柯西积分公式课件

合集下载

第三章柯西积分公式3-5

第三章柯西积分公式3-5
C 2
L = 2 ∆z
ML d3
1 f (z) f ′( z ) = ∫C ( z − z ) 2 dz 2πi 0
即n = 1时,结论成立.对于任意的正整数n都是成立的.
例4.1 求下列积分的值,其中C为正向圆周: = r > 1. z
(1)∫ cosπz ( z − 1)
C
dz,. 5
( 2) ∫
且满足拉普拉斯(Laplace )方程 ∂ 2ϕ ∂ 2ϕ + 2 =0 2 ∂x ∂y
则称ϕ ( x , y )为区域D内的调和函数 .
定理5.1 如果f ( z ) = u( x , y ) + iv ( x , y )在区域D内解析,
函数u( x , y ), v ( x , y )均为区域D内的调和函数 .
?
C
δ
z0
B
f (z) f (z) dz ∫C z − z0 dz = ∫Cδ z − z0 dz = f ( z0 )∫Cδ z − z0 = 2πif ( z0 )
定理3.1 (柯西积分公式)
如果f ( z )在区域D内解析,C为D内任意一条正向简单闭曲线, 它的内部全部含于D内, z 0为C任意一点,则 f (z) 1 f ( z0 ) = ∫C z − z0 dz 2πi f (z) f ( z ) − f ( z 0 )dz ( z ) f 证明 ∫C z − z 0= K dz dz K z−z z−z
2 2
∂ ∂u ∂ ∂v ∂ 2u ∂ 2v [ ] = − [ ]⇒ =− 2 ∂x ∂y ∂x ∂x ∂x∂y ∂x ∂ 2u ∂ 2v ∂ ∂u ∂ ∂v [ ] = − [ ]⇒ 2 = − ∂y ∂ y ∂ y ∂x ∂x∂y ∂y

科西积分公式.ppt

科西积分公式.ppt

e-i ie-i
πi 2
ei iei e-i ie-i


πi 2
2
cos1
2
sin
1

πi sin
1

sin(
π 2
1)

1 ( π 1) 1 ( π 1)
2πi sin 2 cos 2
2
2
2πisin 1
4
例题5
一致趋于0,则有:
f
(z)

1 2πi
l
f

( )d
z
证明: 以 z为圆心,R为半径作一
足够大的圆CR,将l和z点 都包含,则有:
l
z
f (z) 1 f ( )d 1 f ( )d
2i CR z 2i l z
R时

1
2i
l
f

( )dz
l za
cosh z
dz 2πi cosh(1) 2πi cosh1
|z|2 z 1
例题3
计算:
l
z(
e z2
z

dz,l为圆 1)
|
z
i
|
1 2
Y z=i
解:
ez 在复平面的奇点为 z(z2 1)
z
0,
i
ez
O z=0 X z=-i
l
ez z(z2
l
柯西公式给出了,解析函数在解析区域内部的 值和边界值之间的关系。
l a

l
证明:函数g(z) f (z) 在内除z a外均解析
za
在内作以a为圆心,半径充分小的圆周l

柯西积分公式

柯西积分公式

Q lim f ( z ) = f ( z0 )
z z0
ε > 0, δ > 0 z z 0 = R < δ
f ( z ) f ( z0 ) < ε
注: ) D可为多连通域; (1
( 2)该公式表明解析函数 f ( z )在C内部任一点的值, 可以用其在边界上的值 表示。
1 f (z) f (z0 ) = ∫C z z0 dz 2πi
z∈C
1 取 z < d , 则有 2
1 1 z z0 ≥ d , ≤ z z0 d d z z0 z ≥ z z0 z > , 2 2 < z z0 z d 1
ML ( L — C 的长度) 的长度) ∴ I < z 3 πd 显然, 显然, lim I = 0 , 从而有
z→ 0
当 δ → 0时 , f ( z ) → f ( z 0 )( z ∈ C1 )

C
f (z) dz = z z0
C1

C1
f ( z ) δ →0 dz → z z0
C D z0 C1
→ f ( z0 )∫
1 dz = 2π if ( z 0 ) z z0
定理(Cauchy 积分公式 积分公式) 定理
§3.5 Cauchy积分公式 积分公式
分析 设 D 单连通 , f ( z )在 D 内解析 ,
z 0 ∈ D , C 是 D 内围绕 z 0的一条闭曲线 .

C
f ( z) dz = z z0

C1
f (z ) (z dz z z0
C z0 C1
D
取 C 1 = { z z z 0 = δ (δ > 0可充分小 )}

第二讲 柯西积分公式高阶导数

第二讲 柯西积分公式高阶导数

应用解析函数有任意阶导数,可以证明 柯西定理的逆定理, 莫勒拉定理:如果函数f(z)在区域D内连续, 并且对于 D 内的任一条简单闭曲线 C ,我们


C
f ( z )dz 0
那么f(z)在区域D内解析。
小结:本章五个定理都是为积分计 算服务




1)柯西-古萨定理用于计算闭合曲线内部无奇点 的积分。 2)高阶导数公式用于计算闭合曲线内部有一个 奇点的积分。(其中n=0就是柯西积分公式). 3)复合闭路变形原理用于化简闭合曲线内部有 多个奇点的积分。 4)只有N-L公式用于不闭合曲线积分。
定理3.9 设f(z) 在以简单闭曲线C所围成的区域D
.
内解析. 在 阶导数,且
f
( n)
D D C上连续,则f(z)在D内有任意
n! (z) 2i

f ( ) ( z )
n1
C
d ( n 1,2,3,...)
1 (注:f ( z ) 2i

f ( ) d ) C z
1 2

2
0
f ( z0 Re )d
i
说明:一个解析函数在圆心处的值 等于它在圆周上的平均值.
推论2 设 f ( z ) 在由简单闭曲线 C 1、 C 2 围成的二连通
C2在C1 区域 D内解析, 并在曲线 C1、C2上连续,
z0为D内一点,则 的内部, 1 f (z) 1 f (z) f ( z0 ) dz dz 2i C z z0 2i C z z0
f ( z )不是常数, 则在区域 D内 f z 没有最大值。
推论1在区域 D内的解析函数, 若其模在区域
D 内达到最大值,则此函数必恒等于常数.

-柯西积分公式

-柯西积分公式
§3.4 柯西积分公式
一、 柯西积分公式
定理 若 f (z) 在区域 D内处处解析, 在 C D 连续, C 为正向简单闭曲线, 对z0 D, 则有
1 f (z)
f (z0 ) 2i
dz C z z0
称之为柯西积分公式。
说明: (1) 通过柯西积分公式, 可以把函数在C 内部任 一点z 的值用它在边界C 上的值通过积分来表示;
2
例 设 C 是不通过z0 的简单正向闭曲线,
求 g(z0 )
z4 z2 C (z z0 )3 dz
的值。
解:

z0
在C
的 外 部 时,
z4 z2 (z z0 )3
在 C 内解析
由柯西积分定理, 有 g(z0 ) 0
当 z0 在 C 的内部时, 设 f (z) z4 z2 ,由高阶导数
二、 高阶求导公式
定理 设 f (z) 在 D内解析, 在 C D 连续, C 为简单 正向闭曲线, 则 f (n)(z) 在 D内仍解析, 且f(n)(z0 )
n!
2i
f (z) C (z z0 )n1 dz,
z0 D,
n 1,2,...
说明 : (1 ) C 可以是含于 D 内任何包含 z0 的简单正向闭曲线;
2i
2 0
f
(z0 re i re i
)
re i

id
1
2
2 0
f (z0 re i )d
------ 一个解析函数在圆心处的值等于 它在圆周上的平均值.
例 计算下列积分( 沿圆周正向 ) 值 :
1 cos z
3z 1
(1)

3.3柯西积分公式

3.3柯西积分公式

C
2、关于柯西积分公式的说明: 关于柯西积分公式的说明: (1) 把函数在 内部任一点的值用它在边界上的 把函数在C内部任一点的值用它在边界上的 值表示. 这是解析函数的又一特征 值表示 (这是解析函数的又一特征 这是解析函数的又一特征) (2) 公式不但提供了计算某些复变函数沿闭路积 分的一种方法, 分的一种方法 而且给出了解析函数的一个积分 表达式. 表达式 (这是研究解析函数的有力工具 这是研究解析函数的有力工具) 这是研究解析函数的有力工具
2
z = −1
( 2)

z −1 =
π sin z 4 dz = z2 − 1 1
2

z −1 =
π sin z 4 π sin z z + 1 dz 4 = 2 πi; = 2πi ⋅ 2 1 z −1 z +1
2 z =1
π sin z 由复合闭路定理, ( 3) ∫ 2 4 dz 由复合闭路定理 得 z −1 z =2 π sin z 4 dz = ∫=2 z 2 − 1 z
由复合闭路定理, 由复合闭路定理 得
ez ∫ z =3 z ( z 2 − 1) dz z ez ez e z ( z + 1) z ( z − 1) z 2 − 1 dz + =∫ 1 ∫ z −1 = 14 ( z − 1) dz + ∫ z +1 = 14 ( z + 1) dz z= z 4
§3.3 柯西积分公式
一、柯西积分公式
1、定理 设函数 f ( z ) 在简单闭曲线 C所围区域 D 内解析 , 、 上连续, z 在 D = D ∪ C 上连续, 0 为 D 内任一点 , 则
1 f (z) f (z0 ) = dz. ∫C 2πi z − z0

柯西积分公式及高阶导数公式PPT课件

柯西积分公式及高阶导数公式PPT课件

z2
4 dz 1
是 D上的解析函数, 那么 2
2
n
2 2 蜒 f (z)dz
f (z)dz,
i i C
k 1 Ck
C
C1
C2 C3
其中C和Ck(1kn)取正向2.
2
D
2i.
习题课
24
例7. 解
Ñ 求积分
ez z 1 zn dz, 其中n为整数.
(1) n 0时,
函数
ez zn

z
1上解析.
f (z) d z,
要注意: a)
C z z0
f(z)在简单闭曲线C及其内部解析,
b) z0在C的内部习. 题课
6
例1:求下列积分(沿圆周正方向)的值:
1 sin z
z
1)
d z; 2)
d z;
2 π i |z|4 z
|z|2 z 3
1
3) |za|a z2 a2 d z, (a>0).
C z
解 根据Cauchy积分公式, 当z在C内时,
f (z)定理22.5πi设f (z3)是单2连通7区域D上1的解析函数2, i 3z2 7z 1 . z0 是D内的一个点, C是任意一条含 z0 在内部区z 域
于的是分段光f滑((或z)可求长2)Joir(da6n曲z 线, 7则), 而1+i 在C内, 所以
习题课
23
(3) 根据 复合闭路定理以及前面的结果,
定理2.4 设 C ,C1,C2 ,L ,Cn是多连通区域D内
分段光滑s(i或n可求z长) Jordan曲线s,inC1,C2z,L ,Cn 都
sinπ z
都C,在C1zC,C的22,内Lz2部,C4,n它为1们边d互界z 不的包闭z含区1 也域1互含z不于2 相D4内交1.,d并若z且f (以z) z1 1

复变函数第3节:柯西积分公式及高阶导数公式

复变函数第3节:柯西积分公式及高阶导数公式
复变函数的积分
第3节 柯西积分公式
柯西积分公式 高阶导数公式
一、柯西积分公式
设B为单连通域, f(z)在B内解析, z0∈B, 设C为B内
绕z0的任一正向简单闭曲线, 则
f (z) z z0
在z0不解析.
z0
在C内部作CR: |zz0|=R (取其正向)
C
f (z) d z
f
(z)
d
R
z
D
说明: 1) 解析函数具有任意阶导数;
2) f (n)(z0 ) 可用函数 f(z)在边界上的值通过积分唯一 确定。
说明:
3)
高阶导数公式的应用: 可求积分
C
f (z) (z z0 )n1 d z
要注意:a) f(z)在简单闭曲线C及其内部解析,
b) z0在C的内部.
高阶导数公式的作用: 不在于通过积分来求导,

C2
f((zz)2
1)2
dz.
n
f (z)dz
f (z)dz,
C
k 1 Ck
C
C1
C2 C3
• •
C1 i
o
C2 i
C
x
ez
C1
(
z
2
ez
1)2
dz
C1
( (
z z
i i
)2 )2
dz
y
C1 i
C
• •
2i (2 1)!
(
z
ez i
)2
(1 i)ei .
2
o
C2 i
z1 z1
sin z
dz
2i 4
2 i.
z1 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3.3 柯西积分公式
数学系 樊晓香
一、问题的提出
回顾:柯西积分定理
若f z在闭域D上解析, C为D的边界,则
C f z dz 0
D
z0 C
如 C sin zdz 0 , C : z i 1
y
如果被积函数在D内有奇点,怎么办
iC

sin z
C z i dz 0 ,
C: zi 1
O
x
(A. Cauchy,法,1789-1857)
拉格朗日级数
天体力学
柯西积分
公式
微分方程 物理问题
二、柯西积分公式
定理3.11 (柯西积分公式) 如果f z在区域D内处处解析,
C为D内的任何一条正向简单闭曲线,它的内部完全含于D,
z0为C内的任一点,则
1 f (z)
f (z0 ) 2 π i
dz C z z0
D
C
z0
---解析函数可用复积分表示。
五、布置作业
课本 P143 10,12.
补充题:
计算积分
ez dz,C : z r (r 1, 2)
C z(z 1)(z 2)
C2 C1 C3
1 0
2
谢谢!

C
f (z) z z0
d z=2 πi
f (z0 )
---复积分的重要计算公式。
分析:函数 f (z)在 K 上 的值将随 着 的缩小而逐渐接近于
它在圆心 z0 处的值,
C Kz0
D
f (z) dz将接近于 f (z0 ) dz (随着 减小)
K z z0
K z z0

K
f (z0 ) dz z z0
原式=2i sin z zi
2i sin i.
f (z)
C z z0 d z=2 π i f (z0 )
例2.
1 dz, 其中C : z 1 1. C z2 1
C : z 2
解:被积函数有奇点1和-1,而两个奇点只有z 1在C内,
f (z)
1
原式=C
z 1 dz z 1
2 i 1
z 1 z1
f (z0 )
1 dz
K z z0
2 if (z0 ).
三、典型例题
f (z)
C z z0 d z=2 π i f (z0 )
f (z)
例1.
C
sin z z i
dz,
其中C :
z i
1.
解:z i是被积函数在C内唯一奇点,
y
iC
而sin z在复平面上处处解析,O Nhomakorabeax
所以,f z sin z, z0 i,
i
yy
C2 C1 CC
-1
1
-1OO 1 2 xx
四、小结:使用柯西积分公式的关键
主要用于计算一些被积函数形如 F z f z 的周线积分;
z z0
z
z0
是被积函数 F
z
f z
z z0
在C
内部唯一的奇点。
如果被积函数 F z在C 内部有两个及两个以上奇点时,
就不能直接应用柯西积分公式.
先找 C 内唯一的奇点,再找解析函数 f z
相关文档
最新文档