17.1 勾股定理 第1课时 教学设计

合集下载

教学设计《勾股定理》

教学设计《勾股定理》

课题:17.1 探索勾股定理教学设计(第1课时)一、教材地位作用这节课内容部编版八年级下册第十七章第一节勾股定理第一课时。

勾股定理是学生在学习了直角三角形有关性质的基础上进行本课学习,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,在实际生活中用途很大。

通过课题的学习,学生可以经历从实际问题观察、发现、抽象出数学问题,猜想并验证直角三角形三条边之间满足的数量关系,到综合应用已学知识联想、证明的全过程,从而加深对相关知识的理解,提高思维能力。

本节课学习过程中渗透了数形结合、从特殊到一般和方程思想等重要数学思想,同时为勾股定理逆定理和后续解直角三角形的学习奠定了基础,也为高中学习的一般三角形中余弦定理和平面解析几何的部分公式做铺垫。

二、教学重点、难点勾股定理的学习是建立在掌握一般三角形的性质、直角三角形以及三角形全等的基础上, 是直角三角形性质的拓展。

本节课主要是对勾股定理的探索和勾股定理的证明。

勾股定理的证明方法很多,本节课介绍的是等积法。

通过本节课的教学,引领学生从不同的角度发现问题、用多样化策略解决问题,从而提高学生分析、解决问题的能力。

基于以上考虑,本节课的教学重点为:探索、验证、证明勾股定理过程。

八年级学生已初步具备几何的观察能力和说理能力,也有了一定的空间想象和动手操作能力,但是他们的推理能力较弱、抽象思维能力不足。

而本节课先采用的是等积法证明。

对于其他的证明方法,由于需要合理的发散思维和联想,没有教师的启发引领,学生不容易独立想到。

难点:用拼图的方式利用等积法证明勾股定理,并结合方程思想尝试从不同角度理解、证明勾股定理。

三、目标和目标解析本节活动课应当恰当发展学生的几何直观、推理能力和模型思想的数学核心观念与数学能力,还要注重发展学生的创新意识。

知识技能目标(1)经历勾股定理的探索过程,理解并掌握勾股定理;(2)能尝试从不同角度证明勾股定理。

数学思考目标:(1)让学生切实经历“观察—猜想---验证---证明”的探索过程;(2)发展合情推理能力,分析勾股定理的证明思路;(3)体会数形结合,从特殊到一般,化归和方程思想方法。

八年级数学下册(人教版)17.1.1勾股定理(第一课时)教学设计

八年级数学下册(人教版)17.1.1勾股定理(第一课时)教学设计
4.合作交流,提升能力:组织学生进行小组讨论,分享学习心得和解决问题的方法,培养学生的合作精神和交流能力。在此基础上,设计一些实际问题,让学生运用勾股定理进行求解,提高他们的问题解决能力。
5.总结反思,拓展提高:在教学结束时,引导学生对勾股定理进行总结,明确其应用范围和注意事项。同时,布置一些拓展提高的练习题,让学生在课后进行巩固。
本节课的教学设计以勾股定理为核心,紧密结合教材内容,注重培养学生的知识技能、过程方法和情感态度与价值观,旨在提高学生的数学素养和实际应用能力。
二、学情分析
八年级学生在经过前两年的数学学习后,已经具备了一定的数学基础和逻辑思维能力。在本节课之前,学生已经学习了平面几何、立体几何的基本概念,掌握了直角三角形的性质和判定方法,这些都为学习勾股定理奠定了基础。然而,由于勾股定理涉及斜边与直角边的平方关系,学生在理解上可能会存在一定难度。因此,在教学过程中,教师需关注以下几点:
2.自主探究,发现定理:引导学生观察教材中的直角三角形图形,鼓励他们大胆猜想勾股定理的表达形式。在学生自主探究的基础上,引导他们通过实际测量、计算,验证勾股定理的正确性。
3.精讲精练,突破难点:针对勾股定理的证明过程,教师进行详细讲解,并设计具有梯度的问题,让学生逐步掌握定理的证明方法。同时,通过典型例题的讲解和练习,帮助学生巩固定理的应用。
(四)课堂练习,500字
为了巩固学生对勾股定理的理解,我将设计一些课堂练习题。这些练习题分为基础题和提高题,以满足不同层次学生的学习需求。
1.基础题:主要针对勾股定理的基本应用,如已知直角三角形的两边,求解第三边。
2.提高题:涉及勾股定理在实际问题中的应用,如计算建筑物的高度、距离等。
我会让学生独立完成练习题,并在必要时给予指导。通过课堂练习,学生可以检验自己对勾股定理的掌握程度,并为课后作业打下基础。

人教版八年级下册17.1《勾股定理》第一课时教学设计

人教版八年级下册17.1《勾股定理》第一课时教学设计
6.注重课后反思,让学生在反思中巩固所学知识,发现自己的不足,为下一节课的学习做好准备。
四、教学内容与过程
(一)导入新课
1.教师通过展示一组图片,包括古代建筑、现代桥梁等,引导学生观察这些图形中的直角三角形,并提出问题:“这些图形有什么共同特点?它们在数学中有什么特殊性质?”
2.学生观察后,教师总结直角三角形的定义,并引导学生回顾已知的直角三角形相关知识,为新课的学习做好铺垫。
5.针对教学难点,采取以下措施:
a.对勾股定理的证明过程进行详细讲解,通过画图、举例等方式,让学生在直观感知的基础上,理解证明的严密性。
b.专门安排一节课,让学生列举并分析勾股数的特点,总结规律,以便更好地辨识和应用勾股数。
c.结合实际情境,开展数学建模活动,让学生在小组内共同探讨、解决问题,提高他们的数学建模能力。
5.掌握勾股数的特点,能够辨识和列举出一组勾股数。
(二)过程与方法
在教学过程中,学生将通过以下方式来达成目标:
1.通过观察直角三角形的特性,引导学生发现勾股定理,培养观察力和逻辑思维能力。
2.通过小组合作,探究勾股定理的证明方法,提高合作意识和解决问题的能力。
3.通过数学问题的解答,培养学生将理论知识应用于实际情境的能力。
4.利用数形结合的方法,让学生在直观的图形中理解抽象的数学公式,提高形象思维和抽象思维的能力。
5.通过分析勾股数的特点,让学生总结规律,增强数学归纳和总结的能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发他们探究数学问题的热情。
2.使学生体会到数学知识与现实生活的紧密联系,增强学生的数学应用意识。
人教版八年级下册17.1《勾股定理》第一课时教学设计
一、教学目标

八年级数学下册17.1勾股定理教学设计

八年级数学下册17.1勾股定理教学设计
(2)思考并解答以下问题:直角三角形中,如果斜边的长度是整数,那么它的两条直角边长度是否一定是整数?请给出理由。
3.拓展作业:
(1)查阅资料,了解勾股定理在古今中外的应用,如建筑、天文学等领域。
(2)探讨勾股定理在解决其他数学问题中的应用,如解三角形、计算面积等。
4.实践作业:
(1)运用勾股定理,设计并制作一个直角三角形的模型,标注三边的长度。
五、作业布置
为了巩固学生对勾股定理的理解和应用,确保学习效果,特布置以下作业:
1.基础作业:
(1)完成课本第17.1节后的练习题1、2、3。
(2)运用勾股定理,解决以下实际问题:某直角三角形的两条直角边分别为3米和4米,求斜边的长度。
2.提高作业:
(1)证明勾股定理的另一种方法,如拼图法、归纳法等。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握勾股定理的表达式及其应用。
2.掌握勾股定理的证明过程,理解其背后的数学原理。
3.能够运用勾股定理解决实际问题,尤其是涉及直角三角形斜边长度计算的问题。
4.培养学生的几何直观能力和逻辑推理能力。
(二)教学设想
1.引入阶段:通过实际问题引入勾股定理,激发学生兴趣。例如,可以提出一个关于直角三角形斜边长度的问题,引导学生运用已有知识尝试解决,进而引出勾股定理。
4.通过勾股定理的证明过程,引导学生掌握数学推理的基本方法,提高逻辑思维能力。
5.设计丰富的例题和练习题,帮助学生巩固所学知识,提高解题技巧。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,使其体会到数学在生活中的实际应用。
2.培养学生勇于探索、敢于创新的精神,使其在数学学习过程中充满自信。
3.培养学生严谨、细致的学习态度,使其在解决问题的过程中注重逻辑性和条理性。

17.1《勾股定理》教学设计

17.1《勾股定理》教学设计

17.1《勾股定理》教学设计1、教学目标.【教学内容解析】本节课是人教版八年级下册第十七章第一节勾股定理第一课时.本节之前学生已经学习了三角形一些知识,勾股定理研究的是直角三角形三边之间特有的数量关系,将形与数密切联系起来,是解直角三角形的主要依据,在生产和生活实际中应用广泛.本节课我从学生实际出发,创设有助于学生自主学习的问题情境,引导学生自主地经历一条由观察猜想到实践验证到推理论证的科学探索之路.我期望通过本节课达成四个一,为此我确定本节课教学目标为:【教学目标】知识与技能:掌握一个定理——勾股定理,并会用定理解决简单问题.过程与方法:(1)、经历一次由特殊到一般的探索过程,通过观察、思考、尝试猜想结论,发展合情推理能力.(2)、体验一种利用几何图形的面积证明代数恒等式的数形结合的思想,感受数学思维的严谨性.情感与态度:通过对勾股定理历史的了解,感受数学文化,增添一份民族自豪感. 在探究活动中,培养学生的合作交流意识和探索精神.2、学情分析.【学生学情】八年级学生已经具备了一定的观察、归纳、猜想和推理能力,已经学习了一些几何图形的面积的计算方法,但是运用面积法和割补思想解决问题的意识和能力还不够,对于如何将形与数有机的结合起来还有待提高.3、重点难点.【教学重点】勾股定理的证明与运用.【教学难点】用拼图法证明勾股定理.【教学策略】本节课主要采用启发式、探究式教学,由浅入深,由特殊到一般的提出问题,引导学生采用观察思考、动手实践、自主探索、合作交流的学习方法,使学生主动获得知识并发展能力.4、教学过程.【导入】.教师出示情景图片提出问题,学生实践思考、探索交流等.一、设置情景引发思考从A地到B地有两条路,并且AC垂直于BC.问题一:哪条路近?为什么?问题二:你能知道走第一条比走第二条近几米吗?为什么?那么在Rt△ABC中,已知AC=8,BC=6,能否求出AB的长呢?带着这个问题我们开始第十八章《勾股定理》的学习.本章我们将探索直角三角形三边之间特有的数量关系,并运用所得的结论解决问题.今天我们学习第十八章第一节——勾股定理.从简单的生活实例入手,引领学生预知本章的研究主题,引出课题.二、探索定理获得知识勾股定理给同学们设了三关,大家有没有信心冲过这三关!冲过这三关,我们就能获得知识,解决问题.使教学内容富有挑战性.观察猜想首先由毕达哥拉斯带领我们进入第一关.(学生读题)2500年前,古希腊著名数学家毕达哥拉斯非常善于观察和思考,经常能够从平淡的生活现象中发现数学问题.(教师提问,学生发表见解)观察:这个地面是由什么图形拼成的?观察:这些直角三角形都什么关系?毕达哥拉斯发现以直角三角形三边为边长都可做出一个正方形.观察:图中两个小正方形与大正方形的面积之间有什么关系?如果中间直角三角形的两直角边分别为a, b,斜边为c,思考:直角三角形三边之间有什么关系?问题:对于任意直角三角形如果两直角边分别为a, b,斜边为c,那么三边之间是否也有a2+b2=c2这样的关系呢?得出猜想,猜想之后进入第二关.从观察生活中常见的地砖入手,让学生感受到数学就在身边.通过设计问题串,让探索过程由浅入深,使学生从观察中得到猜想.适时穿插毕达哥拉斯这一人文背景,使学生获得新知,同时也感染学生养成善于观察勤于思考的科学的学习品质.2、实践验证:图中每个小方格的面积均为1,请分别算出正方形A,B,C的面积,利用面积关系验证三边关系.(同样的图形学案中有,让学生先独立完成,再小组交流,然后全班展示) 给学生充分的自主探索、合作交流的空间,鼓励学生尝试用不同的方式解决问题.学生活动:分别求出图1、图2中三个正方形的面积.学生动脑思考,动手做,动口说想法.师生总结:图1:9 + 16 = 25图2: 4 + 9 = 13所以: SA + SB = SC所以: a2 +b2=c2讨论中发表自己的看法,提高语言表达能力. 通过交流总结出用面积割补法求大正方形的面积,为定理的证明做铺垫,突破本节课的难点.3、推理论证特殊数据不能代表一般规律,我们猜想的这个结论要作为定理必须经过推理论证.学生活动:通过动手合作拼正方形,并利用所拼的图形完成此猜想的证明.学生探索交流之后展示自己的拼图,解释自己的想法.由猜想到验证到论证,有效地启发学生的思考,使学生成为学习的主体,经历知识的形成过程.4、总结定理学生总结:定理的文字表达形式,和符号推理形式.教师介绍:我国古代学者把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦.早在3000年前的《周髀算经》就记载勾三股四弦五的说法。

人教版八下数学17.1 课时1 勾股定理教案+学案

人教版八下数学17.1 课时1 勾股定理教案+学案

人教版八年级下册数学第17章勾股定理17.1 勾股定理课时1 勾股定理教案【教学目标】1.经历探索及验证勾股定理的过程,体会数形结合的思想;2.掌握勾股定理,并运用它解决简单的计算题;3.了解利用拼图验证勾股定理的方法..【教学重点】1.经历探索及验证勾股定理的过程,体会数形结合的思想;2.掌握勾股定理,并运用它解决简单的计算题.【教学难点】了解利用拼图验证勾股定理的方法.【教学过程设计】一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?二、合作探究知识点一:勾股定理【类型一】直接运用勾股定理例1如图,在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,CD⊥AB于D,求:(1)AC的长;(2)S△ABC;(3)CD的长.解析:(1)由于在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,根据勾股定理即可求出AC的长;(2)直接利用三角形的面积公式即可求出S△ABC;(3)根据面积公式得到CD·AB=BC·AC即可求出CD.解:(1)∵在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,∴AC=AB2-BC2=12cm;(2)S△ABC=12CB·AC=12×5×12=30(cm2);(3)∵S△ABC=12AC·BC=12CD·AB,∴CD=AC·BCAB=6013cm.方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可.【类型二】分类讨论思想在勾股定理中的应用例2在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC 的周长.解析:本题应分△ABC为锐角三角形和钝角三角形两种情况进行讨论.解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,如图①所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=5+9=14,∴△ABC的周长为15+13+14=42;(2)当△ABC为钝角三角形时,如图②所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=9-5=4,∴△ABC的周长为15+13+4=32.∴当△ABC为锐角三角形时,△ABC 的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.【类型三】勾股定理的证明例3探索与研究:方法1:如图:对任意的符合条件的直角三角形ABC 绕其顶点A 旋转90°得直角三角形AED ,所以∠BAE =90°,且四边形ACFD 是一个正方形,它的面积和四边形ABFE的面积相等,而四边形ABFE 的面积等于Rt △BAE 和Rt △BFE 的面积之和.根据图示写出证明勾股定理的过程;方法2:如图:该图形是由任意的符合条件的两个全等的Rt △BEA 和Rt △ACD 拼成的,你能根据图示再写出一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE 面积等于Rt △BAE 和Rt △BFE 的面积之和进行解答;方法2:根据△ABC 和Rt △ACD 的面积之和等于Rt △ABD 和△BCD的面积之和解答.解:方法1:S 正方形ACFD =S 四边形ABFE =S △BAE +S △BFE ,即b 2=12c 2+12(b +a )(b -a ),整理得2b 2=c 2+b 2-a 2,∴a 2+b 2=c 2;方法2:此图也可以看成Rt △BEA 绕其直角顶点E 顺时针旋转90°,再向下平移得到.∵S 四边形ABCD =S △ABC +S △ACD ,S 四边形ABCD =S △ABD +S △BCD ,∴S △ABC +S △ACD=S △ABD +S △BCD ,即12b 2+12ab =12c 2+12a (b -a ),整理得b 2+ab =c 2+a (b -a ),b 2+ab =c 2+ab -a 2,∴a 2+b 2=c 2.方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理.知识点二:勾股定理与图形的面积例4 如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别为2,5,1,2.则最大的正方形E 的面积是________.解析:根据勾股定理的几何意义,可得正方形A、B的面积和为S1,正方形C、D的面积和为S2,S1+S2=S3,即S3=2+5+1+2=10.故答案为10.方法总结:能够发现正方形A、B、C、D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A、B、C、D的面积和即是最大正方形的面积.【板书设计】17.1 勾股定理课时1 勾股定理1.勾股定理如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.2.勾股定理的证明“赵爽弦图”、“刘徽青朱出入图”、“詹姆斯·加菲尔德拼图”、“毕达哥拉斯图”.【教学反思】在课堂教学中应注意调动学生学习数学的积极性.让学生满怀激情地投入到数学学习中,提高数学课堂教学效率.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,设计一些拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点.人教版八年级下册数学第17章勾股定理17.1 勾股定理课时1 勾股定理学案【学习目标】1.经历勾股定理的探究过程,了解关于勾股定理的一些文化历史背景,会用面积法来证明勾股定理,体会数形结合的思想;2.会用勾股定理进行简单的计算.【学习重点】掌握用面积法来证明勾股定理,体会数形结合的思想.【学习难点】能够运用勾股定理进行有关的运算.【自主学习】一、知识回顾网格中每个小正方形的面积为单位1,你能数出图中的正方形A、B 的面积吗?你又能想到什么方法算出正方形C的面积呢?AB CCBA方法1:补形法(把以斜边为边长的正方形补成各边都在网格线上的正方形):左图:S c=__________________________;右图:S c=__________________________.方法2:分割法(把以斜边为边长的正方形分割成易求出面积的三角形和四边形):左图:S c=__________________________;右图:S c=__________________________.二、合作探究考点1:勾股定理的认识及验证想一想 1.2500年前,毕达哥拉斯去老朋友家做客,看到他朋友家用等腰三角形砖铺成的地面,联想到了正方形A,B和C面积之间的关系,你能想到是什么关系吗?2.右图中正方形A、B、C所围成的等腰直角三角形三边之间有什么特殊关系?3.在网格中一般的直角三角形,以它的三边为边长的三个正方形A、B、C 是否也有类似的面积关系?(每个小正方形的面积为单位1)4.正方形A、B、C 所围成的直角三角形三条边之间有怎样的特殊关系?思考你发现了直角三角形三条边之间的什么规律?你能结合字母表示出来吗?猜测:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么________.活动2 接下来让我们跟着以前的数学家们用拼图法来证明活动1的猜想.证法利用我国汉代数学家赵爽的“赵爽弦图”=________,证明:∵S大正方形S小正方形=________,S大正方形=___·S三角形+S小正方形,∴________=________+__________.要点归纳:勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 公式变形:222222, ,=+--.a cb bc a c a b知识点2:利用勾股定理进行计算【典例探究】例1如图,在Rt△ABC中,∠C=90°.(1)若a=b=5,求c;(2)若a=1,c=2,求b.变式题1 在Rt△ABC中,∠C=90°.(1)若a:b=1:2 ,c=5,求a;(2)若b=15,∠A=30°,求a,c.方法总结:已知直角三角形两边关系和第三边的长求未知两边时,要运用方程思想设未知数,根据勾股定理列方程求解.变式题2在Rt△ABC中,AB=4,AC=3,求BC的长.方法总结:当直角三角形中所给的两条边没有指明是斜边或直角边时,其中一较长边可能是直角边,也可能是斜边,这种情况下一定要进行分类讨论,否则容易丢解.例2已知∠ACB=90°,CD⊥AB,AC=3,BC=4.求CD的长.方法总结:由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,它常与勾股定理联合使用.【跟踪训练】求下列图中未知数x、y的值:三、知识梳理内容勾股定理如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.注意1.在直角三角形中2.看清哪个角是直角3.已知两边没有指明是直角边还是斜边时一定要分类讨论四、学习中我产生的疑惑【学习检测】1.下列说法中,正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c22. 如图,Rt△ABC(∠C=90°)的主要性质:(用几何语言表示)(1)两锐角之间的关系:____________________.(2)若∠B=30°,则∠B的对边和斜边:_________.3.如果直角三角形的两直角边分别为a、b,斜边为c,那么_________.4. 右图中阴影部分是一个正方形,则此正方形的面积为_____________.5.在△ABC中,∠C=90°.(1)若a=15,b=8,则c=_______.(2)若c=13,b=12,则a=_______.6.若直角三角形中,有两边长是5和7,则第三边长的平方为_________.7.如图所示,所有的四边形都是正方形,三角形是直角三角形,其中最大的正方形的边长为6,则正方形A,B的面积的和为_______.8.求斜边长17cm、一条直角边长15cm的直角三角形的面积.9.如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=1,求△ABC的周长.10.如图,将长为10米的梯子AC斜靠在墙上,BC长为6米,求梯子上端A到墙的底端B的距离AB。

勾股定理教案

勾股定理教案

教学过程一、导入1.如图,蜗牛爬行多长路?2.小鸟最少飞了多远?3飞机的速度是多少?飞机在空中水平飞行某一时刻刚好飞到一男孩头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机飞行了多少千米?4.两船相距多少?甲轮船以15海里/时的速度从港口向东南方向航行,乙船同时以25海里/时速度向东北方向航行求它们离开港口2小时后相距多远?二.新授:1.2、3、4、5、6、8、9、11、12、三、课堂小结:四、作业:附:板书设计17.1 勾股定理第一课时一、导入二.新授:三、课堂小结:备课人学科数学备课时间课时安排一课时课题17.1 勾股定理第二课时教学目标知识教育目标:会用勾股定理进行简单的计算能力培养目标:树立数形结合的思想、分类讨论思想。

品德培养目标:加强爱国主义教育1、通过了解勾股定理的历史,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。

附赠材料优秀的教学是练出来的在上一堂课里,你已经学会了区分高效教学法和低效教学法之间的区别。

现在,我们还要继续巩固这一概念。

在高效教学法和低效教学法之间,是否存在一个灰色的中间地带呢?是的,这个灰色地带确实存在。

如果能带领那些还不够高效的教师们进人这一中间地带,那也是很大的进步。

当然,本课的主要目的是发掘出教师的最大潜力,以最终实现高效教学。

如果能成功做到这一点,那么你最终会发现学生的表现有了显著的提高。

显而易见,教师能力的优劣会直接影响到学生的表现。

教师越优秀,学生的表现就越好。

课程:首先,我们回顾一下上一节课所学的如何区分高效和低效教学上一节课,我已经要求你总结出自身存在的弱项,并且在课后进行针对性的练习。

今天,请你仔细思考,在下面列举的教学情景中高效和低效的教师将如何做出不同的应对措施。

高效教学与低效教学实践一个学生在课堂上一直和其他学生聊天。

他这个举动非常明显,必须及时制止。

面对这个情形时,低效的教师会如何应对?高效的教师又会如何应对?一个学生在课堂上不断发出声响,这个声音越来越吵,并且影响到了班级里的其他学生。

人教版八年级数学下17.1勾股定理(教案)

人教版八年级数学下17.1勾股定理(教案)
五、教学Байду номын сангаас思
在今天的教学中,我发现学生们对勾股定理的概念和应用表现出浓厚的兴趣。通过引入日常生活中的例子,他们能够更直观地理解这个定理的重要性。在讲授理论时,我注意到有些学生对于定理的证明过程感到困惑,特别是几何证明部分。这让我意识到,需要进一步通过不同的例子和解释来帮助他们克服这个难点。
在实践活动环节,学生们分组讨论并进行了实验操作,这极大地提高了他们的参与度。我观察到他们在尝试解决实际问题时,能够积极思考,相互交流,这有助于巩固他们对勾股定理的理解。然而,我也注意到,在讨论过程中,有些小组在问题的分析和解决上存在困难,这时我及时给予了引导和启发,帮助他们找到了解决问题的方法。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的表述和证明这两个重点。对于难点部分,如定理的证明,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量实际物体的直角边和斜边长度,验证勾股定理。
举例解释:
-对于定理的证明,教师需要提供多个角度和方法的证明,如代数法、几何法等,帮助学生从不同角度理解定理的本质;
-在解决实际问题时,教师要指导学生如何从复杂问题中提取关键信息,识别出勾股定理的应用场景;
-在探索勾股数时,教师应引导学生通过具体的计算和观察,发现勾股数的规律,如3、4、5是勾股数,并能够推广到其他勾股数的寻找和应用。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过直角三角形的情况?”比如,我们常见的楼梯、墙壁与地面形成的角等。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西藏萨迦县中学电子教案
单位:西藏萨迦县中学年级:八年级学科:数学课题 18.1勾股定理(第1课时)主备教师达娃加参
单元第十八章教学课时一节课时授课教师达娃加参备课时间2017.6
教学目标1、通过观察、分析方格图,经历探索勾股定理的过程,会运用勾股定理进行简单的计算.
2、在勾股定理探索过程中,发展合情推理能力,体会数形结合思想,激发学习热情.
教学重点1.重点:探索勾股定理.
教学难点
2.难点:探索勾股定理.
考点分析勾股定理的应用题
教学准备直尺
教学过程
(一)创设情境,导入新课
师:同学们听说过外星人吗?
生:(齐答)听说过.
师:外星人就是生活在别的星球上的智慧生物.长期以来,人类一直在寻找外星
人,并试图与他们交流.那么怎么寻找外星人?又怎么与外星人交流呢?主要
的办法是向处太空发射探测器,希望有朝一日外星人能接收到探测器发出的
信号,最好能直接收到探测器.为什么要直接收到探测器?因为在探测器里有
很多图片,这些图片反映了地球的情况、地球人的形象、生活和文明成果.
师:在这些图片中,有一张图片特别有意思,它所反映的恰好是我们这节课要
学习的内容.这是一张什么样的图片呢?
(师出示下图)
教学补充
(二)尝试指导,讲授新课
师:(指准图)在这张图片上,中间画的是一个直角三角形,这个直角三角形的一条直角边等于3,另一条直角边等于4,斜边等于5.在直角三角形的外面画了三个正方形,这三个正方形的边长分别是3、4、5,所以这个正方形的面积是9,这个正方形的面积是16,这个正方形的面积是25.
师:现在要问大家的是,通过这个图形地球人想告诉外星人什么呢?如果你是外星人,你看到这个图形能发现什么呢?
(让生观察思考,要给学生充足的观察思考时间)
师:(指图)谁来说说从这个图形你发现了什么?
生:……(多让几名同学发表看法)
师:(指准图)这个正方形的面积是9,这个正方形的面积是16,这个正方形的面积是25,9+16恰好等于25,可见,这个正方形的面积加上这个正方形的面积恰好等于这个大正方形的面积(板书:一个正方形的面积+另一个正方形的面积=大正方形的面积).
师:(指准图)从这三个正方形面积的关系,我们可以进一步发现这个直角三角形三边的关系.
师:(指准图)看到没有?这个正方形的面积实际上就是这条直角边的平方,这个正方形的面积实际上就是这条直角边的平方,而这个正方形的面积实际上就是这条斜边的平方.可见,这条直角边的平方加上这条直角边的平方恰好等于这条斜边的平方(板书:一条直角边的平方+另一条直角边的平方=斜边的平方).
师:以上我们通过观察分析图形,发现这个直角三角形的三边有这样的关系:(指准式子)一条直角边的平方+另一条直角边的平方=斜边的平方.
师:发现了这个关系,我们会进一步想到一个问题,什么问题?(稍停后边讲边指准图)这个直角三角形的三边有这样的关系,那么别的三角形的三边是否也有这样的关系呢?
师:下面我们就来看别的直角三角形的情况.
(师出示下图)
A
B
C
师:(指准图)这个图的中间是一个直角三角形,外面是三个正方形.正方形A 以这条直角边为边长,正方形B以这条直角边为边长,正方形C以斜边为边长.现在我们来算一算正方形A、B、C的面积.
师:(指准图)正方形A的面积是多少?
生:(齐答)4.(师在图中注上4)
师:(指准图)正方形B的面积是多少?
生:(齐答)9.(师在图中注上9)
师:(指准图)正方形C的面积是多少?
生:……(让生思考一会儿)
师:正方形C的面积不好算,怎么来计算正方形C的面积呢?
(师用彩笔在上图画出大正方形,如下图所示)
C B
A
师:(指准图)正方形C的面积等于这个大正方形的面积减去这四个直角三角形的面积.
师:(指准图)这个大正方形的面积等于多少?(稍停)它的边长为5,所以面积为25.这个直角三角形的面积等于多少?(稍停)它的这条直角边为2,
这条直角边为3,所以面积为1
2
×2×3=3.其它几个直角形的面积也都等于3,
所以四个直角三角形的面积等于12.
师:(指准图)这个大正方形的面积为25,四个直角三角形的面积为12,所以正方形C的面积是13(在图中注上13).
师:(指准图)正方形A、B、C的面积都求出来了,正方形A的面积为4,正方形B的面积为9,正方形C的面积为13.现在我们可以看到,正方形A的面积加上正方形B的面积恰好等于正方形C的面积(板书:正方形A的面积+正方形B的面积=正方形C的面积).
师:(指准图)从三个正方形面积的关系,我们可以进一步得出这个直角三角形三边的关系.
师:(指准图)正方形A 的面积就是这条直角边的平方,正方形B 的面积就是这条直角边的平方,正方形C 的面积就是斜边的平方.所以这个直角三角形的三边有这样的的关系:这条直角边的平方加上这条直角边的平方恰好等于斜边的平方(板书:一条直角边的平方+另一条直角边的平方=斜边的平方). 师:(指准图)可见,这个直角三角形的三边也具有我们刚才所说的那种关系. 师:下面同学们自己再来看一个直角三角形,看一看这个直角三角形的三边是否也具有这种关系.
(三)试探练习,回授调节 1.探究题:如图,填空:
(1)正方形A 的面积= ,
正方形B 的面积= ,
正方形C 的面积 ;
(2)正方形A 、B 、C 的面积具有的关系是: ; (3)中间的直角三角形的三边具有的关系是: . (四)尝试指导,讲授新课
师:通过上面的探索,关于直角三角形三边的关系,同学们能得出一个什么结论呢?
生:……(多让几名同学发表看法,要鼓励学生用自己的语言,哪怕是不十分准确的语言,来表达他们感悟到的东西) (师出示下图)
师:我们可以得出这样的结论:(指准图)如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.
(师出示板书:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2)
师:请大家把这个结论读两遍.(生读)
师:这个结论很重要,也很有用.有了这个结论,已知直角三角形的两边,我们可以求出第三边.下面我们就来看一个例题. (师出示例题)
例 求出下列直角三角形中未知边的长度.
(1) (2)
(师边讲解边板演,解题过程如下) c b
a
125C B A 23
A B C A
B C
解:(1)AB 2=AC 2+BC 2=122+52=169 AB=169=13 (2)AC 2=AB 2-BC 2=32-22=5 AC=5
(五)试探练习,回授调节
2.a ,b 表示直角边,c 表示斜边,填空: (1)已知a=9,b=12,则c= ; (2)已知b=5,c=7,则a= . (六)归纳小结,布置作业
师:本节课我们探索了直角三角形三边的关系,通过探索得出了一个结论.请大家把这个结论再读一遍.(生读)
师:利用这个结论,已知直角三角形的两边可以求出第三边
板书设计
图一 图二
……=大正方形的面积 ……=正方形C 的面积 如果……
……=斜边的平方 ……=斜边的平方 那么a 2+b 2=c
2

作业设计
(作业:P 28习题1)
教学反思
c b a。

相关文档
最新文档