结构力学位移法题及答案
结构力学课后习题解答:9矩阵位移法习题解答.docx

第9章矩阵位移法习题解答习题9.1是非判断题(1)矩阵位移法既可计算超静定结构,又可以计算静定结构。
()(2)矩阵位移法基本未知量的数目与位移法基本未知量的数目总是相等的。
()(3)单元刚度矩阵都具有对称性和奇异性。
()(4)在矩阵位移法中,整体分析的实质是建立各结点的平衡方程。
()(5)结构刚度矩阵与单元的编号方式有关。
()(6)原荷载与对应的等效结点荷载使结构产生相同的内力和变形。
()【解】(1)正确。
(2)错误。
位移法中某些不独立的杆端位移不计入基本未知量。
(3)错误。
不计结点线位移的连续梁单元的单刚不具奇异性。
(4)正确。
(5)错误。
结点位移分量统一编码会影响结构刚度矩阵,但单元或结点编码则不会。
(6)错误。
二者只产生相同的结点位移。
习题9.2填空题(1)矩阵位移法分析包含三个基本环节,其一是结构的,其二是分析,其三是分析。
(2)已知某单元的定位向量为[3 5 6 7 8 9]七则单元刚度系数炫应叠加到结构刚度矩阵的元素中去。
(3)将非结点荷载转换为等效结点荷载,等效的原则是。
(4)矩阵位移法中,在求解结点位移之前,主要工作是形成矩阵和_________________ 列阵。
(5)用矩阵位移法求得某结构结点2的位移为4=[. V2 ft]T=[0.8 0.3 0.5]T,单元①的始、末端结点码为3、2,单元定位向量为尸>=[0 0 0 3 4 5]T ,设单元与x轴之间的夹角为a =买,则2 尹> =O(6 )用矩阵位移法求得平面刚架某单元在单元坐标系中的杆端力为F e =[7.5 -48 -70.9 -7.5 48 -121.09]T ,则该单元的轴力心=kN。
【解】(1)离散化,单元,整体;(2)灯8;(3)结点位移相等;(4)结构刚度,综合结点荷载;(5)[0 0 0 0.3 -0.8 0.5]。
(6)-7.5o离、空的值以及K ⑴中元素妍、愚、姒的值。
【解】各刚度系数的物理意义如习题解9.3图所示。
结构力学(9.14.1)--矩阵位移法习题2

5kN m
8m 8m
8m
三 . 整体分析
12. 试求图示结构 ( 不计轴变 ) 的荷载列阵 ( 先处理法 ).
1(1,0,2) 2(1,0ቤተ መጻሕፍቲ ባይዱ3) 3(1,0,3)
X1
X2
4(0,0,0)
P
X
1
0
X
2
0
四 . 求杆端力
1. 连续梁在一般荷载作用下 , 单元杆端力由下式计算 . 是否正确 ?
6
48
4
2
1(0,0,0)
12
1 6
k
6
48
4(1,0,3)
3
2(0,0,0)
3
1
2
3
例 . 不计轴变 , 作弯矩图
已知 : 各杆长均为 12m, 线刚度均为 12
P 10kN, q 5kN / m
P 10kN, q 5kN / m
解 : 1 6 1 6
k
1
6
1
48 6
6 1
24
6
6
24
6
48
3(1,0,2)
2
1
1 6 1 6 1 0
k
1
6 1
48 6
6 1
24
2
0
63 1
6 24
EI
EI
EA 2l
2 2
l
l
三 . 整体分析
4(1,0,0)
5(1,0,0)
位移法习题

结构力学-位移法习题1.确定用位移法计算下图所示结构的基本未知量数目,并绘出基本结构。
2.判断题1)位移法基本未知量的个数与结构的超静定次数无关。
()2)位移法可用于求解静定结构的内力。
()3)用位移法计算结构由于支座移动引起的内力时,采用与荷载作用时相同的基本结构。
()4)位移法只能用于求解连续梁和钢梁,不能用于求解桁架。
()3.已知下图所示钢架的结点B产生转角,试用位移法概念求解所作用外力偶M。
4.若下图所示结构结点B向右产生单位位移,试用位移法概念求解应施加的力。
5.已知钢架的弯矩图如下图所示,各杆常数,杆长,试用位移法概念直接计算结点B的转角。
6.用位移法计算下图所示的连续梁,作弯矩图和剪力图。
EI=常数。
7.用位移法计算下图所示结构,作弯矩图。
常数。
8.用位移法计算下图所示各结构,并作弯矩图。
常数。
9.利用对称性计算下图所示结构,作弯矩图。
常数。
10.下图所示等截面连续梁,,已知支座C下沉,用位移法求作弯矩图。
11.下图所示的刚架支座A下沉,支座B下沉,求结点D的转角。
已知各杆。
12.试用位移法计算下图所示结构,并绘出其内力图。
13.试用位移法计算下图所示结构,并绘出其内力图。
14.试用位移法计算图示结构,并绘出M图。
15.试用位移法计算图示结构,并绘出M图。
16.试利用对称性计算图示刚架,并绘出M图。
6m 6m9ml lq(a)4m 4m4m(b)10kN/m6m6m 6m 6m6m(a)8m 4m 4m 4m 4m20kN/m17. 试计算图示结构在支座位移作用下的弯矩,并绘出M 图。
18. 试用位移法计算下图所示结构,并绘出其内力图。
19. 试用位移法求作下列结构由于温度变化产生的M 图。
已知杆件截面高度h =0.4m ,EI =2×104kN ·m 2,α=1×10-5。
20.试计算图示具有牵连位移关系的结构,并绘出M 图。
3EI lA D CB l EI EIϕl Δ=ϕa 2aa 2aaF P6m 4m A B C +20℃0℃ +20℃0℃ 20kN8m 8m 6m 3m A C D EB F G EI 1=∞EI 1=∞ 3EI3EI 3EI EI。
结构力学 位移法典型方程、计算举例

r21 B r22 CH R2
满足此方程,就消去了施加的2个约束
即,
r11 B r12 CH R1P 0 r21 B r22 CH R2 P 0
4)弯矩图的作法----消去最先附加的刚臂 P R1P R2P + MP图 R2
r
j 1
n
ij
Zj
,为消去该处的约束力,令: R iP
r
j 1
n
ij
Z j =0 即可。写成方程组的形式为:
r11 Z1 r12 Z 2 r1n Z n R1P 0 r Z r Z r Z R 0 21 1 22 2 2n n 2P rn1 Z1 rn 2 Z 2 rnn Z n RnP 0
R1P
R2P
+ +
r11 R A
1
r21R 2A
MP图 +
r12 B
r22 B
或
P
qL2/12
PL/8
4i
2i
q
R1P
R2P
+ A•
r11 8i r21 2i
2i
M 1图
MP图
4i
+
B•
4i r22 11i 2i r12 2i 3i 2i
M 2图
M M P M 1 A M 2 B
叠加右侧2个图,意味着结点B转动 及结点C侧移都发生。
叠加后B处的转角和C处的位移
分别为:B CH 则两处的约 束力必为R1,R2
r12 CH
结构力学 第八章 作业参考答案

D
Z2
B
2I 2FL/9 I
M图
D
L
B
A
L
B
2FL/9
A
L
FL/9
B
解: (1)该结构为有两个基本未知量,分别为 Z1 和 Z 2 ,如图。 (2)可以得到位移法的典型方程:
⎧r11Z1 + r12 Z 2 + R1P = 0 ⎨ ⎩r21Z1 + r22 Z 2 + R2 P = 0
(3)做出基本结构的各单位内力图和荷载内力图。令 其中系数: r11 = 14i 自由项: R1 p = 0 (4)求解出多余未知力。
4
1m
E
E
E r12 2I
4m
I
I
4m
I
I
1m
0.75 E
1m
结构力学 第八章 习题 参考答案
(2)可以得到位移法的典型方程:
⎧r11Z1 + r12 Z 2 + R1P = 0 ⎨ ⎩r21Z1 + r22 Z 2 + R2 P = 0
(3)做出基本结构的各单位内力图和荷载内力图。 其中系数: r11 = r22 =
8-7 试用位移法计算连续梁,绘制弯矩图。 EI = 常数
A Z1 B 6m 6m
基本体系
Z1 C 6m
A B 6m 6m C 6m
D
D
解: (1)该结构为有两个基本未知量,分别为 Z1 和 Z 2 ,如图。 (2)可以得到位移法的典型方程:
⎧r11Z1 + r12 Z 2 + R1P = 0 ⎨ ⎩r21Z1 + r22 Z 2 + R2 P = 0
李廉锟《结构力学》(上册)配套题库【课后习题】(矩阵位移法)【圣才出品】

第10章矩阵位移法复习思考题1.矩阵位移法的基本思路是什么?答:矩阵位移法的基本思路:(1)单元分析单元分析是指将结构先分解为有限个较小的单元,即离散化,在较小的范围内分析单元的内力与位移之间的关系,建立单元刚度矩阵或单元柔度矩阵。
(2)整体分析整体分析将将单元分析中的各单元集合成原来的结构,要求各单元满足原结构的几何条件(包括支承条件、结点处的变形连续条件)和平衡条件,建立整个结构的刚度方程或柔度方程,以求解原结构的内力和位移。
(3)支承条件引入支承条件,修改结构原始刚度方程。
(4)求解解算结构刚度方程,求出结点位移,计算各单元杆端力。
2.试述矩阵位移法与传统位移法的异同。
答:矩阵位移法与传统位移法的异同点:(1)相同点传统位移法的基本原理,是以在小变形的基础的结构体系中,内力是可以叠加的,位移也是可以叠加的,而矩阵位移法是按传统位移法的基本原理运用矩阵计算内力和位移的方法。
因此矩阵位移法和传统位移法的基本原理在实质上是一致的。
(2)不同点①矩阵位移法中一般考虑杆件轴向变形的影响,传统位移法忽略杆件的轴向变形;②矩阵位移法一般在计算机上进行计算,可以解决大型复杂问题;传统位移法的计算手段一般是手算,只用来解决简单问题。
3.矩阵位移法中,杆端力、杆端位移和结点力、结点位移的正负号是如何规定的?答:杆端力沿局部坐标系的、的正方向为正,杆端弯矩逆时针为正;杆端位移的正负同杆端力和弯矩。
结点力沿整体坐标系x、y的正方向为正,结点力偶逆时针为正;结点位移的正负同结点力和力偶。
4.为何用矩阵位移法分析时,要建立两种坐标系?答:因为单元刚度矩阵是建立在杆件的局部坐标系上的,但对于整体结构,各单元的局部坐标系可能不尽相同,在研究结构的几何条件和平衡条件时,需要选定一个统一的坐标系即为整体坐标系,另外按局部坐标系建立的单元刚度矩阵可以通过坐标转换到整体坐标系中,从而得到整体坐标系中的单元刚度矩阵。
故建立两种坐标系使矩阵位移法的思路更清晰,物理意义更明确,且不会影响计算结果。
结构力学(5.1.2)--位移法习题及参考答案

习 题6-1 试确定图示结构位移法基本未知量的个数。
6-2~6-6作图示刚架的M 图。
(a)(f)习题6-1图(d)习题6-2图习题6-5图习题6-3图(BC 杆件为刚性杆件)习题6-4图6-6 试用位移法计算图示结构,并作内力图。
6-7 试用位移法计算图示结构,并作内力图。
6-8 试用位移法计算图示结构,并作内力图。
EI 为常数。
6-9试用位移法计算图示结构,并作弯矩图。
EI 为常数。
6-10 试用位移法计算图示结构,并作弯矩图(提示:结构对称)。
习题6-9图习题6-7图6-11作图示刚架的体系内力图。
6-12 设支座 B 下沉0.5cm B D =,试作图示刚架的M 图。
6-13如图所示连续梁,设支座C 下沉淀1cm ,试作M 图。
6-14图示等截面正方形刚架,内部温度升高+t°C ,杆截面厚度h ,温度膨胀系数为 ,试作M 图。
10 kN/m( a )( b)40 kN习题6-10图BGH习题6-11图(a )(b )q6-15试作图示有弹性支座的梁的弯矩图,332EIk l=,EI =常数。
6-16 试用弯矩分配法计算图示连续梁,并作M 图。
6-176-18 用力矩分配法计算图示结构,并作M 图。
6-19 已知图示结构的力矩分配系数1238/13,2/13,3/13,A A A m m m ===作M 图。
6-20 求图示结构的力矩分配系数和固端弯矩。
已知q=20kN/m,各杆EI 相同。
习题6-17图习题6-13图习题6-14图6-21~6-22 用力矩分配法计算图示连续梁,作M 图,并计算支座反力。
EI=常数。
6-23~6-25用力矩分配法计算图示刚架,作M 图。
EI=常数。
参考答案6.1 (a) 2 (b) 1 (c) 2 (d) 3 (e) 6 (f) 26.2 15BD M =kN·m (右侧受拉)20kN/m 40kN习题6-22图习题6-21图15kN/m习题6-23图F P =10kN 习题6-24图习题6-25图6.321112AB M ql =(上侧受拉)6.4P 0.4AD M F l =(上侧受拉)6.5150AC M =kN·m (左侧受拉)6.651.3AB M =kN·m (左侧受拉)6.780AB M =kN·m (上侧受拉)6.816.9AB M =kN·m (左侧受拉)6.9 (a) 10.43CA M =kN·m (左侧受拉) (b) 56.84CE M =kN·m (下侧受拉)6.10 (a) 8.5AB M =kN·m (上侧受拉) (b) 34.3AC M =kN·m (左侧受拉)6.11 (a) 20.794DC M ql =(右侧受拉) (b) 6.14GD M q =(右侧受拉)6.1223.68AC M =kN·m (右侧受拉)6.1359.3310BA M =ᅲkN·m (上侧受拉)6.142/M EIt h a =(外侧受拉)6.152/32BA M ql =(下侧受拉)6.1617.5CB M =kN·m (下侧受拉)6.1778.75CD M =kN·m (上侧受拉)6.1827/12AB M ql =(上侧受拉)6.191117.95A M =kN·m (上侧受拉)6.200.34AD m =,13.33AD M =kN·m 6.2142.3BA M =kN·m (上侧受拉)6.2217.35BA M =kN·m (上侧受拉)6.2357.4BA M =kN·m (上侧受拉)6.2428.5BA M =kN·m (上侧受拉)6.2573.8BD M =kN·m (左侧受拉)。
结构力学 矩阵位移法 结构动力学 习题

第十章 矩阵位移法一、判断题:1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。
2、单元刚度矩阵均具有对称性和奇异性。
3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。
4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。
5、结构刚度方程矩阵形式为:[]{}{}K P ∆=,它是整个结构所应满足的变形条件。
6、图示结构用矩阵位移法计算时(计轴向变形)未知量数目为8个。
7、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。
8、等效结点荷载数值等于汇交于该结点所有固端力的代数和。
9、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。
10、矩阵位移法既能计算超静定结构,也能计算静定结构。
11、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是:(0,1,2)(0,0,0)(0,0,0)(0,1,3)(0,0,0)(1,2,0)(0,0,0)(0,0,3)(1,0,2)(0,0,0)(0,0,0)(1,0,3)(0,0,0)(0,1,2)(0,0,0)(0,3,4)A.B.C.D.2134123412341234( )二、计算题:12、用先处理法计算图示结构刚度矩阵的元素133322,,K K K 。
123ll4l5EI2EIEA(0,0,0)(0,0,1)(0,2,3)(0,0,0)(0,2,4)(0,0,0)EI13、用先处理法计算图示刚架结构刚度矩阵的元素153422,,K K K 。
EI ,EA 均为常数。
l,0)14、计算图示结构整体刚度矩阵的元素665544,,K K K 。
E 为常数。
l l1342A , I AA /222A I , 2A15、写出图示结构以子矩阵形式表达的结构原始刚度矩阵的子矩阵[][]K K 2224,。
[][]k k 1112 [][]k k 2122 []k =ii iii单刚分块形式为 :16、已知平面桁架单元在整体坐标系中的单元刚度矩阵,计算图示桁架结构原始刚度矩阵[]K 中的元素,,7877K K EA =常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超静定结构计算——位移法
一、判断题:
1、判断下列结构用位移法计算时基本未知量的数目。
(1) (2) (3)
(4) (5) (6)
EI
EI
EI
EI 2EI EI EI
EI
EA EA a
b EI=
EI=EI=
24442
2、位移法求解结构内力时如果P M 图为零,则自由项1P R 一定为零。
3、位移法未知量的数目与结构的超静定次数有关。
4、位移法的基本结构可以就是静定的,也可以就是超静定的。
5、位移法典型方程的物理意义反映了原结构的位移协调条件。
二、计算题:
12、用位移法计算图示结构并作M 图,横梁刚度EA →∞,两柱线刚度 i 相同。
2
13、用位移法计算图示结构并作M 图。
E I =常数。
l
l
l /2l /2
14、求对应的荷载集度q 。
图示结构横梁刚度无限大。
已知柱顶的水平位移为 ()5123/()EI →。
12m
12m
8m
q
15、用位移法计算图示结构并作M 图。
EI =常数。
l
l l l
16、用位移法计算图示结构,求出未知量,各杆EI 相同。
4m
19、用位移法计算图示结构并作M 图。
q
l
l
20、用位移法计算图示结构并作M 图。
各杆EI =常数,q = 20kN/m 。
23、用位移法计算图示结构并作M 图。
EI =常数。
l
l 2
24、用位移法计算图示结构并作M 图。
EI =常数。
l
q
l
29、用位移法计算图示结构并作M 图。
设各杆的EI 相同。
q
q
l l /2/2
32、用位移法作图示结构M 图。
E I =常数。
q
q
l l
/2
l /2l
36、用位移法计算图示对称刚架并作M 图。
各杆EI =常数。
l l
38、用位移法计算图示结构并作M 图。
EI =常数。
q
l l l l
42、用位移法计算图示结构并作M 图。
2m 2m
43、用位移法计算图示结构并作M 图。
EI =常数。
l
l
l
48、已知B 点的位移∆,求P 。
l
l
/2
/2
A
∆
51、用位移法计算图示结构并作M 图。
q
超静定结构计算——位移法(参考答案)
1、(1)、4; (2)、4; (3)、9; (4)、5; (5)、7;
(6)、7。
2、(X)
3、(X)
4、(O)
5、(X)
12、 13、
617
3.5(×qh 2
40/)
69/104
21/104
14/104
/4pl 15104
()⨯Pl
14、kN/m 3=q
15、
Z
1ql 2
2=(18 )
i 91ql
29ql 29ql 21
1182
ql
2ql 2M 图
l
l
l
16、θB EI =3207 ) , ∆B EI
=3328
21(→) 19、
()2
ql ⨯
20、
A
B
C
D
E
90
1806060M 图 kN m .( )
23、
ql 214
118
14
128
4
3图 M ()
×
24、
ql
2图 ( )×M
29、
1/82
1/82
ql
ql
.
32
ql 2
8
/ql 2
8
/
36
图 M (
/7 )ql 2
38、
7
1010
10
(⨯2332
ql /)
42
P 3
43、
(⨯ql 2
)
48、P EI
l =912253
∆
51、
图
M 1056ql 2
856
ql 2。