冷却水的最高温度计算
GBT50050—95工业循环冷却水处理设计规范标准[详]
![GBT50050—95工业循环冷却水处理设计规范标准[详]](https://img.taocdn.com/s3/m/260b42cff705cc175427090f.png)
工业循环冷却水处理设计规范 GB50050—95主编部门:中华人民共和国化学工业部批准部门:中华人民共和国建设部施行日期:1995年10月1日关于发布国家标准《工业循环冷却水处理设计规范》的通知建标[1995]132号根据国家计委计综[1992]490号文的要求,由化工部会同有关部门共同修订的《工业循环冷却水处理设计规范》已经有关部门会审,现批准《工业循环冷却水处理设计规范》GB50050—95为强制性国家标准,自一九九五年十月一日起施行,原《工业循环冷却水处理设计规范》GBJ50—83同时废止。
本标准由化工部负责管理,具体解释等工作由中国寰球化学工程公司负责,出版发行由建设部标准定额研究所负责组织。
中华人民共和国建设部一九九五年三月十六日1 总则1.0.1 为了控制工业循环冷却水系统内由水质引起的结垢、污垢和腐蚀,保证设备的换热效率和使用年限,并使工业循环冷却水处理设计达到技术先进、经济合理,制定本规范。
1.0.2 本规范适用于新建、扩建、改建工程中间接换热的工业循环冷却水处理设计。
1.0.3 工业循环冷却水处理设计应符合安全生产、保护环境、节约能源和节约用水的要求,并便于施工、维修和操作管理。
1.0.4 工业循环冷却水处理设计应在不断地总结生产实践经验和科学试验的基础上,积极慎重地采用新技术。
1.0.5 工业循环冷却水处理设计除应按本规范执行外,尚应符合有关现行国家标准、规范的规定。
2 术语、符号2.1 术语2.1.1 循环冷却水系统Recinrculating cooling water system以水作为冷却介质,由换热设备、冷却设备、水泵、管道及其它有关设备组成,并循环使用的一种给水系统。
2.1.2 敞开式系统Open system指循环冷却水与大气直接接触冷却的循环冷却水系统。
2.1.3 密闭式系统Closed system指循环冷却水不与大气直接接触冷却的循环冷却水系统。
2.1.4 药剂Chemicals循环冷却水处理过程中所使用的各种化学物质。
冷却系统计算

三、水泵的设计要点及计算
(一)、水泵的设计要点
在水泵结构中,影响效率的主要关键是轮叶和蜗壳的形状,而影响可靠性的关键是水封。
(二)、水泵的计算
水泵主要根据所需的泵水量和泵水压力来选择,其程序大致如下:
1.确定水泵的泵水量
水泵的泵水量 可根据冷却水的循环量按下式初步确定:
(米3/秒)(1-3)
式中 ---空气进入散热器以前与通过散热器以后的温度差,通常
=10~80℃
---空气的比重,可近似取 =千克/米3
---空气的定压比热,可近似取 =千焦/千克.度
额定功率:(取 =75℃)
∴对于420马力发动机 =(60**发动机 =(60**=2.7670米3/秒
---水的比热,可近似取 =千焦/千克.度
取 =12℃
额定功率:
∴对于420马力发动机 =(12*1000*)=(米3/秒)=(L/min)
∴对于360马力发动机 =(12*1000*)=(米3/秒)=(L/min)
∴对于310马力发动机 =(12*1000*)=(米3/秒)=(L/min)
最大扭矩:(对应转速1300~1600)
式中 ---冷却水的循环量(米3/秒)
---水泵的容积效率,主要考虑水泵中冷却水的泄露,一般取~
2.确定水泵的泵水压力( )
水泵的压力应当足以克服冷却系统中所有的流动阻力并得到必要的冷却水循环的流动速度;此外,为了冷却可靠,在工作温度下水在任一点的压力均应大于此时饱和蒸气压力。当压力不够时,水泵入口处可能发生气蚀现象,因此此处的压力最低。
---叶片出口安装角,一般取 =240~500;
---液力效率 =~;
制冷计算说明书

一、课程设计任务已知所需总耗冷量为1350kW,要求冷冻出水温为5℃,二、原始资料1、水源:蚌埠市是我国南方大城市,水源较充足,所以冷却水考虑选用冷却塔使用循环水。
2、室外气象资料:室外空调干球温度35.6℃,湿球温度28.1℃。
3、蚌埠市海拔21米。
三、设计内容(一)冷负荷的计算和冷水机组的选型1、冷负荷的计算对于间接供冷系统一般附加7%—15%,这里选取10%。
Q= Qz(1+12%)=1350×(1+10%)=1485kW2、冷水机组的选型(1)确定制冷方式从能耗、单机容量和调节等方面考虑,对于相对较大负荷(如2000kw 左右)的情况,宜采用溴化锂吸收式冷水机组;选择空调用蒸气压缩式冷水机组时,单机名义工况制冷量大于1758kw时宜选用离心式;制冷量在1054-1758 kw时宜选用螺杆式或离心式;制冷量在700-1054 kw时宜选用螺杆式;制冷量在116-700 kw时宜选用螺杆式或往复式;制冷量小于116活塞式或涡旋式。
本设计单台容量为500KW,选择螺杆式(2)冷水机组台数和容量的选择制冷机组3台,而且3台机组的容量相同。
所以每台制冷机组制冷量Q’=1485÷3=495 kW 根据制冷量选取制冷机组具体型号如下:名称:开利水冷式半封闭式双螺杆式冷水机组型号:30 XW 0552冷冻水进口温度:10℃冷冻水出口温度:5℃冷却水进口温度:26℃℃冷却水出口温度:31℃(二).水力计算1、冷冻水循环系统水力计算利用假定流速法计算冷冻水水泵出水管的直径:冷冻水流量Q=106×3=318m3/h=0.088m3/s假定流速V=1.8m/s横截面积A=Q/V=0.088/1.8=0.049㎡=πD2/4∴直径D=0.249m,D’取250mm,V’=1.8m/s(满足要求)用同样的方法计算冷冻水水泵吸水管的直径:根据上表可选流速V=1.4m/s横截面积A=Q/V=0.088/1.4=0.063=πD2/4∴直径D=0.282m,D’=300mm,V’=Q/A=1.25m/s(满足要求)单台水泵时:冷冻水流量Q=106m3/h=0.029 m3/s假定流速V=1.8m/s横截面积A=Q/V=0.029/1.8=0.016㎡=πD2/4∴直径D=0.143m,D’取150mm,V’=1.64m/s(满足要求)用同样的方法计算冷冻水水泵吸水管的直径:根据上表可选流速V=1.1m/s横截面积A=Q/V=0.029/1.1=0.026=πD2/4∴直径D=0.183m,D’=200mm,V’=Q/A=1.0m/s(满足要求)补水量是冷冻水流量的1%,即Q补=318×1%=3.18m3/h=0.O088m3/s,选择管径为25mm。
冷却塔选型计算

冷却塔选型1.冷却水流量计算:L=(Q1+Q2)/(Δt*1.163)*1.1L—冷却水流量(m³/h)Q1—乘以同时使用系数后的总冷负荷,KWQ2—机组中压缩机耗电量,KWΔt—冷却水进出水温差,℃,一般取4.5-5冷却塔的水流量= 冷却水系统水量×(1.2~1.5);冷却塔的能力大多数为标准工况下的出力(湿球温度28 ℃,冷水进出温度32ºC/37ºC),由于地区差异,夏季湿球温度会不同, 应根据厂家样册提供的曲线进行修正.湿球温度可查当地气象参数获得.冷却塔与周围障碍物的距离应为一个塔高。
冷却塔散冷量冷吨的定义:在空气的湿球温度为27℃,将13L/min(0.78m³/h)的纯水从37℃冷却到32℃,为1冷吨,其散热量为4.515KW。
湿球温度每升高1℃,冷却效率约下降17%2.冷却塔冷却能力计算:Q=72*L*(h1-h2)Q-冷却能力(Kcal/h)L-冷却塔风量,m³/hh1-冷却塔入口空气焓值h2-冷却塔出口空气焓值3.冷却塔若做自控,进出水必须都设电动阀,否则单台对应控制时倒吸或溢水。
4.冷却水泵扬程的确定扬程为冷却水系统阻力+冷却塔积水盘至布水器的高差+布水器所需压力5.冷却塔不同类型噪音及处理方法:.6.冷却水管径选择7.冷却水泵扬程:扬程通常是指水泵所能够扬水的最高度,用H表示。
最常用的水泵扬程计算公式是H=(p2-p1)/ρg+(c2-c1)/2g+z2-z1。
其中,H——扬程,m;p1,p2——泵进出口处液体的压力,Pa;c1,c2——流体在泵进出口处的流速,m/s;z1,z2——进出口高度,m;ρ——液体密度,kg/m3;g——重力加速度,m/s2。
通常选用比转数ns在130~150的离心式清水泵,水泵的流量应为冷水机组额定流量的1.1~1.2倍(单台取1.1,两台并联取1.2。
按估算可大致取每100米管长的沿程损失为5mH2O,水泵扬程计算公式(mH2O):Hmax=△P1+△P2+0.05L(1+K)△P1为冷水机组蒸发器的水压降。
冷水机组能效与冷冻水出水和冷却进水经验公式

冷水机组是工业生产中常见的设备之一,它的能效与冷冻水出水和冷却进水经验公式是工程师们需要重点关注的问题。
在本文中,我们将深入探讨冷水机组的能效问题,并结合实际经验共享相关公式,希望能为工程师们提供一些参考和帮助。
冷水机组的能效问题一直备受关注。
在工业生产中,建立高效节能的生产系统是非常重要的,而冷水机组作为制冷设备的一种,其能效对整个生产系统的节能效果至关重要。
我们需要对冷水机组的能效进行全面评估,找到影响其能效的关键因素,并建立相应的经验公式来指导实际操作。
让我们来了解一下冷水机组的基本工作原理。
冷水机组是利用电能驱动压缩机,将低温低压的制冷剂压缩成高温高压的气体,然后通过冷凝器散热,使其冷凝成高压液体,再经过节流阀减压,变成低温低压的制冷剂,通过蒸发器吸收热量并使冷冻水降温,最终实现制冷的过程。
在这个过程中,冷水机组的能效与冷冻水出水和冷却进水的温度高度相关。
在实际操作中,我们需要根据冷水机组的工作参数和环境条件来确定冷冻水出水和冷却进水的温度。
经过实践积累,我们总结出了一些经验公式帮助工程师们准确计算冷水机组的能效。
我们来看冷冻水出水温度对冷水机组能效的影响。
根据我们的经验,冷冻水出水温度越低,冷水机组的制冷效果越好。
经过分析和实验,我们总结出了以下经验公式:\[ COP = \frac{C × \Delta T}{P} \]在这个公式中,COP代表冷水机组的性能系数,C代表冷冻水与冷却水的温差,ΔT代表冷却进水温度与冷冻水出水温度的温差,P代表冷水机组的功率。
通过这个公式,我们可以清晰看到冷冻水出水温度对冷水机组的性能影响。
另外,冷却进水温度也是冷水机组能效的重要影响因素。
经过多次实验,我们总结出了以下经验公式来帮助工程师们准确计算冷却进水温度对能效的影响:\[ EER = \frac{Q}{P} \]在这个公式中,EER代表冷水机组的节能比,Q代表冷却水的冷却量,P代表冷水机组的功率。
循环冷却水系统简易计算及各循环水工艺简易介绍-liujc-20111231

������
年用量=150kg×4次/月×4月+150kg×3次/月×8月=2400kg+3600kg=6t
◙ 非氧化性杀菌剂单次用量计算:
非氧化性杀菌剂用量(kg)= 药剂投加浓度×保有水量 = ������×������������������������=300kg
������
������
年用量=300kg×3次/月×4月+300kg×2次/月×8月=3600kg+4800kg=8.4t
= ������×.×������������×������������×������=35251kg/年≈35t/年
������
◙ 氧化性杀菌剂单次用量计算:
氧化性杀菌剂用量(kg)= 药剂投加浓度×保有水量 = ������×������������������������=150kg
������
投加方式 月使用量 年使用量
缓蚀阻垢剂
阻垢剂
缓蚀剂
氧化性杀菌剂
非氧化性杀菌剂
黏泥剥离剂
其他
5.2处理效果
结垢状况
微生物滋生状况
腐蚀状况(mm/a)
碳钢腐蚀率
不锈钢腐蚀率
铜腐蚀率
换热效率
6、服务内容
□售前技术支持;□技术方案;□售后回访;□系统清洗;□应急处理;□其他
7、技术、服务要求及其他需说明的问题:
二、循环冷却水系统部分参数及药剂用量简易计算
◙ 蒸发水量(m³/h):
经验式:
经验值,全年平均值按照 ������. ������‰计算
蒸发水量 = 循环水量 × 季节损失系数 × 温差
◙ 排放水量(m³/h):
经验式:
化工答案 第六章传热

第六章传热习题热传导6-1. 如图所示,某工业炉的炉壁由耐火砖λ1= 1.3W/(m ·K)、绝热层λ2 = 0.18W/(m ·K)及普通砖λ3= 0.93W/(m ·K)三层组成。
炉膛壁内壁温度1100℃,普通砖层厚12cm, 其外表面温度为50℃。
通过炉壁的热损失为1200W/m 2, 绝热材料的耐热温度为900℃。
求耐火砖层的最小厚度及此时绝热层厚度。
设各层间接触良好,接触热阻可以忽略。
解:()()()433332222111t t t t t t q -=-=-=δλδλδλ ()5012.093.012003-=t 1553=t ℃ 6-2. 如图所示,为测量炉壁内壁的温度,在炉外壁及距外壁 1/3 厚度处设置热电偶,测得 t 2=300℃, t 3 =50℃。
求内壁温度 t 1 。
设炉壁由单层均质材料组成。
解:()()322211t t t t q -=-=δλδλ8001=t ℃6-3. 某火炉通过金属平壁传热使另一侧的液体蒸发,单位面积的蒸发速率为0.048kg/(m 2·s ),与液体交界的金属壁的温度为110℃。
时间久后,液体一侧的壁面上形成一层2mm 厚的污垢,污垢导热系数λ=0.65W/(m ·K)。
设垢层与液面交界处的温度仍为110℃,且蒸发速率需维持不变,求与垢层交界处的金属壁面的温度。
液体的汽化热r =2000kJ/kg 。
解:2kW/m 962000048.0=⨯=q38.4051=t ℃6-4. 为减少热损失,在外径Φ150mm 的饱和蒸汽管道外复盖保温层。
已知保温材料的导热系数λ=0.103+0.000198t (式中t 为℃),蒸汽管外壁温度为 180℃,要求保温层外壁温度不超过 50℃,每米管道由于热损失而造成蒸汽冷凝的量控制在 1×10-4kg/(m ·s)以下,问保温层厚度应为多少?解:查180℃水蒸汽kJ/kg 3.2019=r126.0250180000198.0103.0=⎪⎭⎫⎝⎛+⨯+=λW/(m ﹒℃) *6-5. 如图所示,用定态平壁导热以测定材料的导热系数。
技术措施冷却水系统

6.6冷却水系统6. 6.1水冷式冷水机组和整体式空调器的冷却水必须循环使用,冷却水的热量宜回收利用。
6. 6.2空调用冷水机组和水冷整体式空调器的冷却水水温宜按下列要求确定:1. 冷水机组的冷却水进口温度不宜髙于33℃;2. 冷却水进口最低温度应按冷水机组的要求确定,电动压缩式冷水机组不宜低于15.5℃,溴化锂吸收式冷水机组不宜低于24℃;冷却水系统,尤其是全年运行的冷却水系统,宜采取保证冷却水供水温度的措施,控制要求见11. 5. 8;3. 冷却水进出口温差应按冷水机组的要求确定,电动压缩式冷水机组宜取5℃,溴化锂吸收式冷水机组宜为5~7℃。
6. 6. 3冷却水泵的选用和设置应符合下列要求:1 集中设置的冷水机组的冷却水泵的流量和台数应与冷水机组相对应。
2 冷却水泵的扬程应为以下各项的总和:1)冷却塔集水盘水位至布水器的高差(设置冷却水箱时为水箱水位至冷却塔布水器的高差〉;2)冷却塔布水管处所需自由水头,由生产厂技术资料提供,缺乏资料时可参考表6.6.3 3)冷凝器等换热设备阻力,由生产厂技术资料提供4)吸入管道和压出管道阻力(包括控制阀、除污器等局部阻力);5)附加以上各项总和的5%〜10%。
3冷却水泵的选型和承压等,与5. 9. 4条规定的空调水循环泵的设计要求相同。
表6.6.3冷却塔布水管所需自由水头6.6.4采用分散设置的水冷整体式空调器或小型户式机组,可以合用冷却水系统,当开式冷却塔不能满足冷凝器水质要求时,可设置中间换热器或釆用闭式冷却塔,并应按以下原则设计:1 闭式冷却水系统应设置定压膨胀装置;2 总循环水量可根据系统规模和使用情况乘以1~0.75的同时使用系数;3 冷却水泵和中间换热器台数不宜少于2台;4 中间换热器宜采用板式换热器。
6.6.5冷水机组和冷却水泵之间的位置和连接应符合下列要求:1 冷却水泵应自灌吸水,冷却塔集水盘或冷却水箱最低水位与冷却水泵吸水口的高差应大于管道、管件(包括过滤器)、设备的阻力;2 冷却水泵宜设置在冷水机组冷凝器的进水口侧(水泵压入式);当冷却水泵设置在冷水机组冷凝器的进水口侧,使冷水机组冷凝器进水口侧承受的压力大于所选冷水机组冷凝器的承压能力,但冷却水系统的静水压力不超过冷凝器的允许工作压力,且管件、管路等能够承受系统压力时,冷却水泵可设置在冷凝器的出水口侧(水泵抽吸式);3 2台和2台以上冷水机组和冷却水泵之间的连接要求同空调冷水泵,见本措施第5.7.4条3、4款。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
干球温度θ=湿球温度τ=进塔水温T 1=假设出塔水温T 2=进出水平均温度T m =
进塔空气容重ρ=
进塔空气容重ρ=空气的相对湿度φ=大气压力P A =
温度为θ时的饱和水蒸汽压力P ”vθ=
温度为τ时的饱和水蒸汽压力P ”
vτ=
温度为T 1时的饱和水蒸汽压力P ”T1=
温度为T 2时的饱和水蒸汽压力P ”T2=
温度为T m 时的饱和水蒸汽压力P ”Tm =
进塔湿空气的含湿量X=进塔湿空气的比焓h=
相当于进塔空气温度的饱和空气的含湿量X=
相当于进塔空气温度的饱和空气的比焓h=循环水的比热Cw=
与冷却后水温相应的水的汽化热r 12=考虑蒸发水量散热的系数K=
出塔空气比焓h 2=
相当于进水温度的饱和空气的含湿量X=
相当于进水温度的饱和空气的比焓h=
相当于出水温度的饱和空气的含湿量X=相当于出水温度的饱和空气的比焓h=相当于进出水平均温度的饱和空气的含湿量X=
相当于进出水平均温度的饱和空气的比焓h=进水温度下饱和空气焓和出塔空气焓差i"1-i 2=
进出水平均温度下饱和空气焓和进出塔平均空气焓差i"m -i m =
原始参数
计算不同温度下的
饱和水蒸汽压力计算进塔空气比焓计算出塔空气比焓计算不同
温度下的饱和水蒸汽的比焓
出水温度下饱和空气焓和进入塔内的空气焓差i"2-i1=当Δt<15℃时,冷却数N=
假设汽水比λ=
填料参数
特性数N'=
平均风速v=
30.4℃
25.9℃
40℃
32.1℃
36.05℃
1/T*(0.003483*P A-0.001316*φ*P”vθ)= 1.164959727kg/m3ρ汽+ρ干= 1.164832621kg/m3
0.699121958
102.6782313kPa
10^(2.0057173-3.142305(1000/T-
4.340121446kPa 1000/373.16)+8.2*LG(373.16/T)-
0.0024804(373.16-T))
3.340152653kPa
7.375028541kPa
4.780556499kPa
5.956472296kPa
0.622*φ*P"vθ/(P A-φ*P"vθ)0.018940622kg/kg
C d*θ+X(r0+C v*θ)=78.96647311kJ/kg
0.622*P"vθ/(P A-P"vθ)0.027451774kg/kg
C d*θ+X(γ0+C v*θ)=100.7219839kJ/kg
4.186kJ/kg.℃
2634.3706kJ/kg
0.948993281
h1+Cw*Δt/K/λ=134.1038498kJ/kg
0.622*P"T1/(P A-P"T1)0.048133406kg/kg
C d*T1+X(r0+C v*T1)=155.446237kJ/kg
0.622*P"T2/(P A-P"T2)0.030373614kg/kg
C d*T2+X(r0+C v*T2)=109.994371kJ/kg
0.622*P"Tm/(P A-P"Tm)0.038304987kg/kg
C d*T m+X(r0+C v*T m)=134.5418505kJ/kg
0.046855115kJ/kg
0.035705756kJ/kg
0.032229061kJ/kg Cw*Δt*(1/(i"1-i2)+4/(i"m-i m)+1/(i"2-i2))/6/K= 1.288793441
G/L=0.632
A*λm= 1.29411549
A= 1.72
m=0.62
G/(3.6*ρ*F淋)=λ*Q/(3.6*ρ*F淋)= 1.103848431m/s。