xxgD113幂级数
函数展成幂级数的公式

函数展成幂级数的公式幂级数是一种特殊的无限级数形式,能够以函数的形式展开。
它在数学、物理和工程领域中具有重要的应用。
将一个函数表示为幂级数的形式,可以帮助我们在分析和计算中简化问题。
一个一般的幂级数的表示形式如下:\[f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \ldots\]其中,\(f(x)\)是我们要展开的函数,\(a_0, a_1, a_2, a_3,\ldots\)是常数系数。
\(x\)是独立变量。
这里的\(x\)可以是实数或复数。
当幂级数展开时,我们通常选择一个特定的点作为展开点。
这个点通常是函数的一些特殊值,比如0或无穷大。
以0为展开点的幂级数称为麦克劳林级数,以无穷大为展开点的幂级数称为朗伯级数。
麦克劳林级数的形式如下:\[f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \ldots\]其中,\(a_0, a_1, a_2, a_3, \ldots\)是常数系数,可以通过导数求值来确定。
朗伯级数的形式如下:\[f(x) = \ldots + \frac{a_{-3}}{x^3} + \frac{a_{-2}}{x^2} +\frac{a_{-1}}{x} + a_0 + a_1x + a_2x^2 + a_3x^3 + \ldots\]其中,\(a_{-3}, a_{-2}, a_{-1}, a_0, a_1, a_2, a_3, \ldots\)是常数系数。
通过使用导数和积分的性质,我们可以确定函数\(f(x)\)的常数系数。
具体来说,如果我们知道函数在展开点的所有导数的值,我们可以使用泰勒公式来确定这些常数系数。
\[f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 +\frac{f'''(a)}{3!}(x-a)^3 + \ldots\]其中,\(f(a)\)表示函数在展开点\(a\)处的值,\(f'(a)\)表示函数在展开点\(a\)处的一阶导数,\(f''(a)\)表示函数在展开点\(a\)处的二阶导数,依此类推。
幂级数经典课件

收敛域的性 质:收敛域 是一个开区 间且包含原 点
收敛域的应 用:在函数 分析、微积 分等领域有 广泛应用
幂级数的收敛域的性质
收敛半径:幂级 数在收敛域内收 敛
收敛域:幂级数 在收敛域内收敛 且收敛半径为R
收敛半径的性质: 收敛半径R是幂级 数收敛域的半径
收敛域的性质:收 敛域是幂级数收敛 的区间且收敛半径 为R
幂级数的性质
收敛性:幂级数 是否收敛取决于 其收敛半径
解析性:幂级数 在其收敛半径内 解析
幂级数的和:幂级 数的和等于其收敛 半径内的解析函数
幂级数的展开:幂 级数可以展开为泰 勒级数或其他幂级 数形式
幂级数的收敛性
收敛性定义:幂级数在收敛区间内其部分和数列的极限存在 收敛性判别:使用比值判别法、根判别法、积分判别法等 收敛性应用:在函数逼近、数值分析、微分方程求解等领域有广泛应用 收敛性研究:幂级数的收敛性是数学分析中的重要课题有许多研究成果和理论
幂级数的求和的定义与性质
幂级数的求和: 将无穷多个幂 级数项相加得 到新的幂级数
求和的定义: 求和是指将无 穷多个幂级数 项相加得到新
的幂级数
求和的性质: 求和后的幂级 数具有与原幂 级数相同的收 敛半径和收敛
域
求和的应用: 求和在解决数 学问题、物理 问题等方面有
广泛应用
幂级数的求积的定义与性质
幂级数在解决初等数学问题中的应用
幂级数在微积分中的应用
幂级数在函数逼近中的应 用
幂级数在数值分析中的应 用
幂级数在概率论中的应用
幂级数的展开式的定义
幂级数:由无穷多个项组成的函数 展开式:将幂级数表示为无穷多个项的和 展开式形式:_0 + _1x + _2x^2 + ... 展开式的应用:在数学、物理、工程等领域广泛应用
幂级数求和函数方法概括与总结-幂级数总结

幂级数求和函数方法概括与总结-幂级数总结(总14页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除常见幂级数求和函数方法综述引言级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。
中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。
这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。
而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。
同时,他也开始讨论判断无穷级数的敛散性方法。
到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。
中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。
而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。
它在自然科学、工程技术和数学本身方面都有广泛的作用。
幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。
但很多人往往对这一内容感到困难。
产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。
事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。
一、幂级数的基本概念(一)、幂级数的定义[1]u x n 是定义在数集E上的一个函数列,则称1、设()(1,2,3)n12()()(),n u x u x u x x E ++++∈为定义在E 上的函数项级数,简记为1()n n u x ∞=∑ 。
经典高等数学课件幂级数演示文稿

a xn 在 n
x x0( x0 0)
处收敛,
n0
则它在满 足不等式 x x0 的一切x处绝对收敛.
(2)如果级数
a xn 在 n
x
x0 处发散,则它在满足不等式
n0
x x0 的一切x处发散.
简记: (1)若 an xn在x0收敛,当 x x0 时, an xn绝对收敛.
n0
n0
(2)若 an xn在x0发散,当 x x0 时, an xn发散.
当 1 x2 1, 即 x 2
当 1 x2 1, 即 x
2
第二十二页,共25页。
2 时,级数绝对收敛, 2 时,级数发散,
R
2
22 22
例3.
求幂级数
n1
x
2
n1
的收敛区间及收敛域.
2n
因为原级数的收敛区间为 ( 2, 2 ).
当x
2时, 级数为
1
, 级数发散,
n1 2
当x
2
时,
级数为
1,
级数发散,
n1 2
所以原级数的收敛域为: ( 2, 2 ).
23
第二十三页,共25页。
23
例4.
的收敛半径 .
解: 级数缺少奇次幂项,不能直接应用定理2, 比值审敛法求收敛半径.
故直接由
lim
u (x) n1
lim
[ 2(n 1)] ! [ (n 1) ! ]2
x 2( n1)
n0
(, x0 ) ( x0 , )内的任何x都使幂级数 an xn发散.
n0
在原点与收敛点之间不可能有发散点.
几何说明:
绝对收敛
发散
幂级数及其收敛性

因为幂级数逐项积分后收敛半径不变,
所以,上式右端级数的收敛半径仍为 R = 1;
故收敛域为 1 < x ≤ 1 .
例 2 试求幂级数
的收敛区间 .
解 所给的幂级数为不缺项的,
它是发散的.
此为调和级数,
解 所给幂级数缺少 x 的奇次幂项,
对此正项级数利用比值审敛法
否则称为缺项的幂级数.
例如幂级数
缺 x 的奇次幂,
叫缺项的幂级数,
又如
是不缺项的幂级数.
定理
如果
该幂级数收敛;
该幂级数发散.
. 即
因为它不一定是正项级数,
当 x = 1 时,该级数收敛 .
而当 x = 1 时该级
数发散,
根据幂级数和的运算法则,其收敛半径应取较小的一个,
故 R = 1,
因此所得幂级数的收敛区间为 1 < x < 1 .
解 令 x 1 = y , 则 x = y + 1,
它就是函数 f(x) 的幂级数表达式 .
幂级数 :
称为泰勒级数 .
利用麦克劳林公式将函数 f(x) 展开成幂级数的方法,称为直接展开法 .
例 1 试将函数 f(x) = ex 展开成 x 的幂级数.
可以
得到
二、 直接展开法
因此我们可以得到幂级数
显然,这个幂级数的收敛区间为 (,+ ) .
收敛区间为 (0 , 2) .
所以
因
解
则原题就转化成
将函数
于是有
最后,我们将几个常用函数的幂级数展开式列在下面,
以便于读者查用 .
其端点的收敛性与 m 有关.
最后一个式子称为二项展开式,
幂级数课件

§14.1 幂级数
一 幂级数及其收敛性 二 幂级数的性质 三 幂级数的运算 四 小结
1.定义
(1)
注: 当
通项 时, 上面的幂级数化为
(2)
我们主要讨论形如(2)的幂级数, 因为只要把
(2)中的 换成 , 就得到(1).
2.幂级数的收敛点与收敛域
因此级数敛散性的问题对于函数项级数或 幂级数而言,正确的提法是区间上的那些 点使级数收敛,那些点使级数发散?
3.和函数
定义域是什么? 定义域就是级数的收敛域 函数项级数的部分和 余项
(x在收敛域上) 注意 函数项级数在某点x的收敛问题,实质上
是常数项级数的收敛问题.
证明
由(1)结论
几何说明 发散区域
收敛区域
发散区域
由定理14.1知道
定义: 正数R称为幂级数的收敛半径.
开区间
称为幂级数的收敛区间.
几个常用已知和函数的幂级数 注意收敛域!
四、小结
1.函数项级数的概念; 2.幂级数的收敛性: 收敛半径R 3.幂级数的运算: 分析运算性质
思考题 思考题解答 (注意下角标的灵活处理)
思考题解答 不一定.
例如
它们的收敛半径都是1, 但它们的收敛域各是
作业
教材 P50—51 习题 1. (2) (4) (6) (8) 2. 3. 4. 5.
推论1. 设 为幂级数(2)在收敛区间
内的和函数, 则它在
内具有任意阶导数,
且可逐项求导任意次, 即
注: 由此可见 是幂级数(2)的和函数的必要 条件是 要任意次可导.
推论2. 设 是幂级数(2)在 和函数, 则幂级数(2)的系数与 各阶导数有以下关系:
某邻域内的 在 处的
高等数学(下册)D113幂级数
对于任意非零实数$x$和$y$,有$sum_{n=0}^{infty} a_n x^n y^n = (sum_{n=0}^{infty} a_n x^n) (sum_{n=0}^{infty} a_n y^n)$。
加法性质
对于任意实数$x_1, x_2$,有$sum_{n=0}^{infty} a_n (x_1 + x_2)^n = sum_{n=0}^{infty} a_n x_1^n + sum_{n=0}^{infty} a_n x_2^n$。
04
幂级数的应用举例
利用幂级数求定积分
幂级数展开法
通过将原函数表示为幂级数,再逐项积分,得到定积 分的值。
几何意义法
利用幂级数的几何意义,通过求曲线下面积的方法来 求解定积分。
数值计算法
利用幂级数的数值计算方法,如梯形法、辛普森法等, 求解定积分的近似值。
利用幂级数求解微分方程
幂级数解法
通过将微分方程的解表示为幂级数,然后代入 微分方程求解。
02
通过将自变量代入泰勒级数的展开式中,可以得到函数的近似
值。
当需要高精度计算时,可以增加泰勒级数的项数,但计算量也
03
会相应增加。
THANKS
感谢观看
初始条件处理
在求解过程中,需要合理处理微分方程的初始 条件,确保解的正确性。
收敛性判断
在求解过程中,需要判断幂级数的收敛性,以确保解的合理性。
利用幂级数近似计算函数值
泰勒级数展开
01
利用泰勒级数的展开式,将函数表示为幂级数,然后代入自变
量值计算函数值。
截断误差控制
02
在利用幂级数近似计算函数值时,需要控制截断误差的大小,
幂级数和函数的求法
幂级数和函数的求法幂级数是一种特殊的无穷级数,在数学和物理学中有广泛的应用。
幂级数可以表示为一个多项式的无限级数,其中每一项都是多项式的某个次幂。
幂级数可以用来表示很多函数,比如指数函数、三角函数、对数函数等。
在本文中,我们将介绍幂级数和函数的求法。
第一部分:幂级数的定义和求和公式幂级数可以写成以下形式:f(x)=a0+a1x+a2x^2+a3x^3+...其中,a0、a1、a2、a3...是常数系数,x是变量。
幂级数可以表示为一个累加和的形式,即:f(x)=∑n=0∞anxn其中,an是幂级数的每一项系数,n是项数。
幂级数的求和公式如下:∑n=0∞x^n=1/(1-x)这个公式很有用,因为它可以用来推导其他幂级数的求和公式。
第二部分:幂级数的求导和积分对于幂级数f(x),我们可以对其进行求导和积分,得到新的幂级数。
幂级数的求导公式如下:f'(x)=∑n=1∞nanxn-1其中,an是原幂级数的每一项系数,n是项数。
幂级数的积分公式如下:∫f(x)dx=∑n=0∞an+1/(n+1)xn+1+C其中,C是常数。
第三部分:常见的幂级数和函数许多常见的函数都可以表示为幂级数的形式,比如:指数函数:e^x=∑n=0∞x^n/n!三角函数:sin(x)=∑n=0∞(-1)nx^(2n+1)/(2n+1)!cos(x)=∑n=0∞(-1)nx^(2n)/(2n)!对数函数:ln(1+x)=∑n=1∞(-1)^(n+1)x^n/n以上是一些常见的幂级数和函数,它们的幂级数表达式可用于计算、分析和求解各种数学和物理问题。
本文介绍了幂级数和函数的求法,包括幂级数的定义和求和公式、幂级数的求导和积分、以及常见的幂级数和函数。
希望读者通过本文的学习,能够更好地理解幂级数和应用它们解决实际问题。
(完整word版)幂级数概念
§ 11. 3 幂 级 数 一、函数项级数的概念函数项级数: 给定一个定义在区间I 上的函数列{u n (x )}, 由这函数列构成的表达式 u 1(x )+u 2(x )+u 3(x )+ ⋅ ⋅ ⋅ +u n (x )+ ⋅ ⋅ ⋅ 称为定义在区间I 上的(函数项)级数, 记为∑∞=1)(n n x u .收敛点与发散点:对于区间I 内的一定点x 0, 若常数项级数∑∞=10)(n n x u 收敛, 则称 点x 0是级数∑∞=1)(n n x u 的收敛点. 若常数项级数∑∞=10)(n n x u 发散, 则称 点x 0是级数∑∞=1)(n n x u 的发散点.收敛域与发散域:函数项级数∑∞=1)(n n x u 的所有收敛点的全体称为它的收敛域, 所有发散点的全体称为它的发散域. 和函数:在收敛域上, 函数项级数∑∞=1)(n n x u 的和是x 的函数s (x ),s (x )称为函数项级数∑∞=1)(n n x u 的和函数, 并写成∑∞==1)()(n n x u x s .∑u n (x )是∑∞=1)(n n x u 的简便记法, 以下不再重述.在收敛域上, 函数项级数∑u n (x )的和是x 的函数s (x ), s (x )称为函数项级数∑u n (x )的和函数, 并写成s (x )=∑u n (x ). 这函数的定义就是级数的收敛域, 部分和:函数项级数∑∞=1)(n n x u 的前n 项的部分和记作s n (x ),函数项级数∑u n (x )的前n 项的部分和记作s n (x ), 即 s n (x )= u 1(x )+u 2(x )+u 3(x )+ ⋅ ⋅ ⋅ +u n (x ).在收敛域上有)()(lim x s x s n n =∞→或s n (x )→s (x )(n →∞) .余项:函数项级数∑∞=1)(n n x u 的和函数s (x )与部分和s n (x )的差r n (x )=s (x )-s n (x )叫做函数项级数∑∞=1)(n n x u 的余项.函数项级数∑u n (x )的余项记为r n (x ), 它是和函数s (x )与部分和s n (x )的差 r n (x )=s (x )-s n (x ). 在收敛域上有0)(lim =∞→x r n n .二、幂级数及其收敛性 幂级数:函数项级数中简单而常见的一类级数就是各项都幂函数的函数 项级数, 这种形式的级数称为幂级数, 它的形式是 a 0+a 1x +a 2x 2+ ⋅ ⋅ ⋅ +a n x n + ⋅ ⋅ ⋅ , 其中常数a 0, a 1, a 2, ⋅ ⋅ ⋅ , a n , ⋅ ⋅ ⋅叫做幂级数的系数. 幂级数的例子:1+x +x 2+x 3+ ⋅ ⋅ ⋅ +x n + ⋅ ⋅ ⋅ , !1 !2112⋅⋅⋅++⋅⋅⋅+++n x n x x . 注: 幂级数的一般形式是a 0+a 1(x -x 0)+a 2(x -x 0)2+ ⋅ ⋅ ⋅ +a n (x -x 0)n + ⋅ ⋅ ⋅ , 经变换t =x -x 0就得a 0+a 1t +a 2t 2+ ⋅ ⋅ ⋅ +a n t n + ⋅ ⋅ ⋅ . 幂级数1+x +x 2+x 3+ ⋅ ⋅ ⋅ +x n + ⋅ ⋅ ⋅可以看成是公比为x 的几何级数. 当|x |<1时它是收敛的; 当|x |≥1时, 它是发散的. 因此它的收敛 域为(-1, 1), 在收敛域内有11132⋅⋅⋅++⋅⋅⋅++++=-n x x x x x.定理1 (阿贝尔定理) 如果级数∑∞=0n n n x a 当x =x 0 (x 0≠0)时收敛, 则适合不等式|x |<|x 0|的一切x 使这幂级数绝对收敛. 反之, 如果级数∑∞=0n n n x a 当x =x 0时发散, 则适合不等式|x |>|x 0|的一切x 使这幂级数发散.定理1 (阿贝尔定理) 如果级数∑a n x n 当x =x 0 (x 0≠0)时收敛, 则适合不等式 |x |<|x 0|的一切x 使这幂级数绝对收敛. 反之, 如果级数∑a n x n 当 x =x 0时发散, 则适合不等式|x |>|x 0|的一切x 使这幂级数发散. 提示: ∑a n x n是∑∞=0n n n x a 的简记形式.证 先设x 0是幂级数∑∞=0n nn x a 的收敛点, 即级数∑∞=0n n n x a 收敛. 根据级数收敛的必要条件, 有0lim 0=∞→nn n x a , 于是存在一个常数M , 使| a n x 0n |≤M (n =0, 1, 2, ⋅ ⋅ ⋅).这样级数∑∞=0n n n x a 的的一般项的绝对值n n n n n nn n n n x x M x x x a x x x a x a ||||||||||00000⋅≤⋅=⋅=. 因为当|x |<|x 0|时, 等比级数nn x x M ||00⋅∑∞=收敛, 所以级数∑∞=0||n n n x a 收敛, 也就是级数∑∞=0n n n x a 绝对收敛.简要证明 设∑a n x n 在点x 0收敛, 则有a n x 0n →0(n →∞) , 于是数列{a n x 0n }有界, 即存在一个常数M , 使| a n x 0n |≤M (n =0, 1, 2, ⋅ ⋅ ⋅). 因为 n n n n n nn n nn x x M x x x a x x x a xa || |||| || ||00000⋅≤⋅=⋅=,而当||||0x x <时, 等比级数n n x x M ||⋅∑∞=收敛, 所以级数∑|a n x n |收敛, 也就是级数∑a nx n 绝对收敛.定理的第二部分可用反证法证明. 倘若幂级数当x =x 0时发散而有一点x 1适合|x 1|>|x 0|使级数收敛, 则根据本定理的第一部分, 级数当x =x 0时应收敛, 这与所设矛盾. 定理得证.推论 如果级数∑∞=0n n n x a 不是仅在点x =0一点收敛, 也不是在整个数轴上都收敛, 则必有一个完全确定的正数R 存在, 使得 当|x |<R 时, 幂级数绝对收敛; 当|x |>R 时, 幂级数发散;当x =R 与x =-R 时, 幂级数可能收敛也可能发散.收敛半径与收敛区间: 正数R 通常叫做幂级数∑∞=0n n n x a 的收敛半径. 开区间(-R , R )叫做幂级数∑∞=0n nn xa 的收敛区间. 再由幂级数在x =±R 处的收敛性就可以决定它的收敛域. 幂级数∑∞=0n nn x a 的收敛域是(-R , R )(或[-R , R )、(-R , R ]、[-R , R ]之一.规定: 若幂级数∑∞=0n nn x a 只在x =0收敛, 则规定收敛半径R =0 , 若幂级数∑∞=0n n n x a 对一切x 都收敛, 则规定收敛半径R =+∞, 这时收敛域为(-∞, +∞). 定理2如果ρ=+∞→||lim 1n n n a a , 其中a n 、a n +1是幂级数∑∞=0n n n x a 的相邻两项的系数, 则这幂级数的收敛半径⎪⎪⎩⎪⎪⎨⎧+∞=≠=∞+=ρρρρ 00 1R .定理2如果幂级数∑∞=0n n n x a 系数满足ρ=+∞→||lim 1nn n a a , 则这幂级数的收敛半径 ⎪⎪⎩⎪⎪⎨⎧+∞=≠=∞+=ρρρρ 00 10 R .定理2如果ρ=+∞→||lim 1n n n a a , 则幂级数∑∞=0n n n x a 的收敛半径R 为: 当ρ≠0时ρ1=R , 当ρ=0时R =+∞, 当ρ=+∞时R =0.简要证明: || ||||lim ||lim 111x x a a x a x a n n n nn n n n ρ=⋅=+∞→++∞→. (1)如果0<ρ<+∞, 则只当ρ|x |<1时幂级数收敛, 故ρ1=R .(2)如果ρ=0, 则幂级数总是收敛的, 故R =+∞. (3)如果ρ=+∞, 则只当x =0时幂级数收敛, 故R =0. 例1 求幂级数)1( 32)1(13211⋅⋅⋅+-+⋅⋅⋅-+-=--∞=-∑nx x x x n x n n n n n的收敛半径与收敛域. 例1 求幂级数∑∞=--11)1(n n n nx 的收敛半径与收敛域.解 因为1111lim ||lim 1=+==∞→+∞→nn a an n n n ρ,所以收敛半径为11==ρR .当x =1时, 幂级数成为∑∞=--111)1(n n n, 是收敛的; 当x =-1时, 幂级数成为∑∞=-1)1(n n, 是发散的. 因此, 收敛域为(-1, 1].例2 求幂级数∑∞=0!1n n x n !1 !31!21132⋅⋅⋅++⋅⋅⋅++++n x n x x x的收敛域. 例2 求幂级数∑∞=0!1n n x n 的收敛域.解 因为0)!1(!lim !1)!1(1lim||lim 1=+=+==∞→∞→+∞→n n n n a a n n n n n ρ, 所以收敛半径为R =+∞, 从而收敛域为(-∞, +∞). 例3 求幂级数∑∞=0!n n x n 的收敛半径.解 因为+∞=+==∞→+∞→!)!1(lim ||lim 1n n a a n n n n ρ, 所以收敛半径为R =0, 即级数仅在x =0处收敛. 例4 求幂级数∑∞=022!)()!2(n nx n n 的收敛半径. 解 级数缺少奇次幂的项, 定理2不能应用. 可根据比值审敛法来求收敛半径: 幂级数的一般项记为nn x n n x u 22)!()!2()(=. 因为 21||4 |)()(|lim x x u x u n n n =+∞→, 当4|x |2<1即21||<x 时级数收敛; 当4|x |2>1即21||>x 时级数发散, 所以收敛半径为21=R . 提示: 2222)1(221)1()12)(22()!()!2(])!1[()]!1(2[)()(x n n n x n n xn n x u x u n n n n +++=++=++. 例5 求幂级数∑∞=-12)1(n n nnx 的收敛域.解 令t =x -1, 上述级数变为∑∞=12n n nnt .因为 21)1(22 ||lim 11=+⋅⋅==++∞→n n a a n n n n n ρ,所以收敛半径R =2.当t =2时, 级数成为∑∞=11n n , 此级数发散; 当t =-2时, 级数成为∑∞=-1)1(n n , 此级数收敛. 因此级数∑∞=12n n nnt 的收敛域为-2≤t <2. 因为-2≤x -1<2, 即-1≤x <3, 所以原级数的收敛域为[-1, 3). 三、幂级数的运算 设幂级数∑∞=0n nn x a 及∑∞=0n n n x b 分别在区间(-R , R )及(-R ', R ')内收敛, 则在(-R , R )与(-R ', R ')中较小的区间内有 加法: ∑∑∑∞=∞=∞=+=+000)(n n n n n nn n nn x b a x b xa ,减法:∑∑∑∞=∞=∞=-=-0)(n n n n n n n n n n x b a x b x a ,设幂级数∑a n x n 及∑b n x n 分别在区间(-R , R )及(-R ', R ')内收敛, 则在(-R , R )与(-R ', R ')中较小的区间内有加法: ∑a n x n +∑b n x n =∑(a n +b n )x n , 减法: ∑a n x n -∑b n x n =∑(a n -b n )x n .乘法: )()(0∑∑∞=∞=⋅n n n n nn x b x a =a 0b 0+(a 0b 1+a 1b 0)x +(a 0b 2+a 1b 1+a 2b 0)x 2+ ⋅ ⋅ ⋅+(a 0b n +a 1b n -1+ ⋅ ⋅ ⋅ +a n b 0)x n + ⋅ ⋅ ⋅性质1 幂级数∑∞=0n n n x a 的和函数s (x )在其收敛域I 上连续.如果幂级数在x =R (或x =-R )也收敛, 则和函数s (x )在(-R , R ](或[-R , R ))连续. 性质2 幂级数∑∞=0n n n x a 的和函数s (x )在其收敛域I 上可积, 并且有逐项积分公式∑∑⎰⎰∑⎰∞=+∞=∞=+===0100001)()(n n n n xn n xn n n x x n a dx x a dx x a dx x s (x ∈I ), 逐项积分后所得到的幂级数和原级数有相同的收敛半径.性质3 幂级数∑∞=0n n n x a 的和函数s (x )在其收敛区间(-R , R )内可导, 并且有逐项求导公式∑∑∑∞=-∞=∞=='='='110)()()(n n n n n n n n n x na x a x a x s (|x |<R ),逐项求导后所得到的幂级数和原级数有相同的收敛半径.性质1 幂级数∑a n x n 的和函数s (x )在其收敛域I 上连续.性质2 幂级数∑a n x n 的和函数s (x )在其收敛域I 上可积, 并且有逐项积分公式∑∑⎰⎰∑⎰∞=+∞=∞=+===0100001)()(n n n n xn n x n n n x x n a dx x a dx x a dx x s (x ∈I ), 逐项积分后所得到的幂级数和原级数有相同的收敛半径.性质3 幂级数∑a n x n 的和函数s (x )在其收敛区间(-R , R )内可导, 并且有逐项求导公式 ∑∑∑∞=-∞=∞=='='='010)()()(n n n n nn n nn x na x a x a x s (|x |<R ),逐项求导后所得到的幂级数和原级数有相同的收敛半径.例6 求幂级数∑∞=+011n n x n 的和函数.解 求得幂级数的收敛域为[-1, 1). 设和函数为s (x ), 即∑∞=+=011)(n n x n x s , x ∈[-1, 1). 显然s (0)=1. 在∑∞=++=0111)(n n x n x xs 的两边求导得 x x x n x xs n n n n -=='+='∑∑∞=∞=+11)11(])([001. 对上式从0到x 积分, 得 )1ln(11)(0x dx xx xs x--=-=⎰.于是, 当x ≠0时, 有)1ln(1)(x x x s --=. 从而⎪⎩⎪⎨⎧=<<--=0 11||0 )1ln(1)(x x x x x s .因为⎰∑∑'+=+=∞=+∞=+x n n n n dx x n x n x xs 00101]11[11)( )1ln(11000x dx xdx x xx n n --=-==⎰⎰∑∞=, 所以, 当x ≠0时, 有)1ln(1)(x xx s --=,从而 ⎪⎩⎪⎨⎧=<<--=0 11||0 )1ln(1)(x x x x x s .例6 求幂级数∑∞=+011n n x n 的和函数. 解 求得幂级数的收敛域为[-1, 1). 设幂级数的和函数为s (x ), 即∑∞=+=011)(n n x n x s , x ∈[-1, 1). 显然S (0)=1. 因为⎰∑∑'+=+=∞=+∞=+x n n n n dx x n x n x xs 00101]11[11)( )11( )1ln(11000<<---=-==⎰⎰∑∞=x x dx xdx x xx n n , 所以, 当1||0<<x 时, 有)1ln(1)(x xx s --=.从而 ⎪⎩⎪⎨⎧=<<--=0 11||0 )1ln(1)(x x x x x s .由和函数在收敛域上的连续性, 2ln )(lim )1(1==-+-→x S S x .综合起来得⎪⎩⎪⎨⎧=⋃-∈--=0 1)1 ,0()0 ,1[ )1ln(1)(x x x x x s .提示: 应用公式)0()()(0F x F dx x F x-='⎰, 即⎰'+=xdx x F F x F 0)()0()(.11132⋅⋅⋅++⋅⋅⋅++++=-n x x x x x.例7 求级数∑∞=+-01)1(n nn 的和.解 考虑幂级数∑∞=+011n nx n , 此级数在[-1, 1)上收敛, 设其和函数为s (x ), 则∑∞=+-=-01)1()1(n nn s .在例6中已得到xs (x )=ln(1-x ), 于是-s (-1)=ln2, 21ln )1(=-s , 即21ln 1)1(0=+-∑∞=n nn .。
高数课件29幂级数
幂级数的收敛性:在收敛区间内, 幂级数可以表示为收敛函数
添加标题
添加标题
添加标题
添加标题
幂级数的展开形式: f(x)=a0+a1x+a2x^2+...+anx ^n+...
幂级数的应用:在数学、物理、 工程等领域有广泛应用
幂级数展开式的应用
解决微分方程: 幂级数展开式 可以用来求解
幂级数的求积
幂级数的求和与求积是幂级数理 论的重要内容
幂级数的求和与求积在数学、物 理、工程等领域有着广泛的应用
添加标题
添加标题
添加标题
添加标题
幂级数的求和与求积可以通过积 分法、级数法等方法实现
幂级数的求和与求积是解决实际 问题的重要工具
幂级数求和与求积的应用
数值计算:用于求解复杂函数的数值解 微积分:用于求解微积分中的积分问题 概率论:用于求解概率论中的期望和方差问题 物理:用于求解物理中的微分方程问题
的值
幂级数的导数: 幂级数的导数 也是幂级数, 且其收敛半径 与原幂级数相
同
幂级数的几何意义
幂级数的系数可以表示为函 数在该点附近的导数
幂级数是函数在某点附近的 一种近似表示
幂级数的收敛半径可以表示 为函数在该点附近的最大导
数
幂级数的收敛半径可以表示 为函数在该点附近的最小导
数
幂级数的展开
幂级数的展开式
幂级数在微积 分中具有广泛 的应用,如泰 勒级数、傅里
叶级数等。
幂级数在微积 分中可以用来 近似计算函数 值,如泰勒级 数在数值分析
中的应用。
幂级数在微积 分中可以用来 研究函数的性 质,如傅里叶 级数在信号处 理中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
外发散; 在 x R 可能收敛也可能发散 .
R 称为收敛半径 ,(-R , R ) 称为收敛区间.
(-R , R ) 加上收敛的端点称为收敛域.
收敛 发散
发散
收o敛
发散x
机动 目录 上页 下页 返回 结束
定理2. 若
的系数满足
则
1) 当 ≠0 时,
R
1
;
2) 当 =0 时, R ;
3) 当 =∞时, R 0 .
有和函数
它的发散域是 ( , 1 ] 及 [1, ), 或写作 x 1.
又如, 级数 所以级数的收敛域仅为
级数发散 ;
机动 目录 上页 下页 返回 结束
二、幂级数及其收敛性
形如
的函数项级数称为幂级数, 其中数列
称
为幂级数的系数 .
下面着重讨论
的情形, 即
例如, 幂级数
xn
n0
1, 1 x
x 1 即是此种情形.
an xn
an x0n
xn x0n
an x0n
x x0
n
当 x x0 时,
收敛,
也收敛,
故原幂级数绝对收敛 .
反之, 若当 x x0 时该幂级数发散 ,下面用反证法证之.
假设有一点 x1 满足 x1 x0 且使级数收敛 , 则由前 面的证明可知, 级数在点 x0 也应收敛, 与所设矛盾,
故假设不真. 所以若当 x x0 时幂级数发散 , 则对一切 满足不等式 x x0 的 x , 原幂级数也发散 . 证毕
x R
其中
以上结论可用部分和 的极限证明 .
机动 目录 上页 下页 返回 结束
说明: 两个幂级数相除所得幂级数的收敛半径可能比 原来两个幂级数的收敛半径小得多.
机动 目录 上页 下页 返回 结束
定理4 若幂级数
的收敛半径
则其和函
在收敛域上连续, 且在收敛区间内可逐项求导与
逐项求积分, 运算前后收敛半径相同:
证:
lim
n
an 1 x n 1 an xn
lim an1 n an
x
1) 若 ≠0, 则根据比值审敛法可知:
当
x
1,
即
x
1
时,
原级数收敛;
当
x
1,
即
x
1
时,
原级数发散.
机动 目录 上页 下页 返回 结束
因此级数的收敛半径 R 1 .
2) 若 0, 则根据比值审敛法可知, 对任意 x 原级数
n
an an1
lim
n
1 2n n
1 2 n 1 (n
1)
lim
n
2n1(n 2n n
1)
2
当 t = 2 时, 级数为 此级数发散;
当 t = – 2 时, 级数为
此级数条件收敛;
因此级数的收敛域为 2 t 2 , 故原级数的收敛域为 即 1 x 3.
机动 目录 上页 下页 返回 结束
S ( x)
an xn
nan xn1,
n0
n1
x (R, R)
xS(x) dx 0
an
n0
xxn dx an xn1,
0
n0n 1
x (R, R)
(证明见第六节)
注: 逐项积分时, 运算前后端点处的敛散性不变.
机动 目录 上页 下页 返回 结束
定理 1. ( Abel定理 ) 若幂级数 an xn
n0
则对满足不等式
的一切 x 幂级数都绝对收敛.
反之, 若当
时该幂级数发散 , 则对满足不等式
的一切 x , 该幂级数也发散 .
证: 设
收敛, 则必有
于是存在
常数 M > 0, 使
发散
收敛 发散
收o敛
发散x
阿贝尔 目录 上页 下页 返回 结束
第三节 幂级数
第十一章
一、函数项级数的概念 二、幂级数及其收敛性 三、幂级数的运算
机动 目录 上页 下页 返回 结束
一、 函数项级数的概念
设 un (x) (n 1, 2, ) 为定义在区间 I 上的函数, 称
为定义在区间 I 上的函数项级数 .
对
若常数项级数
收敛, 称 x0 为其收
敛点, 所有收敛点的全体称为其收敛域 ;
机动 目录 上页 下页 返回 结束
由Abel 定理可以看出, an xn 的收敛域是以原点为
中心的区间.n0来自用±R 表示幂级数收敛与发散的分界点, 则
R = 0 时, 幂级数仅在 x = 0 收敛 ;
R = 时, 幂级数在 (-∞, +∞) 收敛 ;
0 R , 幂级数在 (-R , R ) 收敛 ; 在[-R , R ]
(2) R lim an lim n ! n an1 n (n 1) !
所以级数仅在 x = 0 处收敛 .
0
机动 目录 上页 下页 返回 结束
例3.
的收敛半径 .
解: 级数缺少奇次幂项,不能直接应用定理2, 故直接由
比值审敛法求收敛半径.
lim un1(x) n un (x)
lim
n
[ [
对端点 x = 1, 级数为交错级数
收敛;
对端点 x =-1, 级数为 故收敛域为 (1, 1] .
发散 .
机动 目录 上页 下页 返回 结束
例2. 求下列幂级数的收敛域 :
规定: 0 ! = 1
解: (1)
1
R lim an lim n an1 n
n! 1
(n 1)!
所以收敛域为 ( , ) .
绝对收敛 , 因此 R ;
3) 若 ,则对除 x = 0 以外的一切 x 原级发散 ,
因此 R 0 .
说明:据此定理
的收敛半径为 R lim an n an1
机动 目录 上页 下页 返回 结束
例1.求幂级数
的收敛半径及收敛域.
1
解: R lim an lim n an1 n
n 1
n 1
三、幂级数的运算
定理3. 设幂级数
及
的收敛半径分别为
R1, R2, 令 R min R1 , R2 , 则有 :
an xn (为常数)
n0
an xn bn xn (an bn ) xn ,
n0
n0
n0
x R1 x R
an xn bn xn cn xn ,
n0
n0
n0
若常数项级数
发散 , 称 x0 为其发散点, 所有
发散点的全体称为其发散域 .
机动 目录 上页 下页 返回 结束
在收敛域上, 函数项级数的和是 x 的函数 为级数的和函数 , 并写成
称它
若用
表示函数项级数前 n 项的和, 即
令余项 则在收敛域上有
机动 目录 上页 下页 返回 结束
例如, 等比级数 它的收敛域是
2 (n 1) ] ! (n 1) ! ]2
x
2 (n1)
[2n]! [ n ! ]2
x2n
lim
n
(
2
n
1)(2 n (n 1)2
2)
x2
4 x2
当4x2 1 当4x2 1
时级数收敛 故收敛半径为 R 1 .
时级数发散
2
机动 目录 上页 下页 返回 结束
例4.
的收敛域.
解: 令
级数变为
R lim