数学建模中常用思想和方法
数学思想和数学方法之建模思想

数学思想和数学方法之建模思想数学思想是指在研究和应用数学过程中所运用的基本观念和方法,是指导人们进行数学研究和解决实际问题的思维方式。
而数学方法则是用于解决具体数学问题的具体工具和技巧。
建模思想是一种运用数学方法来描述和解决实际问题的思想。
数学建模是指将实际问题抽象为数学问题,通过建立适当的数学模型,运用数学方法进行分析和研究,得出解决问题的结论或建议。
其次,数学思想强调抽象思维和模型化。
建模的过程是将实际问题进行抽象,将问题中的主要因素和关系用数学符号和函数表示出来。
这样可以简化问题,减少复杂性,并使问题更具有一般性。
通过建立适当的数学模型,可以对问题进行深入的分析和研究,得出准确的结果。
另外,数学思想还强调创造性和想象力。
在建模过程中,有时会遇到一些复杂或新颖的问题,需要具备一定的创造性和想象力来解决。
这就要求数学思想不仅要求会运用现有的数学知识和方法,还要能够创造出新的数学方法和理论。
数学方法是数学思想在建模过程中的具体应用工具。
数学方法包括但不限于代数、几何、微积分、概率论、统计学等。
在建模过程中,需要根据具体的问题特点和要求选择适当的数学方法,并结合实际情况进行运用。
例如,对于一些形状规则的物体的体积计算问题,可以使用几何中的体积公式进行求解;对于一些由离散变量描述的问题,可以使用概率论和统计学中的方法进行研究;对于一些动态变化的问题,可以使用微分方程进行建模和分析等等。
数学方法的运用不仅要求准确性和有效性,还要求灵活性和创造性。
数学方法的选择和运用需要根据具体问题的特点和要求,有时需要结合不同的数学方法进行综合运用。
在实际建模中,还可以通过计算机辅助工具和数值计算方法来进行求解。
总结起来,数学思想和数学方法是数学建模的重要组成部分。
数学思想是指导人们进行数学研究和解决实际问题的思维方式,强调逻辑思维、抽象思维和创造性思维。
数学方法则是运用于解决具体数学问题的具体工具和技巧,包括代数、几何、微积分、概率论、统计学等。
高中数学的归纳数学建模中的常见方法与步骤

高中数学的归纳数学建模中的常见方法与步骤归纳数学建模是数学学科中的一种重要方法,它通过观察和总结实际问题现象中的规律性,提出问题的一般性结论或模型。
在高中数学教学中,归纳数学建模是数学思想和方法的重要体现之一。
本文将介绍高中数学的归纳数学建模中的常见方法与步骤。
一、问题的提出与分析归纳数学建模的第一步是明确问题的具体内容和要求。
高中数学的归纳数学建模问题通常来源于实际生活或其他学科。
在问题的提出与分析过程中,需要明确问题的背景、条件、目标和限制等。
通过深入分析问题,寻找问题的本质,为后续的建模工作奠定基础。
二、规律的观察与总结在确定问题后,需要通过观察和实践,寻找问题中的规律或模式。
这个过程需要通过大量的实例和数据进行验证和分析。
通过观察和总结,我们可以发现问题中的一些普遍规律,例如数列的递推关系、图形的几何性质等。
三、数学模型的建立在观察和总结的基础上,我们需要建立数学模型,抽象出问题的数学形式。
数学模型通常采用符号表示,可以是方程、函数、不等式等。
根据问题的特点和要求,我们可以选择适当的数学工具和方法,例如利用数列递推关系的迭代公式、曲线的方程等。
四、模型的求解与验证建立数学模型后,需要进行模型的求解和验证。
在高中数学的归纳数学建模中,常使用数学计算软件或手工计算的方法来求解模型。
求解过程中需要运用数学知识、方法和技巧,化繁为简,高效求解。
求解完成后,还需要对模型的结果进行验证,比较模型预测结果与实际观测的数据是否一致,有效性和准确性是否符合要求。
五、结果的分析与讨论在模型的求解和验证完成后,需要对结果进行分析和讨论。
分析结果主要包括结论的有效性、合理性以及对问题的解释等。
同时,还需要讨论模型的局限性和假设的合理性。
通过结果的分析与讨论,可以进一步深化对问题的理解和认识,并为问题的拓展和推广提供思路和方法。
六、问题的应用与拓展在通过归纳数学建模解决具体问题后,我们还可以将所学的方法和思想应用到其他相关的问题中。
中学数学建模思想及方法应用

垦 塑
垫
:
口 夏 丽 杰
中学数 学建模 思想及 方法应用’
( 顺 市第五 中学数 学组 抚
摘 要
辽宁 ・ 抚顺 130 100)
应 用数 学去解决各类 实际问题时 , 立数学模型是关键 的一步。 建 建立模型的过程是把错综复 杂的 实际 问题简化、
开展中学数学建模 的重要意义 中学 数学 教学 大纲 指出: 数学 教学 中发展思维能力是培养能力 的核心。在教学 中如何使学生很好 的掌握基础知识 和基本技能 , 提 高灵活运用知识 的能力 , 关键 在于狠抓思维 的启发 , 导, 诱 训练和发 展 。 论是数学 研究 , 数学学 习, 目的之一是将数学运用于社 无 还是 其 会, 服务于社会 , 而运 用数学解决实际 问题 是通过数学模 型这座桥 梁来实现 的。美 国数学学会主席 D L , 伯恩斯在 17 年指出: 人们 98 “ 可 以从现实生活 中的问题 出发 , 直接通过 观察 或实验 , 而获得现 从 实世界的解 , 但是这样 做往 往是行不通 的 , 或者 由于花费太 多只好 作罢 , 所以制 胜的办法 就是通 过数学模 型 , 条迂 回的道路 。” 走一 用数学方法解决某些 实际问题 , 通常先把实 际问题抽象成数学 模型。 所谓数学模 型 , 从整体上 描述现 实原 型的特性 , 是 关系及其规 律 的一种 数学方程式 , 广义解释 , 按 凡一切 数学概念 , 数学 理论 体 系 , 种数学公 式, 种方 程 ( 各 各 代数方程 , 函数方 程 , 微分方程 , 积分 方程 ) 以及 由公式 系列构成 的算法 系统都称之为模型 。 但按 狭义解 释, 只有那些反 映特定 问题或特定 的具体事物系统 的数学关系结构 才叫数学模型 , 而构造模 型的 目的是为 了解决 实际问题 , 数学模 型 是建立在模 型和原型的数学形式相似 的基础上 的。 培养学 生思维 的广 阔性 , 灵活性 , 于多方 向, 善 多角度 的思考问 题, 并筛选出最好 的办 法 , 对学生形成积极 的思维定势和克 服消极 的思维定势将产生重要 的作用 。 “ 数学模型方法 ”, 简称 MM方法 , 也是处理科技领域 中各种实 际数学 问题 的一般数学方法 , 数学模型 方法的学习与掌握 ,运 用与深化 ,一般是按模 型模 仿— 模 型转 换— 模 型构建 的主线发展 的, 这也符 合 “ 而 具体一 抽象——具 体 ”的认识规律 。 二、 数学模型方法与 中学数学 1整个 中学数学 可视 为一个数学模型 : 中学数学 内容包 括初等 代数 , 初等几何 , 平面三 角, 初等微积分 , 概率统计初步 , 逻辑与计算 机初步 , 他们都是数学模型 。 的模型包含子模型 , 有 例如二次方程这 个数学模型就是初等代数模型 的一个子模型 。 2中学数学教学就是模 型教学 : - 在数学模型方法指导下 的数学 教学 , 要重视对现实原型的分析和抽象 , 特别是获得数学概念 , 基本 关系, 公式 , 定理 , 建立起相应 的数学模 型时 , 应力 求给出一个恰 当 的典型 的原型展现给学生 。 三、 中学数学模型构造的常见方法 1 构造函数模型 ;, . 2 构造 数列模 型 ;. 3 构造方程不等式模 型; . 4 构造复数模型 : 构造排列组合模 型 ;. 5. 6构造三角模型 : . 7 构造 图形 图表模型 ;. 9 构造物理模型 ;0构造平面几何模 型。 1. 四、 对中学数学建模思路的设想 1加 强 数 学 及 本 能 的 训 练 . 学生建模能力 的形成是 基础知识 , 本技能 , 本数学 方法培 基 基 养的一 种综合 效果 , 日常教学 的基础 知识学 习对形成建模能力起着 奠基作用。然 而反过来 , 习应用题建模 , 系统 的理论学习 , 只学 忽视 最终 的效果 只能是应 用题解题教学 , 不利于学生数学素质 的全面 并 提高。因此在 中学普及建模知识 , 一定要在系统知识学习的基础上
数学建模常识与经验

计算机上的十种武器:
图论算法:这类算法可以分为很多种,包括最短路、网 络流、二分图等算法,涉及到图论的问题可以用这些方 法解决,需要认真准备。
返回
学建模常识与经验
处添加文本具体内容,简明扼要地阐述你的观点。单击此处添加正文,文字是您思想的 请尽量言简意赅的阐述观点。
基本内容:
一、什么是数学建模
二、相关的数学基础
三、如何组队及合作
四、如何从建模例题中学习解题方法
一、什么是数 学建模
数学建模竞赛:它名曰数学,当然要用到数 01 学知识,但却与以往所说的那种数学竞赛
0
三人之间要能够配合得起来。若三人之间配合不好,会降低效率,导致整个
2
建模的失败。
0
如果可能的话,最好是数学好的懂得编程的一些知识,编程好的了解建模,
3
搞论文写作也
要了解建模,这样会合作得更好。因为数 学好的在建立模型方案时会考虑到编程的 便利性,以利于编程;编程好的能够很好 地理解模型,论文写作的能够更好、更完 全地阐述模型。否则会出现建立的模型不 利于编程,程序不能完全概括模型,论文 写作时会漏掉一些不经意的东西。
为什么要叫数学建模竞赛?就是因为它赛的是建立数学模型, 而不只是比赛解答数学模型。“模型”是“建模”的结果,而 “建模”是建立模型的过程。竞赛的宗旨更强调的是建立数学 模型这个过程,认为过程比结果更重要。所以,在竞赛中允许 将未能最后完成的建模过程、未能最后实现的想法写成论文, 参加评卷。虽然你的模型还没能最后建立起来,但只要想法有 价值,己经开始了的建模过程有合理性,就仍然是有可取之处 的论文。这充分体现了竞赛对建模过程的重视。从这点上说, 把它称为“数学建模竞赛”比“数学模型竞赛”更贴切些。
数学建模学习方法

数学建模学习方法(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如演讲致辞、合同协议、条据文书、策划方案、总结报告、简历模板、心得体会、工作材料、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides various types of practical sample essays, such as speeches, contracts, agreements, documents, planning plans, summary reports, resume templates, experience, work materials, teaching materials, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!数学建模学习方法数学建模学习方法介绍数学建模是一门应用数学领域中非常重要的学科,它将数学知识应用到实际问题解决中。
数学建模计算方法

数学建模计算方法数学建模是指运用数学的方法和技巧解决实际问题的过程。
它是数学与其他学科的交叉融合,旨在通过建立数学模型,从而给出该问题的数学描述以及计算方法。
数学建模的计算方法是解决数学模型的关键步骤,下面将详细介绍数学建模的三种常用的计算方法:数值方法、优化方法和模拟方法。
首先,数值方法是通过数值计算来求解数学模型的一种方法。
它的基本思想是将问题转化为数值计算问题,利用离散的数值计算方法得到问题的近似解。
数值方法常用于求解无法用解析方法获得精确解的复杂数学模型。
其中的核心方法包括数值微积分、数值代数、数值逼近等。
数值方法的优点是能够较快地得到近似解,但是由于是近似解,所以其误差会存在一定的范围。
其次,优化方法是一种通过寻找最优解来求解数学模型的方法。
优化方法的目标是在模型的约束条件下,寻找使目标函数达到最大或最小值的决策变量。
它的基本思想是将问题转化为一个最优化问题,利用优化理论和算法来求解。
优化方法常用于求解资源配置、作业调度、生产运营等实际问题。
常见的优化方法有线性规划、整数规划、动态规划等。
优化方法的优点是能够找到最优解,但是对于复杂的问题,求解过程可能较为耗时。
最后,模拟方法是一种通过模拟现实系统的行为来求解数学模型的方法。
模拟方法的基本思想是将问题看作一个系统,通过建立与之对应的数学模型,模拟和观察该系统在不同条件下的行为,从而获得问题的解。
模拟方法常用于求解自然科学、社会科学等领域的问题,如气象预测、交通流模拟等。
常见的模拟方法有蒙特卡洛方法、离散事件仿真等。
模拟方法的优点是能够模拟现实系统的行为,但是对于复杂系统的模拟,需要考虑到各种因素的相互影响,因此模拟精度可能受到一定的限制。
总之,数学建模的计算方法包括数值方法、优化方法和模拟方法。
不同的计算方法适用于不同类型的问题,选择合适的计算方法可以有效地求解数学模型,并得到实际问题的解答。
在实际应用中,常常会结合不同的计算方法,综合运用,以获得更准确、更全面的结果。
数学建模中常用的思想和方法

数学建模中常用的思想和方法(1)knowledge 2010-08-19 00:42:51 阅读160 评论0字号:大中小在数学建模中常用的方法:类比法、二分法、量纲分析法、差分法、变分法、图论法、层次分析法、数据拟合法、回归分析法、数学规划(线性规划,非线性规划,整数规划,动态规划,目标规划)、机理分析、排队方法、对策方法、决策方法、模糊评判方法、时间序列方法、灰色理论方法、现代优化算法(禁忌搜索算法,模拟退火算法,遗传算法,神经网络)。
用这些方法可以解下列一些模型:优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型。
拟合与插值方法(给出一批数据点,确定满足特定要求的曲线或者曲面,从而反映对象整体的变化趋势):matlab可以实现一元函数,包括多项式和非线性函数的拟合以及多元函数的拟合,即回归分析,从而确定函数;同时也可以用matlab实现分段线性、多项式、样条以及多维插值。
在优化方法中,决策变量、目标函数(尽量简单、光滑)、约束条件、求解方法是四个关键因素。
其中包括无约束规则(用fminserch、fminbnd实现)线性规则(用linprog实现)非线性规则、(用fmincon实现)多目标规划(有目标加权、效用函数)动态规划(倒向和正向)整数规划。
回归分析:对具有相关关系的现象,根据其关系形态,选择一个合适的数学模型,用来近似地表示变量间的平均变化关系的一种统计方法(一元线性回归、多元线性回归、非线性回归),回归分析在一组数据的基础上研究这样几个问题:建立因变量与自变量之间的回归模型(经验公式);对回归模型的可信度进行检验;判断每个自变量对因变量的影响是否显著;判断回归模型是否适合这组数据;利用回归模型对进行预报或控制。
相对应的有线性回归、多元二项式回归、非线性回归。
逐步回归分析:从一个自变量开始,视自变量作用的显著程度,从大到地依次逐个引入回归方程:当引入的自变量由于后面变量的引入而变得不显著时,要将其剔除掉;引入一个自变量或从回归方程中剔除一个自变量,为逐步回归的一步;对于每一步都要进行值检验,以确保每次引入新的显著性变量前回归方程中只包含对作用显著的变量;这个过程反复进行,直(主要用SAS 至既无不显著的变量从回归方程中剔除,又无显著变量可引入回归方程时为止。
数学建模方法详解三种最常用算法

数学建模方法详解三种最常用算法数学建模是指将实际问题转化为数学模型,并通过数学方法进行求解和分析的过程。
在数学建模中,常用的算法有很多种,其中最常用的有三种,分别是线性规划、整数规划和动态规划。
一、线性规划线性规划是一种优化方法,用于在给定的约束条件下,寻找目标函数最大或最小值的一种方法。
它的数学形式是以线性约束条件为基础的最优化问题。
线性规划的基本假设是目标函数和约束条件均为线性的。
线性规划通常分为单目标线性规划和多目标线性规划,其中单目标线性规划是指在一个目标函数下找到最优解,而多目标线性规划则是在多个目标函数下找到一组最优解。
线性规划的求解方法主要有两种:单纯形法和内点法。
单纯形法是最常用的求解线性规划问题的方法,它的核心思想是通过不断迭代改进当前解来达到最优解。
内点法是一种相对较新的求解线性规划问题的方法,它的主要思想是通过从可行域的内部最优解。
二、整数规划整数规划是线性规划的一种扩展形式,它在线性规划的基础上增加了变量必须取整数的限制条件。
整数规划具有很强的实际应用性,它能够用于解决很多实际问题,如资源分配、生产优化等。
整数规划的求解方法通常有两种:分支定界法和割平面法。
分支定界法是一种常用的求解整数规划问题的方法,它的基本思想是通过将问题划分为若干个子问题,并通过求解子问题来逐步缩小解空间,最终找到最优解。
割平面法也是一种常用的求解整数规划问题的方法,它的主要思想是通过不断添加线性割平面来修剪解空间,从而找到最优解。
三、动态规划动态规划是一种用于求解多阶段决策问题的数学方法。
多阶段决策问题是指问题的求解过程可以分为若干个阶段,并且每个阶段的决策都受到之前决策的影响。
动态规划的核心思想是将问题划分为若干个相互关联的子问题,并通过求解子问题的最优解来求解原始问题的最优解。
动态规划通常分为两种形式:无后效性和最优子结构。
无后效性是指一个阶段的决策只与之前的状态有关,与之后的状态无关。
最优子结构是指问题的最优解能够由子问题的最优解推导而来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模中常用思想和方法
系统分类:科研笔记|关键词:模型目标数学建模回归分析 matlab
在数学建模中常用的方法:类比法、二分法、量纲分析法、差分法、变分法、图论法、层次分析法、数据拟合法、回归分析法、数学规划(线性规划,非线性规划,整数规划,动态规划,目标规划)、机理分析、排队方法、对策方法、决策方法、模糊评判方法、时间序列方法、灰色理论方法、现代优化算法(禁忌搜索算法,模拟退火算法,遗传算法,神经网络)。
用这些方法可以解下列一些模型:优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型。
拟合与插值方法(给出一批数据点,确定满足特定要求的曲线或者曲面,从而反映对象整体的变化趋势): matlab可以实现一元函数,包括多项式和非线性函数的拟合以及多元函数的拟合,即回归分析,从而确定函数;同时也可以用matlab实现分段线性、多项式、样条以及多维插值。
在优化方法中,决策变量、目标函数(尽量简单、光滑)、约束条件、求解方法是四个关键因素。
其中包括无约束规则(用fminserch、fminbnd实现)线性规则(用linprog实现)非线性规则、(用fmincon实现)多目标规划(有目标加权、效用函数)动态规划(倒向和正向)整数规划。
回归分析:对具有相关关系的现象,根据其关系形态,选择一个合适的数学模型,用来近似地表示变量间的平均变化关系的一种统计方法(一元线性回归、多元线性回归、非线性回归),回归分析在一组数据的基础上研究这样几个问题:建立因变量与自变量之间的回归模型(经验公式);对回归模型的可信度进行检验;判断每个自变量对因变量的影响是否显著;判断回归模型是否适合这组数据;利用回归模型对进行预报或控制。
相对应的有线性回归、多元二项式回归、非线性回归。
逐步回归分析:从一个自变量开始,视自变量作用的显著程度,从大到地依次逐个引入回归方程:当引入的自变量由于后面变量的引入而变得不显著时,要将其剔除掉;引入一个自变量或从回归方程中剔除一个自变量,为逐步回归的一步;对于每一步都要进行值检验,以确保每次引入新的显著性变量前回归方程中只包含对作用显著的变量;这个过程反复进行,直至既无不显著的变量从回归方程中剔除,又无显著变量可引入回归方程时为止。
(主要用SAS来实现,也可以用matlab软件来实现)。
聚类分析:所研究的样本或者变量之间存在程度不同的相似性,要求设法找出一些能够度量它们之间相似程度的统计量作为分类的依据,再利用这些量将样本或者变量进行分类。
系统聚类分析—将n个样本或者n个指标看成n类,一类包括一个样本或者指标,然后将性质最接近的两类合并成为一个新类,依此类推。
最终可以按照需要来决定分多少类,每类有多少样本(指标)。
系统聚类方法步骤:
1. 计算n个样本两两之间的距离
2. 构成n个类,每类只包含一个样品
3. 合并距离最近的两类为一个新类
4. 计算新类与当前各类的距离(新类与当前类的距离等于当前类与组合类中包含的类的距离最小值),若类的个数等于1,转5,否则转3
5. 画聚类图
6. 决定类的个数和类。
判别分析:在已知研究对象分成若干类型,并已取得各种类型的一批已知样品的观测数据,在此基础上根据某些准则建立判别式,然后对未知类型的样品进行判别分类。
距离判别法—首先根据已知分类的数据,分别计算各类的重心,计算新个体到每类的距离,确定最短的距离(欧氏距离、马氏距离)
Fisher判别法—利用已知类别个体的指标构造判别式(同类差别较小、不同类差别较大),按照判别式的值判断新个体的类别
Bayes判别法—计算新给样品属于各总体的条件概率,比较概率的大小,然后将新样品判归为来自概率最大的总体
模糊数学:研究和处理模糊性现象的数学(概念与其对立面之间没有一条明确的分界线)与模糊数学相关的问题:模糊分类问题—已知若干个相互之间不分明的模糊概念,需要判断某个确定事物用哪一个模糊概念来反映更合理准确;模糊相似选择—按某种性质对一组事物或对象排序是一类常见的问题,但是用来比较的性质具有边界不分明的模糊性;模糊聚类分析—根据研究对象本身的属性构造模糊矩阵,在此基础上根据一定的隶属度来确定其分类关系;模糊层次分析法—两两比较指标的确定;模糊综合评判—综合评判就是对受到多个因素制约的事物或对象作出一个总的评价,如产品质量评定、科技成果鉴定、某种作物种植适应性的评价等,都属于综合评判问题。
由于从多方面对事物进行评价难免带有模糊性和主观性,采用模糊数学的方法进行综合评判将使结果尽量客观从而取得更好的实际效果。
时间序列是按时间顺序排列的、随时间变化且相互关联的数据序列—通过对预测目标自身时间序列的处理,来研究其变化趋势(长期趋势变动、季节变动、循环变动、不规则变动)
自回归模型:一般自回归模型AR(n)—系统在时刻t的响应X(t)仅与其以前时刻的响应X(t-1),…, X(t-n)有关,而与其以前时刻进入系统的扰动无关;移动平均模型MA(m)—系统在时刻t的响应X(t) ,与其以前任何时刻的响应无关,而与其以前时刻进入系统的扰动a(t-1),…,a(t-m)存在着一定的相关关系;自回归移动平均模型 ARMA(n,m)—系统在时刻t的响应X(t),不仅与其前n个时刻的自身值有关,而且还与其前m个时刻进入系统的扰动存在一定的依存关系。
时间序列建模的基本步骤
1. 数据的预处理:数据的剔取及提取趋势项
2. 取n=1,拟合ARMA(2n,2n-1)(即ARMA(2,1))模型
3. n=n+1,拟合ARMA(2n,2n-1)模型
4. 用F准则检验模型的适用性。
若检验显著,则转入第2步。
若检验不显著,转入第5步。
5. 检查远端时刻的系数值的值是否很小,其置信区间是否包含零。
若不是,则适用的模型就是ARMA(2n,2n-1) 。
若很小,且其置信区间包含零,则拟合ARMA(2n-1,2n-2) 。
6. 利用F准则检验模型ARMA(2n,2n-1)和ARMA(2n-1,2n-2) ,若F值不显著,
转入第7步;若F值显著,转入第8步。
7. 舍弃小的MA参数,拟合m<2n-2的模型ARMA(2n-1,m) ,并用F准则进行检验。
重复这一过程,直到得出具有最小参数的适用模型为止
8. 舍弃小的MA参数,拟合m<2n-1的模型ARMA(2n,m) ,并用F准则进行检验。
重复这一过程,直到得出具有最小参数的适用模型为止。
图论方法:
最短路问题:两个指定顶点之间的最短路径—给出了一个连接若干个城镇的铁路网络,在这个网络的两个指定城镇间,找一条最短铁路线(Dijkstra算法)每对顶点之间的最短路径(Dijkstra算法、Floyd算法)。
最小生成树问题:连线问题—欲修筑连接多个城市的铁路设计一个线路图,使总造价最低(prim算法、Kruskal算法)。
图的匹配问题:人员分派问题:n个工作人员去做件n份工作,每人适合做其中一件或几件,问能否每人都有一份适合的工作?如果不能,最多几人可以有适合的工作?(匈牙利算法)。
遍历性问题:中国邮递员问题—邮递员发送邮件时,要从邮局出发,经过他投递范围内的每条街道至少一次,然后返回邮局,但邮递员希望选择一条行程最短的路线
最大流问题。
运输问题:
最小费用最大流问题:在运输问题中,人们总是希望在完成运输任务的同时,寻求一个使总的运输费用最小的运输方案
在数学建模中常用的算法:
1:蒙特卡罗算法;
2:数据拟合、参数估计、插值等数据处理算法(常用matlab实现);
3:线性规划、整数规划、多元规划、二次规划(用lingo、lingdo、matlab即可实现);
4:图论算法(包括最短路、网络流、二分图);
5:动态规划、回溯搜索、分治算法、分支界定;
6:最优化理论的三大经典算法(模拟退火算法、神经网络算法、遗传算法);7:网格算法和穷举法;
8:连续数据离散化;
9:数值分析算法;
10:图象处理算法(常用matlab来实现)。