式:))((22bababa-+=-问题:怎样判断能否利用平方差公式因式分解?利用平方差公式分解需要满足所给多项式能够写成两项平方差的形课后作业式,或者在变形后能够写成两项平方差的形式.平方差公式中的字母a,b可以表示数、单项式或多项式.问题:在运用平方差公式分解因式时,我们应该注意哪些问题?(1)若多项式中有公因式,应先提取公因式,再进一步分解因式;(2)因式分解要彻底,直到不能继续再分解为止.五.拓展提升如图,100个正方形由小到大套在一起,从外向里相间画上阴影,最里面一个小正方形没有画阴影,最外面一层画阴影,最外面的正方形的边长为100cm,向里依次为99cm,98cm,…,1cm,那么在这个图形中,所有画阴影部分的面积和是多少?解:每一块阴影的面积可以表示成相邻正方形的面积的差,而正方形的面积是其边长的平方,这样就可以逆用平方差公式计算了.则S阴影=(1002-992)+(982-972)+…+(22-12)=100+99+98+97+…+2+1=5050(cm2).答:所有阴影部分的面积和是5050cm2.六.课后作业1.下列所向是能否用平方差公式分解因式?为什么?22222222)4()3()2()1(yxyxyxyx--+--+2.分解因式16)4(4)3(49)2(251)1(422222+----ayyxbaba3.已知x+2y=3, x2-4y2=-15,求x-2y的值和x, y的值.。

人教版八年级数学上册14.3.2.1《运用平方差公式因式分解》教学设计

人教版八年级数学上册14.3.2.1《运用平方差公式因式分解》教学设计

人教版八年级数学上册14.3.2.1《运用平方差公式因式分解》教学设计一. 教材分析1.内容概述:本节课的主要内容是运用平方差公式进行因式分解。

平方差公式是八年级数学中的一个重要知识点,掌握平方差公式对于学生后续学习代数和几何知识具有重要意义。

2.地位与作用:平方差公式是因式分解的一种基本方法,它可以帮助学生简化代数表达式,提高解题效率。

通过学习平方差公式,学生能够巩固和拓展之前学过的知识,为高中阶段的学习打下基础。

二. 学情分析1.学生特点:八年级的学生已经具备了一定的代数基础,对因式分解有一定的了解。

但部分学生在运用平方差公式进行因式分解时,容易出错。

因此,在教学过程中,需要关注学生的学习需求,针对性地进行讲解和辅导。

2.学习需求:学生需要掌握平方差公式的推导过程、记忆方法以及应用技巧。

同时,学生需要通过大量的练习,提高运用平方差公式进行因式分解的能力。

三. 教学目标1.知识与技能:使学生掌握平方差公式的推导过程、记忆方法及应用;提高学生运用平方差公式进行因式分解的能力。

2.过程与方法:通过观察、分析、归纳、推理等方法,引导学生自主探究平方差公式的推导过程,培养学生的逻辑思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学的趣味性和实用性。

四. 教学重难点平方差公式的推导过程及应用。

平方差公式的灵活运用,特别是遇到复杂表达式时的因式分解。

五. 教学方法1.情境教学法:通过生活实例引入平方差公式,激发学生的学习兴趣。

2.启发式教学法:引导学生自主探究平方差公式的推导过程,培养学生的逻辑思维能力。

3.合作学习法:学生进行小组讨论,共同解决难题,提高学生的团队合作意识。

4.反馈评价法:及时给予学生反馈,鼓励学生积极参与课堂活动,提高教学效果。

六. 教学准备1.教学课件:制作精美的教学课件,突出平方差公式的推导过程和应用实例。

2.练习题:准备一定数量的练习题,包括基础题、提高题和拓展题,以满足不同学生的学习需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:1432因式分解---公式法:平方差公式
授课人:李渡中学徐霞
提出新的问题,在 不能使用提公因式的 情况下,如何来进行 因式分解,从而引导 学生积极思考。

及时帮助学生进行
例题讲解:
例1 分解因式
(1) 4x2-9
,‘ 2 2
解:原式=(2x) - (3)
=(2x+3)(2x- 3)
注意:1、先把要计算的式子与公式对照
2、哪个是a,哪个是b
(2) (x+p)2 _ (x+q)2
2 2
解:原式=(x+p) - (x+q)
=(2x+p+q)(p-q)
、” 2 ,
变式:—9x +1
例2分解因式:
4 4
(1) x -y
2 2 2 2
解:原式二(x +y )( x -y )
2 2
=( x +y )( x+y)( x-y)
3
(2) a b —ah
2
解:原式=ab(a —1)
= ab( a+1)( a—1).
注意:1、若有公因式,要先提公因式,
再考虑平方差公式.
2、分解因式分解到不能分解为止
教师通过例题的讲解,可以引导学生利用刚刚归纳的平方差公式进行解题,并写出规范解题步骤和解题格式。

也为下一个环节学生自己动手练习做准备。

=[(x+p)+(x+q)] [(x+p)-(x+q)]
三•应用原理,强化训练
1. 把下列各式分解因式
2 2
(1) 4a -9b
2 2
(2) 9(a+b)2-4(a-b)2
2 3
(3) ax - a
2 2
(4) -16y +25x
2. 用简便方法计算下列式子:
2 2
(1)352-252
2 2
(2) 6.42-3.6
2
3. 分解因式:
2 (x —1) + b2 (1 —x)
这些习题的设计我力求由浅入深,符合学生的认知规律,从而避免了题海,抓住了规律,也使学生达到了举一反三,处类旁通的效果,从教学形式上,我把学生分成几个小组,每个小组的同学自由选择回答试题的难度,由必答到抢答,由累计积分,排出各小组名次,从而鼓励全体参与并奖励优秀,从而使每个学生都能最大限度的积极参与到活动中来,表现自我。

四•自我总结,作业布置
1•满足什么条件的多项式才可运用平方差公式分解因式?答:多项式是二次项,并且两项都能写成平方的形式,而且符号相反•
2. 公式a2 - b 2 = (a+b)(a-b) 中的字母a , b 表示什么?
答:(1)左边是二项式,每项都是平方的形式,两项的符号相反.
(2)右边是两个多项式的积,一个因式是两数的和,另一个因式是这两数的差.
(3)在乘法公式中,“平方差”是计算结果,而在分解因式,?“平方差”是得分解因式的多项式•
3. 分解因式要注意哪些问题?
答:(1)如果多项式各项有公因式时,先提公因式,再应用平方差公式。

(2) 如果多项式各项没有公因式,则第一步考虑用公式分解因式.
(3) 运用平方差分解因式,当第一项系数是负数的时候,应该先提“一”号或者利用加法交换率交换位置,然后再分解因式•
(4) 第一步分解因式以后,所含的多项式还可以继续分解,?则需要进一步分解因式.直到每个多项式因式都不能分解为止.
在此环节中我引导学生进行归纳总结,反思,这样设计是为了充分发挥学生的主体地位,使学生加深对本课内容的理解,对所学知识形成一个完整的知识体系,另一方面也可以提高学生的概括能力和表达能力。

作业:
必做题:习题14.3 第2题
选做题:思考在因式分解中除了利用提公因式法和平
方差公式还能有其他方法解题吗?
五、板书设计
公式法一平方差公式
例1 例2 例3 例4
练习题:通过练习让学生巩固和练习基本知识,从而形成技能。

相关文档
最新文档