人工智能不确定性推理部分参考答案教学提纲
人工智能原理教案03章 不确定性推理方法3.1 概述

3.1 概述一个人工智能系统,由于知识本身的不精确和不完全,采用标准逻辑意义下的推理方法难以达到解决问题的目的。
对于一个智能系统来说,知识库是其核心。
在这个知识库中,往往大量包含模糊性、随机性、不可靠性或不知道等不确定性因素的知识。
为了解决这种条件下的推理计算问题,不确定性推理方法应运而生。
归纳起来,不确定性推理方法研究产生的原因大致如下:·很多原因导致同一结果如多种原因引起同一种疾病。
例如,发烧可能因为感冒,也可能因为得了肺炎,需要进一步的知识才能作出具体判断。
·推理所需的信息不完备如勘探得到的地质分析资料不完备。
·背景知识不足由于人类认识水平的客观限制,客观世界的很多知识仍不为人们所认知。
在智能系统中,表现为所处理的知识的背景知识不完备。
如疾病的发病原因不十分明确。
·信息描述模糊这种现象十分普遍。
如"他不高不矮","今天不冷不热"等等。
在这类描述中,通常无法以一个量化的标准来描述,所描述的事物通常处在一个大致的范围。
比如,认为"身高在165cm-174cm 之间"的男士符合"不高不矮"的描述。
·信息中含有噪声噪声的存在干扰了人们对本源信息的认知,从而加大了认知上的难度。
如语音信号、雷达信号中的噪音干扰带来的信息模糊。
·规划是模糊的当需要对某个问题域进行划分时,可能无法找到一个清晰的标准。
如根据市场需求情况调节公司产品的内容和数量。
·推理能力不足必须考虑到实现的可能性,计算复杂度,系统性能。
如计算机的实现能力,推理算法的规模扩大能力有限等。
·解题方案不唯一没有最优方案,只有相对较优方案。
不实施,不能做出最后判断。
不精确思维并非专家的习惯或爱好所至,而是客观现实的要求。
在人类的知识和思维行为中,精确性只是相对的,不精确性才是绝对的。
知识工程需要各种适应不同类的不精确性特点的不精确性知识描述方法和推理方法。
第四章不确定性推理教程以及答案

这是把先验概率P(H)更新为后验概率P(H/E)的计算公式。
4.4 主观Bayes方法
2.证据肯定不存在的情况 在证据E肯定不存在时,把先验几率O(H)更新为后验 几率O(H/﹁E)的计算公式为
O( H / E ) LN O( H )
如果将上式换成概率,就可得到
(4.4.3)
LN P( H ) (4.4.4) P( H / E ) ( LN 1) P( H ) 1
4.4 主观Bayes方法
4.4.2 证据不确定性的表示
若以O(A) 或P(A)表示证据A的不确定性,则转换公式 是:
当A为假时 0 P( A) O( A) 当A为真时 1 P( A) 0, 当A介于真假之间时
4.4 主观Bayes方法
4.4.3 不确定性的遗传算法
1.表示问题
1、知识不确定性的表示 2、证据的不确定性表示
1、不确定性的传递算法 2、结论不确定性的合成 3、组合证据的不确定性算法 1、知识的不确定性度量 2、证据的不确定性度量
2. 计算问题
3. 语义问题
4.2 不确定性推理方法分类
1、模型方法 特点:把不确定的证据和不确定的知识分别与某 种度量标准对应起来,并且给出更新结论不确定性的 算法,从而构成了相应的不确定性推理的模型。 数值方法
Si
i
O( H / S1 , S2 , Sn )
O( H / S n ) O( H / S1 ) O( H / S2 ) O( H ) O( H ) O( H ) O( H ) O( H / S1 , S2 , Sn ) P( H / S1 , S2, Sn ) 1 O( H / S1, S2 , , Sn )
人工智能第4章(不确定性推理方法)

例:容器里的球
现分别有 A,B 两个容器,在容器 A 里分别有 7 个红球和 3 个白球,在容器 B 里有 1 个红球和 9 个白球。
现已知从这两个容器里任意抽出了一个球,且是红球, 问:这个红球是来自容器 A 的概率是多少?
假设已经抽出红球为事件 B,从容器 A 里抽出球为事件 A, 则有:P(B) = 8 / 20 P(A) = 1 / 2 P(B | A) = 7 / 10,
证据(前提)的不确定性表示 规则的不确定性表示 推理计算---结论的不确定性表示
11
证据的不确定性度量
单个证据的不确定性获取方法:两种 初始证据:由提供证据的用户直接指定,用可信度因子对 证据的不确定性进行表示。如证据 E 的可信度表示为 CF(E)。 如对它的所有观测都能肯定为真,则使CF(E)=1;如能肯定 为假,则使 CF(E)=-1 ;若它以某种程度为真,则使其取小 于1的正值,即0< CF(E)<1;若它以某种程度为假,则使其 取大于 -1 的负值,即-1< CF(E)<0; 若观测不能确定其真假, 此时可令CF(E)=0。
P (H | E) - P (H) , 当 P (H | E) P (H) 1 P (H) CF(H, E) P (H | E) - P (H) , 当P (H | E) P (H) P (H)
15
确定性方法
规则
规则的不确定性表示 证据(前提)的不确定性表示 推理计算—结论的不确定性表示
24
规则
(推理计算 4)
CF(E) < =0,
规则E H不可使用,即此计算不必进行。
0 < CF(E) <= 1,
人工智能教程习题及答案第4章习题参考解答

第四章不确定性推理习题参考解答4.1 练习题4.1什么是不确定性推理?有哪几类不确定性推理方法?不确定性推理中需要解决的基本问题有哪些?4.2什么是可信度?由可信度因子CF(H,E)的定义说明它的含义。
4.3什么是信任增长度?什么是不信任增长度?根据定义说明它们的含义。
4.4当有多条证据支持一个结论时,什么情况下使用合成法求取结论的可信度?什么情况下使用更新法求取结论可信度?试说明这两种方法实际是一致的。
4.5设有如下一组推理规则:r1:IF E1THEN E2(0.6)r2:IF E2AND E3THEN E4 (0.8)r3:IF E4THEN H (0.7)r4:IF E5THEN H (0.9)且已知CF(E1)=0.5,CF(E3)=0.6,CF(E5)=0.4,结论H的初始可信度一无所知。
求CF(H)=?4.6已知:规则可信度为r1:IF E1THEN H1(0.7)r2:IF E2THEN H1(0.6)r3:IF E3THEN H1(0.4)r4:IF (H1 AND E4) THEN H2(0.2)证据可信度为CF(E1)=CF(E2)=CF(E3)=CF(E4)=CF(E5)=0.5H1的初始可信度一无所知,H2的初始可信度CF0(H2)=0.3计算结论H2的可信度CF(H2)。
4.7设有三个独立的结论H1,H2,H3及两个独立的证据E1与E2,它们的先验概率和条件概率分别为P(H1)=0.4,P(H2)=0.3,P(H3)=0.3P(E1/H1)=0.5,P(E1/H2)=0.6,P(E1/H3)=0.3P(E2/H1)=0.7,P(E2/H2)=0.9,P(E2/H3)=0.1利用基本Bayes方法分别求出:(1)当只有证据E1出现时,P(H1/E1),P(H2/E1),P(H3/E1)的值各为多少?这说明了什么?(2)当E1和E2同时出现时,P(H1/E1E2),P(H2/E1E2),P(H3/E1E2)的值各是多少?这说明了什么?4.8在主观Bayes方法中,请说明LS与LN的意义。
人工智能不确定知识表示及推理讲义

15.07.2021
人工智能不确定知识表示 及推理
1.3 主观Bayes方法
15.07.2021
人工智能不确定知识表示 及推理
一、不确定性的表示 1、知识的不确定性表示
IF E THEN (LS,LN) H (P(H))
P(E)
P(H)
LS,LN
E
H
LS,LN(0)分别称为充分性量度和必要性量度,这两个数值由 领域专家给出。
E
H
规则的不确定性通常用一个数值f(E,H)表示,称为规则强度。
规则的假设(结论)H也可以作为其他规则的证据,其不确定用 C(H)表示,C(H)必须通过不确定性的更新算法来计算。
15.07.2021
人工智能不确定知识表示 及推理
在确定一种量度方法及其范围时,应注意以下几点:
✓ 量度要能充分表达相应的知识和证据的不确定性程度。 ✓ 量度范围的指定应便于领域专家及用户对不确定性的估计。 ✓ 量度要便于对不确定性的更新进行计算,而且对结论算出 的不确定性量度不能超出量度的范围
Bayes方法用于不精确推理的条件是已知:P(E),P(H) ,P(E | H)
对于一般的不精确推理网络,必须做如下约定:
①若一组证据E1,E2,En同时支持假设H时,则: 对于H,E1,E2,En之间相互独立
②当一个证据E支持多个假设H1,H2,Hn时, 则: 假设H1,H2,Hn 之间互不相容
15.07.2021
⑥由A6的不确定性C(A6)和规则R4的规则强度f4 根据算法1求出A7的另外一个不确定性C(A7)。
⑦由A7的两个根据独立证据分别求出的不确定性C(A7)和C(A7) 根据算法2求成A7最后的不确定性C (A7)。
15.07.2021
人工智能导论 第4章 不确定性推理方法(导论) 1-41

CF1(H ) =CF(H , E1)× max{0,CF(E1)} CF2(H ) =CF (H , E2 )× max{0,CF (E2 )}
19
4.2 可信度方法
5. 结论不确定性的合成算法
(2)求出E1与E2对H的综合影响所形成的可信度 CF1,2(H ):
教材:
王万良《人工智能导论》(第4版) 高等教育出版社,2017. 7
第4章 不确定性推理方法
现实世界中由于客观上存在的随机性、模糊性,反 映到知识以及由观察所得到的证据上来,就分别 形 成了不确定性的知识及不确定性的证据。因而 还必 须对不确定性知识的表示及推理进行研究。 这就是 本章将要讨论的不确定性推理。
3
第4章 不确定性推理方法
✓4.1 不确定性推理中的基本问题
4.2 可信度方法 4.3 证据理论 4.4 模糊推理方法
4
4.1 不确定性推理中的基本问题
推理:从已知事实(证据)出发,通过运用相 关 知识逐步推出结论或者证明某个假设成立或 不成 立的思维过程。
不确定性推理:从不确定性的初始证据出发, 通 过运用不确定性的知识,最终推出具有一定 程度 的不确定性但却是合理或者近乎合理的结 论的思 维过程。
r1 : CF1(H ) 0.8 max{0,CF(E1 )}
0.8 max{0,0.35} 0.28
23
4.2 可信度方法
解: 第一步:对每一条规则求出CF(H)。
r2 : CF2 (H ) 0.6 max{0,CF(E2 )}
0.6 max{0,0.8} 0.48
r3 : CF3(H ) 0.5 max{0,CF(E3 )}
4. 不确定性的传递算法
人工智能AI5章不确定性推理讲解

则结论H 的综合可信度可分以下两步计算: (1) 分别对每条知识求出其CF(H)。即 CF1(H)=CF(H, E1) ×max{0, CF(E1)} CF2(H)=CF(H, E2) ×max{0, CF(E2)} (2) 用如下公式求E1与E2对H的综合可信度
IF 发烧 AND 流鼻涕 THEN 感冒 (0.8) 表示当某人确实有“发烧”及“流鼻涕”症状时,则有80%的把握是患了感冒。
9
5.2.2 可信度推理模型
可信度的定义 (1/2)
在CF模型中,把CF(H, E)定义为 CF(H, E)=MB(H, E)-MD(H, E)
式中MB称为信任增长度,MB(H, E)定义为
解:由r4得到: CF(E1)=0.8×max{0, CF(E4 AND (E5 OR E6))}
= 0.8×max{0, min{CF(E4), CF(E5 OR E6)}} =0.8×max{0, min{CF(E4), max{CF(E5), CF(E6)}}} =0.8×max{0, min{CF(E4), max{0.6, 0.8}}} =0.8×max{0, min{0.5, 0.8}}
15
5.2.2 可信度推理模型
不确定性的更新
CF模型中的不确定性推理实际上是从不确定的初始证据出发,不断 运用相关的不确性知识,逐步推出最终结论和该结论可信度的过程。 而每一次运用不确定性知识,都需要由证据的不确定性和知识的不确 定性去计算结论的不确定性。
不确定性的更新公式
CF(H)=CF(H, E)×max{0, CF(E)}
不确定性的匹配
人工智能第五章不确定性推理 (2)

概率论基础(概率性质 )
• 定 穷多义个:事设件{A,n, 两n=两1,不2相, …交},为且一组 A有n 限 ,或可则称列事无
件族{An, n=1, 2, …}为样本空间n Ω的一个完备
,
事 2,件…族,,则又称若{A对n,任n=意1事, 2件, …B有}为B基An=本An事或件φ族, 。n=1,
• 定义:设Ω为一个随机实验的样本空间, 对Ω上的任意事件A,规定一个实数与之 对应,记为P(A),满足以下三条基本性
,
质,称为事件A发生的概率:
0 P(A) 1 P() 1 P() 0
–若二事件AB互斥,即,则
P(A B) P(A) P(B)
• 以上三条基本规定是符合常识的。
《人工智能原理》第五章 不确定性推理
• 随机事件:随机事件是一个随机实验的一些 可能结果的集合,是样本空间的一个子集。 常用大写字母A,B,C,…表示。
《人工智能原理》第五章 不确定性推理
概率论基础(事件间的关系与运算 )
• 两个事件A与B可能有以下几种特殊关系:
– 包含:若事件B发生则事件A也发生,称“A包含B”, 或“B含于A”,记作AB或BA。
• 设A,B是两事件,则
P(A B) P(A) P(B) P(A B)
《人工智能原理》第五章 不确定性推理事件且P(A)>0,称
P(B | A) P( AB)
P( A)
,
• 为事件A已发生的条件下,事件B的条件
概率,P(A)在概率推理中称为边缘概率。
《人工智能原理》第五章 不确定性推理
第五章 不确定性推理
• 概述 • 概率论基础 • Bayes网络 • 主观Bayes方法 • 确定性方法 • 证据理论
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人工智能不确定性推理部分参考答案不确定性推理部分参考答案1.设有如下一组推理规则:r1: IF E1 THEN E2 (0.6)r2: IF E2 AND E3 THEN E4 (0.7)r3: IF E4 THEN H (0.8)r4: IF E5 THEN H (0.9)且已知CF(E1)=0.5, CF(E3)=0.6, CF(E5)=0.7。
求CF(H)=? 解:(1) 先由r1求CF(E2)CF(E2)=0.6 × max{0,CF(E1)}=0.6 × max{0,0.5}=0.3(2) 再由r2求CF(E4)CF(E4)=0.7 × max{0, min{CF(E2 ), CF(E3 )}}=0.7 × max{0, min{0.3, 0.6}}=0.21(3) 再由r3求CF1(H)CF1(H)= 0.8 × max{0,CF(E4)}=0.8 × max{0, 0.21)}=0.168(4) 再由r4求CF2(H)CF2(H)= 0.9 ×max{0,CF(E5)}=0.9 ×max{0, 0.7)}=0.63(5) 最后对CF1(H )和CF2(H)进行合成,求出CF(H) CF(H)= CF1(H)+CF2(H)+ CF1(H) × CF2(H)=0.6922 设有如下推理规则r1: IF E1 THEN (2, 0.00001) H1r2: IF E2 THEN (100, 0.0001) H1r3: IF E3 THEN (200, 0.001) H2r4: IF H1 THEN (50, 0.1) H2且已知P(E1)= P(E2)= P(H3)=0.6, P(H1)=0.091, P(H2)=0.01, 又由用户告知:P(E1| S1)=0.84, P(E2|S2)=0.68, P(E3|S3)=0.36请用主观Bayes方法求P(H2|S1, S2, S3)=?解:(1) 由r1计算O(H1| S1)先把H1的先验概率更新为在E1下的后验概率P(H1| E1)P(H1| E1)=(LS1× P(H1)) / ((LS1-1) × P(H1)+1)=(2 × 0.091) / ((2 -1) × 0.091 +1)=0.16682由于P(E1|S1)=0.84 > P(E1),使用P(H | S)公式的后半部分,得到在当前观察S1下的后验概率P(H1| S1)和后验几率O(H1| S1)P(H1| S1) = P(H1) + ((P(H1| E1) – P(H1)) / (1 - P(E1))) × (P(E1| S1) – P(E1))= 0.091 + (0.16682 –0.091) / (1 – 0.6)) × (0.84 – 0.6)=0.091 + 0.18955 × 0.24 = 0.136492O(H1| S1) = P(H1| S1) / (1 - P(H1| S1))= 0.15807(2) 由r2计算O(H1| S2)先把H1的先验概率更新为在E2下的后验概率P(H1| E2)P(H1| E2)=(LS2×P(H1)) / ((LS2-1) × P(H1)+1)=(100 × 0.091) / ((100 -1) × 0.091 +1)=0.90918由于P(E2|S2)=0.68 > P(E2),使用P(H | S)公式的后半部分,得到在当前观察S2下的后验概率P(H1| S2)和后验几率O(H1| S2)P(H1| S2) = P(H1) + ((P(H1| E2) – P(H1)) / (1 - P(E2))) × (P(E2| S2) – P(E2))= 0.091 + (0.90918 –0.091) / (1 – 0.6)) × (0.68 – 0.6)=0.25464O(H1| S2) = P(H1| S2) / (1 - P(H1| S2))=0.34163(3) 计算O(H1| S1,S2)和P(H1| S1,S2)先将H1的先验概率转换为先验几率O(H1) = P(H1) / (1 - P(H1)) = 0.091/(1-0.091)=0.10011再根据合成公式计算H1的后验几率O(H1| S1,S2)= (O(H1| S1) / O(H1)) × (O(H1| S2) / O(H1)) × O(H1)= (0.15807 / 0.10011) × (0.34163) / 0.10011) × 0.10011= 0.53942再将该后验几率转换为后验概率P(H1| S1,S2) = O(H1| S1,S2) / (1+ O(H1| S1,S2))= 0.35040(4) 由r3计算O(H2| S3)先把H2的先验概率更新为在E3下的后验概率P(H2| E3)P(H2| E3)=(LS3× P(H2)) / ((LS3-1) × P(H2)+1)=(200 × 0.01) / ((200 -1) × 0.01 +1)=0.09569由于P(E3|S3)=0.36 < P(E3),使用P(H | S)公式的前半部分,得到在当前观察S3下的后验概率P(H2| S3)和后验几率O(H2| S3)P(H2| S3) = P(H2 | ¬ E3) + (P(H2) – P(H2| ¬E3)) / P(E3)) × P(E3| S3)由当E3肯定不存在时有P(H2 | ¬ E3) = LN3× P(H2) / ((LN3-1) × P(H2) +1)= 0.001 × 0.01 / ((0.001 - 1) × 0.01 + 1)= 0.00001因此有P(H2| S3) = P(H2 | ¬ E3) + (P(H2) – P(H2| ¬E3)) / P(E3)) × P(E3| S3)=0.00001+((0.01-0.00001) / 0.6) × 0.36=0.00600O(H2| S3) = P(H2| S3) / (1 - P(H2| S3))=0.00604(5) 由r4计算O(H2| H1)先把H2的先验概率更新为在H1下的后验概率P(H2| H1)P(H2| H1)=(LS4× P(H2)) / ((LS4-1) × P(H2)+1)=(50 × 0.01) / ((50 -1) × 0.01 +1)=0.33557由于P(H1| S1,S2)=0.35040 > P(H1),使用P(H | S)公式的后半部分,得到在当前观察S1,S2下H2的后验概率P(H2| S1,S2)和后验几率O(H2| S1,S2)P(H2| S1,S2) = P(H2) + ((P(H2| H1) – P(H2)) / (1 - P(H1))) × (P(H1| S1,S2) – P(H1))= 0.01 + (0.33557 –0.01) / (1 – 0.091)) × (0.35040 – 0.091)=0.10291O(H2| S1,S2) = P(H2| S1, S2) / (1 - P(H2| S1, S2))=0.10291/ (1 - 0.10291) = 0.11472(6) 计算O(H2| S1,S2,S3)和P(H2| S1,S2,S3)先将H2的先验概率转换为先验几率O(H2) = P(H2) / (1 - P(H2) )= 0.01 / (1-0.01)=0.01010再根据合成公式计算H1的后验几率O(H2| S1,S2,S3)= (O(H2| S1,S2) / O(H2)) × (O(H2| S3) / O(H2)) ×O(H2)= (0.11472 / 0.01010) × (0.00604) / 0.01010) × 0.01010=0.06832再将该后验几率转换为后验概率P(H2| S1,S2,S3) = O(H1| S1,S2,S3) / (1+ O(H1| S1,S2,S3))= 0.06832 / (1+ 0.06832) = 0.06395可见,H2原来的概率是0.01,经过上述推理后得到的后验概率是0.06395,它相当于先验概率的6倍多。
3 设有如下推理规则r1: IF E1 THEN (100, 0.1) H1r2: IF E2 THEN (50, 0.5) H2r3: IF E3 THEN (5, 0.05) H3且已知P(H1)=0.02, P(H2)=0.2, P(H3)=0.4,请计算当证据E1,E2,E3存在或不存在时P(H i | E i)或P(H i |﹁E i)的值各是多少(i=1, 2, 3)?解:(1) 当E1、E2、E3肯定存在时,根据r1、r2、r3有P(H1 | E1) = (LS1× P(H1)) / ((LS1-1) × P(H1)+1)= (100 × 0.02) / ((100 -1) × 0.02 +1)=0.671P(H2 | E2) = (LS2× P(H2)) / ((LS2-1) × P(H2)+1)= (50 × 0.2) / ((50 -1) × 0.2 +1)=0.9921P(H3 | E3) = (LS3× P(H3)) / ((LS3-1) × P(H3)+1) = (5 × 0.4) / ((5 -1) × 0.4 +1)=0.769(2) 当E1、E2、E3肯定存在时,根据r1、r2、r3有P(H1 | ¬E1) = (LN1× P(H1)) / ((LN1-1) × P(H1)+1) = (0.1 × 0.02) / ((0.1 -1) × 0.02 +1)=0.002P(H2 | ¬E2) = (LN2× P(H2)) / ((LN2-1) × P(H2)+1) = (0.5 × 0.2) / ((0.5 -1) × 0.2 +1)=0.111P(H3 | ¬E3) = (LN3× P(H3)) / ((LN3-1) × P(H3)+1) = (0.05 × 0.4) / ((0.05 -1) × 0.4 +1)=0.032。